PHYSICAL REVIEW A

VOLUME 48, NUMBER 5

RAPID COMMUNICATIONS

NOVEMBER 1993

High-order harmonic-generation cutoff
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We have experimentally determined the harmonic-generation cutoff as a function of the laser
intensity in neon using an intense, short-pulse Ti:sapphire laser. The experimental cutoff is lower
than that obtained in single-atom calculations. Using a simple quantum-mechanical approach to
harmonic generation valid at high intensity, we show that the difference is due to the effect of

propagation.
PACS number(s): 42.65.Ky, 32.80.Rm

High-order harmonic generation has recently become
one of the major topics of multiphoton physics. The spec-
trum of such radiation falls off for the first few harmon-
ics, then exhibits a plateau extending sometimes to more
than 150 eV [1,2]. The plateau ends up by a rather sharp
cutoff. One of the most intriguing questions concerns the
nature and location of this cutoff. Numerical calculations
of Krause, Schafer, and Kulander, [3] have shown that
the maximum energy at the end of the plateau, which we
call the cutoff energy, is well approximated by the sim-
ple formula I, + 3U,, where I, is the atomic ionization
potential, while U, = £2/4w? is the ponderomotive en-
ergy in the laser field of strength £ and frequency w.
Some insight into the physical meaning of this formula
has recently been given by Schafer, Kulander, and Krause
[4] and by Corkum [5], using a two-step quasiclassical ap-
proach. In this model, electrons first tunnel through the
barrier formed by the atomic potential and the laser field
[6,7]. Their subsequent motion in the field is treated clas-
sically. Only those electrons that return to the nucleus
can emit harmonics by recombining to the ground state.
The maximum kinetic energy acquired by the electrons
from the field at the time they return to the nucleus is
3.2U,, so that the maximum emitted energy is I, +3.2U,,
in accord with the prediction of [3].

The aim of this Rapid Communication is to discuss
the harmonic-generation cutoff from experimental data
to calculations involving the response of a single atom
and of the macroscopic medium. We have performed sys-
tematic measurements of the harmonic-generation yields
in neon using a short-pulse low-frequency laser. The ex-
perimental cutoff energy is found to be approximately
I, + 2U, and is therefore lower than that predicted in
single-atom theories [3,8]. To understand the difference,
we have investigated the influence of propagation [9] and
in particular of focusing on the location of the cutoff. We
use single-atom dipole moments obtained from a simple
(and new) quantum-mechanical theory of harmonic gen-
eration valid in the tunneling limit. The results obtained
for the response of the macroscopic medium agree well
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with the experimental data.

The experiments have been carried out with a 100-mJ
Ti:sapphire laser operating at a wavelength of 794 nm
and a pulse width of 250 fs. The laser is loosely focused
by a f = 2 m lens into a 1-mm 20-Torr atomic beam pro-
vided by a pulsed gas jet. The confocal parameter (b) is
measured to be 1.3 cm. The 10-Hz repetition rate allows
us to perform systematic measurements of the harmonic-
generation yields as a function of the laser intensity from
20 eV (the 13th harmonic) to about 130 eV (the 83rd
harmonic, the highest observed with significant dynam-
ical range). In Fig. 1, we present the results for seven
of these harmonics. The harmonics appear successively
as the intensity increases. They vary first rather rapidly
with the laser intensity, in the cutoff region. Then, they
reach the plateau, where all of the harmonics have ap-
proximately the same strength, exhibiting a slow depen-
dence with the laser intensity. As the harmonic order in-
creases, the variation in the cutoff region becomes more
rapid and the variation in the plateau slower. The loca-
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FIG. 1. 19th, 29th, 39th, 49th, 59th, 69th, and 79th har-

monics in neon as a function of the laser intensity
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FIG. 2. Cutoff energy as a function of the ponderomotive
energy. The solid line is a linear best fit, 21 + 2U,; the
dashed line is the prediction of the single-atom response, 21.6
+ 3.2U,.

tion of the change of slope indicates at which intensity a
given harmonic reaches the plateau. The saturation in-
tensity due to ionization is measured to be about 6 x10*
W/cm?. Our measurement of the laser intensity at best
focus is accurate to within +50%. In order to get a more
precise determination, we have performed ion measure-
ments in the same chamber using a time-of-flight spec-
trometer. The measured intensity is only 25% smaller
than that predicted by tunnel ionization [7]. We shall,
however, correct our intensity by this factor in the fol-
lowing. Similar results have been obtained previously by
Macklin, Kmetec, and Gordon [2].

In Fig. 2, we plot the harmonic order at which the cut-
off occurs as a function of the laser intensity expressed in
units of ponderomotive energy. This is done by locating
the position of the change of slope in the intensity depen-
dences for all of the harmonics, from the 13th to the 83rd.
We also indicate on the left vertical scale, the harmonic
photon energy, i.e., the cutoff energy. A linear regression
performed on the harmonics higher than the 27th gives
a cutoff law equal to approximately 21 + 2U,. For com-
parison, we show the single-atom prediction 21.6 + 3.2U,
by the dashed line. The cutoff law determined experi-
mentally is significantly lower than that predicted by the
single-atom results.

A theoretical description of harmonic-generation pro-
cesses involves two steps: (i) the calculation of the har-
monic emission by a single atom at the different intensi-
ties present in the nonlinear medium; (ii) the integration
of the propagation equations for the harmonic fields cre-
ated in the medium, using as a source the single-atom
dipole moments calculated in the first step. Propagation
effects have been previously shown not to affect much
the single-atom spectra, but these calculations [9] had
been performed in a completely different regime, i.e., for
much lower intensities, of the order of 103 W/cm? and
for much lower orders (3 to 21).

To deal with the first step, i.e., to calculate in a sim-
ple way the single-atom dipole moments in this low-
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frequency high-intensity regime, we have developed a
new quantum-mechanical theory of harmonic generation,
valid in the tunnel ionization limit (when U, > I, > w,
w being the laser frequency) [7,6,10]. In this approach,
we neglect the contribution of all excited bound states,
the depletion of the ground state (]0)), and the non-
singular off-diagonal part of the continuum-continuum
dipole matrix elements [11] (which amounts to neglect-
ing the influence of the ionic potential). The singu-
lar part of the continuum-continuum dipole matrix el-
ements, (v|z|v') = i96(v — v')/dv,, treated exactly, de-
scribes the free-electron motion in the laser field (as-
sumed to be linearly polarized in the = direction) [10].
The time-dependent wave function |¥(t)) takes the form
elrtla(t)|0) + [d3vb(v,t)|v)], where a(t) ~ 1 is the
ground-state amplitude, and b(v,t) are the amplitudes
of the continuum states. The Schrodinger equation for
b(v,t) in the length gauge reads

. v2 v
b(v,t) = —t (? + Ip> b(v,t) — € cos(t) %;t)

+i€ cos (t) dx(v), (1)

where € cos (t) denotes the laser field (we use atomic units
and set the photon energy w to 1) and d,(v) = (v|z|0) is
the coupling to the continuum. The information about
the atom is reduced to the form of d,(v) (assumed to
have a Gaussian dependence in the calculations) and to
the value of the ionization energy I,. The x compo-
nent of the time-dependent dipole moment is given by
z(t) = [d3vdi(v)b(v,t), if we consider only the transi-
tions back to the ground state [12]. We solve Eq. (1)
exactly and insert the solution into the expression for
z(t). Introducing the canonical momentum p = v+A(t),
where A(t) is the vector potential of the laser field, the
dipole moment reads

a(t) =i / dt’ / d*pE cos(t')ds (p — A(t'))

X exp [—i /t’ dt"{[p — At")])?*/2 + IP}]
xdy(p — A(t)) +c.c. (2)

This equation can be interpreted semiclassically [13].
The first term in the integral & cos(t')d.(p — A(t")) is
the probability amplitude for an electron to make a tran-
sition to the continuum at time ¢’ with the canonical
momentum p. The electronic wave function is then prop-
agated till the time ¢ and acquires a phase factor equal
to exp[—iS(p,t,t')], where S(p,t,t') is the classical ac-
tion. The effects of the atomic potential are assumed
to be small between t' and t, so that S(p,t,t') actu-
ally describes the motion of an electron freely moving
in the laser field with a constant momentum p. The
electron recombines at time ¢t with an amplitude equal
to dX(p — A(t)), which gives the last factor entering Eq.
(2).

The major contribution to the integral in Eq.(2) comes
from the stationary points of the classical action, which
correspond to those momenta p for which the electron
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born close to the origin at ¢ returns to the origin at
t. The general form for the dipole moment x(t) is
Jo° f(t,7)exp[—iS(t,7)]dT, where we have introduced
the return time 7 = t — ¢'. f(¢,7) is a slowly varying
function of ¢ and 7, whereas

S, 1) = Ip + Up)T
—2U, (1 — cos(7)) /T — UpC(7) cos(2t — 7), (3)

with C(7) = sin(7) — 2[1 — cos(7)]/7, is the action cor-
responding to a return of the electron to the origin at
time ¢ after the interval 7. S(t,7) is a linear function of
sin(2t) and cos(2t), so that the Fourier components x4
of z(t) can be simply expressed in terms of Bessel func-
tions Jx (UpC(7)), with 2K = ¢+ 1,3. A lot of insight
can be drawn from the analysis of the function C(7),
which determines the variation of S(¢,7) as a function
of t. Maxima of 2U,|C(7)| are equal to the maxima of
the kinetic energy that the electron has gained from the
field when it returns to the nucleus. The first maximum
of 2|C(7)| is 3.17. The following ones are of the order of
2-2.4. Since the Bessel functions Jk (z) become exponen-
tially small when z < K, we conclude that the harmonic-
generation cutoff for U, > I, is at 3.17U,. In the range
of 2U, < 2K < 3.17U, only the contributions from the
first maximum are important. When 2K becomes smaller
than ~ 2U,, more and more maxima contribute, giving
rise to interference effects.

This model, which can be generalized to more complex
problems (e.g., the inclusion of the Coulomb potential or
the treatment of arbitrary laser fields), has two advan-
tages: it gives a lot of physical insight into these high-
order harmonic-generation processes, recovering in par-
ticular the single-atom cutoff law [3,8] and the semiclassi-
cal interpretation of Refs. [4,5] in a quantum-mechanical
formulation; moreover, the harmonic components of the
single-atom dipole moment are simply calculated as sin-
gle integrals over 7 of expressions involving Bessel func-
tions (as in [8]). Therefore, they are easy to handle in
propagation calculations requiring the knowledge of the
single-atom response over a fine intensity grid (sampling
the nonlinear medium).

The propagation equations have been solved within the
slowly varying envelope approximation and the parax-
ial approximation, following the method described in
Ref. [9]. The macroscopic parameters characterizing the
laser and the interaction have been chosen to mimic the
experimental conditions. In Fig. 3, we plot the 35th
harmonic intensity (in arbitrary units) as a function of
U, = 5.9 x 1071, where I, the laser intensity, is ex-
pressed in W/cm?. The dashed line shows the single-
atom response. In the cutoff region, i.e., at low intensity,
the harmonic strength grows rather steeply. At the in-
tensity such that 35w =~ I, 4+ 3.2U, (denoted a = 3.2 in
the figure), the harmonic enters the plateau region and
becomes progressively dominated by interference effects.
The solid line shows the result of the complete calcula-
tion. The effect of propagation is to shift the change of
slope, indicating the position of the cutoff to a higher
intensity, such that 35w ~ I, + 2U, (o = 2 in the fig-
ure), and to average out the interferences observed in
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FIG. 3. 35th harmonic as a function of intensity, expressed
in terms of the ponderomotive energy U,. The single-atom
and many-atom responses are indicated, respectively, by
dashed and solid lines. The experimental data are shown by
the full circles.

the single-atom response. Finally, the full circles show
the experimental results. We obtain a good agreement
between the theoretical calculations including propaga-
tion and the experimental results.

In these high-order harmonic-generation processes per-
formed in neon at a relatively low pressure and at an
intensity smaller than that needed to significantly ionize
the medium, the main limitation to phase matching is
due to focusing, i.e., to the phase mismatch introduced
by the geometrical phase slip across the focus. The co-
herence length induced by focusing takes a simple form,
Leon = mb/2(q — 1), where b is the laser confocal pa-
rameter and ¢ the harmonic order. Focusing becomes a
limitation to harmonic generation when Lo, is compa-
rable to or smaller than the length of the medium L.
Note the order dependence of L.,,. Even for a very
loosely focused laser beam, the geometry is of a tight-
focused type for harmonics of order ¢ > wb/2L. In our
experiment, b = 1.3 cm, L = 1 mm, so that tight focus-
ing begins approximately at the 21st harmonic. In or-
der to understand better the effect of propagation on the
harmonic-generation cutoff, we have performed a series
of calculations in which we have varied the laser confocal
parameter, from a loose to a tight-focusing geometry for
two harmonics, the 35th and the 71st. The results are
presented in Fig. 4. The dashed lines are the single-atom
results. The solid lines have been obtained, from the top
to the bottom, for b = 3,1.5,1,0.5 cm in Fig. 4 (35th har-
monic) and b = 5,3,2,1 cm in Fig. 4 (71st harmonic). In
both cases, as one goes from a loose to a tight-focusing
geometry, the location of the change of slope indicating
the position of the cutoff switches rather abruptly from
a = 3.2 to a =~ 2 (with a slightly higher value for the 71st
harmonic). This occurs at approximately b = 1.5 cm for
the 35th harmonic and b = 3 cm for the 71st harmonic,
which corresponds to Lo, = 0.7L.

In a tight-focusing geometry, phase matching depends
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FIG. 4. 35th and 71st harmonics as a function of the laser
intensity. The dashed lines indicate the single-atom response;
the solid lines are results obtained by including the effect of
propagation in different geometries. From the top to the bot-
tom, b = 3,1.5,1,0.5 cm (35th harmonic); b = 5,3,2,1 cm (71st
harmonic).

strongly on the variation of the polarization with inten-
sity [9]. When this variation is rapid, as is the case
in the cutoff region, the polarization is mostly concen-
trated close to the focus, with maximum cancellation ef-
fects between the field created before and after the focus
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and poor phase matching. When the harmonic reaches
the plateau, the single-atom emission rate saturates, de-
creases, and exhibits oscillations. Consequently, the vol-
ume of emitting dipoles increases considerably, leading
to reduced cancellation effects and much more efficient
phase matching. Simultaneously the spatial profile be-
comes strongly distorted, as recently reported by Tisch et
al. [14]. The curves corresponding to the smallest confo-
cal parameters show three regions. At low intensity, there
is a rapid increase due to the rapid increase in the single-
atom response. At intermediate intensities (between o
= 3.2 and o = 2), there is a second increase due to the
rapid increase in the phase matching (whereas the single-
atom response saturates). Finally the curve saturates at
a=2, when both the phase matching and the single-atom
response saturates. The experimental results will show
only the most pronounced change of slope, i.e., the one at
a = 2. In conclusion, we have shown that the apparent
discrepancy between single-atom theoretical predictions
and experimental results can be explained by the effect
of phase matching in a tight-focusing geometry.
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