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Possibility of breakdown of atomic stabilization in an
intense high-frequency field
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We have calculated the ionization yield for a hydrogen atom irradiated by a short (5-cycle) intense
pulse, with the atom initially in the ls or 2p (m g 0) state. We numerically solved the time-
dependent Schrodinger equation, 6rst making the dipole approximation, and then including the
photon momentum. At sufBciently high intensities we 6nd significant differences between making
and not making the dipole approximation, suggesting that atomic stabilization may break down in
superintense fields.

PACS number(s): 32.90.+a, 32.80.Rm

The possibility that an atom becomes stable against
ionization in a very strong high-frequency Geld has
aroused considerable interest —see, e.g. , Refs. [1—11].
However, up to now all calculations have been performed
making the dipole approximation, wherein the photon
momentum is neglected. While each photon carries only
a very small momentum, i.e., hk—:(h~/c)x, where h~
is the photon energy and x is a unit vector along the
pulse propagation direction, many photons are scattered
&om the atomic electron. Moreover, during the rise and
fall of the pulse, scattering in the forward direction is a
stimulated process, i.e., photons scatter &om and into oc-
cupied modes within the energy bandwidth of the pulse.
Stimulated photon scattering results in a significant en-
ergy transfer, AE, to the electron —this is the ac shift.
Since an energy transfer LE must be accompanied by
a momentum transfer of (b,E/c)x, and since, at high
&equencies and high intensities, LE is of the order of
the peak ponderomotive energy, Po, the net momentum
imparted to the electron by the radiation Geld is compa-
rable to (Po/c)x If the .rate at which this momentum
is transferred to the electron is comparable to the char-
acteristic atomic binding force, one may wonder whether
stabilization still occurs. Indeed, the breakdown of stabi-
lization due to radiation pressure was recently suggested
by Katsouleas and Mori [12].

It is perhaps worth recalling that the photoionization
of an atom by a weak Geld can be treated within the
dipole approximation as long as the wavelength, A, is
large compared to the characteristic size of the atom; in
this case the momentum imparted by the radiation is
h/A. However, in strong fields we must multiply h/A by
the number of photons that participate in the dressing of
the atom, and this number is typically of order Po/(hw).

A proper treatment of the interaction of an atom with
a very strong radiation Geld should be given within the
&amework of relativistic quantum mechanics, but the
numerical solution of the time-dependent Dirac equa-
tion is presently beyond our scope. Thus, as a prelimi-
nary investigation we have numerically solved the time-
dependent nonrelativistic Schrodinger equation for the
hydrogen atom, taking into account the photon momen-

turn. (Some aspects of the computation are sketched in
the Appendix. ) We find that stabilization can indeed
break down. Furthermore, we Gnd that significant popu-
lation transfer between bound states can occur, enhanced
by a rotational coupling which appears only beyond the
dipole approximation. We view these results as a warning
that predictions based on the use of the dipole approxi-
mation may be invalid at intensities lower than one might
have expected [13].

For simplicity we assume the light to be linearly polar-
ized, along the z axis, and the intensity to be spatially
homogeneous. Letting H denote the Hamiltonian of the
bare atom, the Hamiltonian of the atom interacting with
the pulse is

A( ) (t) = f(t) sin(~t) i:, (2)

where f(t) is a slowly varying function of the time t on the
scale of one cycle 2vr/u. We took the intensity profile of

-t2 g2the pulse to be Gaussian: f(t) = foe ~ ~. The inclusion
of the photon momentum gives rise to a magnetic Geld,
B(t), which we can express as B(t) = xx E(t), where E(t)
is the electric Geld and where x is a unit vector along the x
axis. We can evaluate E(t) within the dipole approxima-
tion; we have E(t) = —(1/c)dA( )(t)/dt. Thus, writing
A(o)(t) = A(oi(t)z, we have B(t) = (1/c)(d/dt)A(o&(t)y,
and now writing B(t) = V x A(ii (r, t) we see that the
leading correction to Al i(t) is

(,) z dA(oi(t)
c dt

Note that A( )(r, t) is of order v/c smaller than Aloi(t),
where v is the (instantaneous) speed of the electron.
Dropping the contributions in IAl )(t)I and IA& &(r, t)I

H(t) = H ——A(r, t) p+ IA(r, t)I',
pc 2jlc

where e, p, and p are the charge, mass, and canonical mo-
mentum of the electron, and where A(r, t) is the vector
potential of the Geld. Within the dipole approximation,
the vector potential is
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to the term in IA(r, t)I (since the first contribution is
spatially independent and the second contribution is rel-
ativistic) we have

H(t) = H ——[Al )(t) + Al )(r, t)] ppc
e Al )(t) . Al'i(r, t).

pc2

The Lorentz force, F(t), on the electron due to its
quivering with a velocity v—:(e/p) j dt' E(t')
—(e/pc)Al )(t) in the magnetic field is F(t) = (e/c)v x
B(t), which, up to a sign, is just the spatial gradient of
the last term on the right-hand side of Eq. (4). It is useful
to express F(t) as

(5)

where

P(t) = (e'/2( c')IA" (t)I'

and where the cycle average of P(t) is the ponderomo-
tive energy, Po(t) = (e /4pc) f (t), whose peak value we
denote as Po = (e2/4pc2) fo In ph. oton terms F(t) is me-
diated by stimulated photon scattering, as noted above.
This force transfers drift momentum to the electron, and
pushes the electron in the direction that the pulse prop-
agates. In contrast, the electric Geld force eE(t) drives
the electron back and forth along the polarization axis,
and therefore distorts the atom along this axis.

In order to carry out calculations at very high inten-
sities —which demand considerable computer time-
we made a further approximation: We dropped the term
—e/(pc)Al )(r, t) p Rom H(t) in Eq. (4). This term
takes into account the Lorentz force associated with the
cycle-averaged motion of the electron in the magnetic
Geld; it is proportional to the square-root of the inten-
sity, and at suKciently high intensities is dwarfed by the
Lorentz force associated with the quiver motion, which
is proportional to the intensity —the cycle-averaged
motion is much slower than the quiver motion. This
further approximation enables us to cast the Hamilto-
nian into a form that is similar to that obtained when
the dipole approximation is made. To this end we Grst
introduce a gauge transformation which effects a shift
in the canonical momentum by (1/c)P(t)x; replacing
1@(t)) by e('("') I ) 1%'(t)) in the Schrodinger equation
ih(d/dt)liII(t)) = H(t)l@(t)) results in a modification to
the Hamiltonian:

H(t) = H ——A l )(t) . p,
PC

where A l )(t) = AI )(t) —(I/e)P(t)x, and where
we have dropped the spatially-independent term
(e2/2pc ) IA l )(t)12. After some algebra we can express
A l )(t) as

A l (t) = P(t)A (t)[—xsinn(t) + zcosn(t)],
where n(t) and P(t) are defined by

P(t) = 1+ P t)

cos n(t) = I/P(t). (10)
We now rotate the coordinate system about the y axis
through the angle n(t), that is, we transform 1@(t)) to
el'("i l')~~14'(t)), where J„ is the component of the an-
gular momentum operator along the y axis; the Hamil-
tonian becomes
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FIG. 1. Ionization probability at the end of the pulse (5 cy-
cles, ur = 0.5 a.u. ) vs peak intensity Io, for hydrogen initially
in the 2p state. Dotted line: dipole approximation; solid
line: incorporating corrections to the dipole approximation.

H(t) = H- —( /( )P(t)A" (t) p+ (t)~„(»)
where n(t) is the time derivative of n(t). The Hamilto-
nian of Eq. (11) difFers from the Hamiltonian obtained
in the dipole approximation only through (i) the pres-
ence of the rotational coupling term n(t) J„and (ii) the
magnification of the vector potential by P(t). Note that
P(t) differs from unity by a relativistic correction, and it
follows that the ionization yield, integrated over all an-
gles of emission, differs from the dipole approximation
result only by a relativistic correction. (This also follows
from the fact that the yield is not sensitive to a rever-
sal in the direction of propagation of the light pulse, and
so the correction arising from the inclusion of the pho-
ton momentum must be even under the change c ~ —c.)
Nevertheless, as we see below, the rotational coupling can
have a significant efFect even when Ps/(pc ) « 1.

In Fig. 1 we show the ionization yield, vs the peak in-
tensity, after a hydrogen atom initially in the 2p state
has been irradiated by a pulse whose frequency is 0.5 a.u.
and whose intensity profile has a width, /21n(2)t„, of 5
cycles. We see that the ionization yield begins to de-
cline when the intensity exceeds about 2 x 10 W/cm,
i.e., when P he@ (a criterion which applies rather gen-
erally [5, 6, 10]). Within the dipole approximation, the
magnetic quantum number m is conserved, so the atom
cannot deexcite to the ground state, and we see that the
yield continues to decline as the intensity increases fur-
ther. However, beyond the dipole approximation, the ro-
tational coupling term mixes states with different m; the
degenerate 2p and 2p, states are strongly mixed, and
the atom can deexcite to the ground state, from which it
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can ionize more easily since A~ is not large compared to
the ground-state binding energy. Indeed, the yield begins
rising again at intensities above about 3 x 10i7 W/cm2.
We also find that significant population is transferred to
excited 8 states, even though at the intensity 4 x 10
W/cm2 we have Po/pc 10 s. In Fig. 2 we show the
ionization yield when the frequency is 2.0 a.u. , and we
consider the initial state to be either the 18 or 2p state.
The frequency bandwidth is now about 0.25 a.u. , which
is larger than the unperturbed binding energy of the 2p
state, so ionization from the 2p state can take place via
Raman scattering. Hence, stabilization does not occur
when the atom is initially in the 2p state, even within
the dipole approximation [6]. However, we see, in Fig.
2(b), that the probability for ionization from the 2p
state is more than twice as large when the dipole ap-
proximation is not made. When the atom is initially in
the 18 state stabilization does occur, and we find very
little change in the ionization yield when we go beyond
the dipole approximation; see Fig. 2(a). However, plot-
ting the population in states other than the ground state
reveals that (due to the rather large bandwidth) there is
significant Raman scattering into excited bound states,
and that the population in these excited states is strongly
mixed by the rotational coupling.

Our inclusion of the photon momentum is equivalent
to expanding e' in a Taylor series through the second
term. The multipole expansion of e', while probably
more accurate, leads to matrix elements that are consid-
erably more complicated to evaluate, which is why we
chose the Taylor series. We have neglected some rela-
tivistic corrections and retained others, but we think it
unlikely that a fully relativistic treatment will drastically

alter our principal findings; nevertheless, these findings
must be viewed cautiously. We hope that the present
work will stimulate further inquiry into whether stabi-
lization breaks down in superintense fields.

It is a pleasure to thank Professor Tom Katsouleas
for several stimulating discussions which prompted us to
carry out the present calculations. We also express our
deep appreciation to Dr. Martin Dorr for many very help-
ful comments and for pointing out an error in an earlier
calculation. This work was supported by the Division of
Chemical Sciences, Office of Basic Energy Sciences, Of-
fice of Energy Research, the Department of Energy under
Contract No. DE-FG03-92ER14266.

AP PENDIX.

We represented H(t) by a matrix, using a basis formed
from linear combinations of S„"&(r)Y~ (r), where S„"&(r) is
a radial Sturmian function, behaving for large r as r e'",
and where YI (r) is a spherical harmonic (define with
respect to a polar axis along the z axis). In order to de-
scribe both closed and open channels we chose the wave
number r to lie in the upper right quadrant of the com-
plex v plane [14]. We constructed the basis to exploit
the full time- and spatial-reflection symmetries of H(t),
in the following way: The Hamiltonian H(t) is invariant
under a refIection, X» in the xz plane. The Hamiltonian
of the complete system, atom plus radiation field, is in-
variant under time-reversal, but we are treating the field
as external. If 7 denotes a time-reversal operator which
acts only on the atomic coordinates, p changes sign under
the action of 7, and H(t) is not invariant. However, the
direction of propagation of the pulse can be reversed by
a reflection, 2', in the yz plane. Introducing 8:—7X,
and observing that H commutes with both 7 and 2
and that f (t) = f (—t), we have

Note that 8 is antiunitary (since 7 is antiurutary while
X is unitary) and therefore 8 complex conjugates c
numbers. We use the Condon-Shortley phase convention
for Y~ (r), so the linear combination

(b) P,
+ (r) = Yl (r) + Y,

* (r) (A2)

02
O

'g 0.1
0

is an eigenfunction of S with eigenvalue (—1) . Further-
more, P&+ (r) transforms to +P&+ (r) under the action of

Introducing the ket Inlm; +), where (rlnlm; +)
S„",(r )P,+ (r ), we have
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FIG. 2. Ionization probability at the end of the pulse (5 cy-
cles, u = 2.0 a.u. ) vs peak intensity Io, for hydrogen intially
in (a) ls state, and (b) 2p state. Dotted line: dipole approx-
ilnation; solid line: incorporating corrections to the dipole
approximation. In (a) we also show the result of including
excitation, i.e. , 1 —P(ls), where P(ls) is the probability for
the atom to be in the ls state (at the end of the pulse).

(A3)

where (rlnlm; +, s) = (
—l)™[S„"&(r)]*+&+(r). We also

have

(A4)

We represented H(t) by the matrix H(t) whose elements
are (n'I'm', +, +IH(t)lnlm; +); in view of Eq. (A4), the
elements (n'I'm'; ~, +IH(t)lnlm; +), i.e. , those elements
off'-diagonal in the quantum number associated with 2»
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vanish, so H(t) consists of two uncoupled diagonal blocks.
Since 8 is antilinear we have, for any two kets [P) and

Iq), that (y[(8~[/))= (@[(8~[/)). Noting that 8 = 8t,
it follows from Eq. (Al) that, with the tilde denoting the
transpose,

H(t) = H( —t). (A5)

Making use of these symmetries of H(t), we solved the
time-dependent Schrodinger equation using a method de-
scribed previously [15].
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