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An alternative method for the description of quantum superintegrable systems in two dimensions
through the use of quantum algebraic techniques is introduced. It is suggested that such systems can be
described in terms of a generalized deformed oscillator, characterized by a structure function specific to
the system. The energy eigenvalues corresponding to a state with finite-dimensional degeneracy can then
be determined directly from the properties of the relevant structure function. The validity of the method
is demonstrated in the case of the isotropic harmonic oscillator in a space with constant curvature. The
method can be used for constructing the quantum versions of several classical superintegrable systems,
the Holt potential being given as an example.

PACS number(s): 03.65.Fd, 11.30.Na

I. INTRODUCTION

Quantum integrable systems and their relation to clas-
sical integrable systems have recently been attracting
much attention [1—4]. Superintegrable systems in N di-
mensions have more than X integrals of motion, while
maximally superintegrable systems have 2N —1 integrals.
The classical superintegrable systems in two dimensions
have been reviewed in [5], while several examples of clas-
sical superintegrable systems in three dimensions are
given in [6]. Two examples of quantum superintegrable
systems, the isotropic harmonic oscillator and the Kepler
problem in a space with constant curvature, have been
studied in [7,8].

In the present work we are going to demonstrate how
quantum-algebraic techniques can be used for the study
of quantum superintegrable systems. It is known that q-
deformed oscillators [9,10] are necessary for constructing
boson realizations of quantum algebras (also called quan-
tum groups) [11],which are nonlinear algebras reducing
to the corresponding Lie algebras when the deformation
parameter q is set equal to 1. We are going to show that
the study of quantum superintegrable systems can be

greatly simplified through the use of an appropriate gen-
eralized deformed oscillator [12].

II. CLASSICAL SUPERINTEGRABLE SYSTEMS

Let us first consider a classical superintegrable system
in two dimensions, described by the Hamiltonian

H =H(x, y,p„,p ) .

If the system is superintegrable there are two indepen-
dent additional integrals of motion I and C, such that

IH I JpB= IH C]p~=O [I C]pB=F(H I C) (2)
where I, J PB denotes the Poisson bracket and
F =F(H, I, C) is a constant of motion which depends on
the three independent constants of motion H, I, C.

Superintegrable systems in two dimensions are neces-
sarily maximally superintegrable, i.e., they possess the
maximum number of independent classical invariants.
Therefore any other integral can be expressed as a func-
tion of the basic integrals H, I, C. As a result we can in
general choose two new integrals of motion,

L =L (H, I,C), A = A (H, I,C),
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[L ~]PB=B [L»]PB=—~ .

One can then prove that

B +A =G(H L),
where G(H, L) is some function depending only on the
integrals of motion H, L, and

IE,n)=

where

(A t)"IE,O),
[n]!

JVIE, n ) =n IE, n ), n =0, 1. . . ,

A IE,O) =0,

[ A, B ]pB=@(H,L)= ——1 a6
(4) [0]!=1, [n]!=N(E, n)[n —1]!.

The structure of the algebra defined by Eqs. (3) and (4)
is in many ways similar to the algebraic structure of the
deformed oscillator given in Refs. [12—15], where L is
some kind of number operator, while 3 and B are like
the creation and annihilation operators. Therefore it is
quite natural to attempt to study the quantum superin-
tegrable systems in terms of suitable generalized de-
formed oscillators, allowing for the determination of the
energy spectrum through purely algebraic manipulations.

III. QUANTUM SUPERINTEGRABI. E SYSTEMS

Let us now consider a two-dimensional quantum sys-
tern described by a Hamiltonian H. H and all relevant
operators are generated by nonlinear combinations of the
basic algebra of generators x,p, y,p satisfying the usual
commutation relations

[x,p„]= [y,p ]=i, other commutators=O .

The system is called superintegrable, by analogy to the
classical definitions, if there are two operators, I and C,
linearly independent of H and of each other, which com-
mute with H but not with each other,

[H,I]=0, [H, C]=0, (I, C]WO .

We propose the following working hypothesis: Consid-
er the superintegrable systems for which one can con-
struct an associative algebra,

In the case of a system with discrete energy eigenvalues,
for every energy eigenvalue E there is some degeneracy of
dimension Ad+1. Therefore the dimensionality of the
Fock space corresponding to that energy eigenfunction
should be equal to Ad+1. This is equivalent to the con-
dition

4(E,Ad+1)=0 .

The two conditions (6) and (7), and the positiveness of the
structure function @(E,x) sufPce to determine the energy
spectrum of the quantum maximally superintegrable sys-
tems. We are going to verify this fact below, using the
two-dimensional isotropic harmonic oscillator in a space
with constant curvature [7] as an example.

IV. EXAMPLE: HARMONIC OSCILLATOR
IN A SPACE WITH CONSTANT CURVATURE

The curved space is geometrically described by the
metric

2 dx +dy +A, (xdy —ydx)
[1+k(x +y )]

the Oat space corresponding to X=O. The harmonic os-
cillator in this space is defined in Ref. [7] by the Hamil-
tonian

Cc)H= —,'(~„+~ +)L )+ (x +y ),
JV= JV(H, I, C),

A =A(H, I,C),
[JV,A]= —A,
A tA =4&(H, JV),

[A'A, AA'] =0,
where @(E,x) is a real positive function definite for x 0
and

where
L —re gp~ )

ir =p„+—[x(xp„+yp )+(xp, +yp )x],
2

~y=py+ —[y(xp„+ypy)+(xp„+yp )y] .

As in [7] one can define the Fradkin [16] operators

B =S..—S =(~2+~2x2) —(~y2+~2y2),

S y
~~ (7r ~y + rry n ) +co xy

(10)

4(E,O)=0 .
These operators satisfy the following commutation rela-
tions:

From the above equations one can then prove that

[JVAt]=At, AA =@(H,IV+1) .
[H, L]= [H,B]=0,
[L,B]=4iS„y, [L,S ]= —iB, (12)

If this construction is possible one can then de6ne the
Fock space for each energy eigenvalue,

i.e., the operators L,B do not commute, but they form a
closed algebra with the operator S„.
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JV= ——u1, A =—+iS, A= ——iSI. y B . B
2

' 2 "~' 2
(13)

The above relations suggest the possibility of express-
ing the two-dimensional harmonic oscillator algebra by
using the deformed oscillator formulation:

deformed oscillator, the eigenvalues of the energy, as well
as the angular momentum values allowed for each energy
eigenvalue, being directly obtainable from the properties
of the relevant structure function, which can be put in
the form

where u is a constant to be determined and

[JVA t]=At,
[A;A]= —A, (14)

4(E~,x)=4x(N+1 —x)[A(N+ I —x)++co +A, /4]

X (A,x++co +A, /4) .

V. APPLICATION: THE HOLT POTENTIAL

A,
2

A,
2

A A=H e+— +AH (L —1) + (L —1)
4 4

=H co +— +A,H (2JV+2u —1)
4

A,
2

+ (2A'+2u —1)

=C&(H, JV),

where the function @(E,x) is given by

= 2 24(E,x) =E co + —+RE (2x +2u —1)
4

+ (2x +2u —1)
A,

2
4

4

and we can see that

AAt=@(H, JV+ I ) .

The existence of a finite-dimensional representation of
the oscillator algebra is equivalent to the existence of a
maximum number N + 1, which is a root of the structure
function, with X being the dimensionality of the algebra
representation, coinciding with the dimensionality of the
appropriate Fock space. This restriction, combined with
the annihilation of the structure function for x =0, is
written as

@(E,O) =0, C&(E,N +1)=0 . (16)

Solving this system of two equations with two unknowns,
E and u, one obtains the eigenvalues of the harmonic os-
cillator in a space with constant curvature

1/2

E=E = 60 +N 4
(N+1)+ (N+1)—

2
(17)

which coincide with the findings of [7], while the value of
the constant

Having verified in the previous section that the method
works in a known [7] case, we now apply it in order to
construct the quantum analogue of a, classical superin-
tegrable system, the Holt potential [17].

The classical superintegrable Holt system corresponds
to the Hamiltonian

25T=p +8y, C=p p„+8xyp —2x p + p

the second of them (C) being a cubic function of the mo-
menta. The quantum version of the Hamiltonian (18)
corresponds to a quantum superintegrable system with
two additional integrals:

(19)

25=p +8y, B =p p +4[xy,p j
—2x p + p

It is clear that the quantum integral B is the symmetrized
version of the classical integral C. From the above
definitions we can verify that

[H, T]=0, [H, B]=0,

[T,B)=R, [T,R]=32B,
[R,B]= —96+2565—64H +128KT 48T—
R —32B = 1024H —704T +5125T—128TH~

+ 128T2H —32T3 .

From the above closed nonlinear algebra we can define

JV= ——u, A =8B +v 2R, A =8B —v'2R
&32

where u is a constant to be determined. These operators
correspond to a deformed oscillator algebra:

[JVA t] =A t, [JVA ]= —A,

H= —,'(p +p~ )+(x +4y )+ 5
(18)

This system has two additional classical invariants of
motion,

iV
u =

2
determines through the first of Eq. (13) the angular
momentum eigenvalues allowed for each X,

A'A =2'(T —2&2) H ——+&2+
2 2

(20)
1/2

I.= —X, —%+2, . . . , X —2,X,
in agreement with [7].

We have therefore proven that the quantum isotropic
harmonic oscillator in a two-dimensional space with con-
stant curvature can be described in terms of a generalized

T
X H ——+&2—

2

=C (H, JV),

AAt=@(H, %+I ) .
'

1/2
1+85

2



R3410 DENNIS BONATSOS, C. DASKALOYANNIS, AND K. KOKKOTAS

The corresponding structure function is defined by

C&(E,x)=2 r [(x+u) —
—,']

In both cases the degeneracy of the levels is determined
by T=&32(JV+u). Since JV obtains the N+1 values
0, 1, . . . , N, as a result T also obtains N + 1 values.

X ——(x +u)+ —+1

v'8 2

1/2&1+85
4

VI. DISCUSSION

1X ——(x +u)+ ——
V8 2

1/2
&I+8S

4

u =—', Etv =&8 N+1+
4

where (1+85)~0. The corresponding structure function
1s

4(Etv, x)=2 x(N+1 —x) N+1 —x+ &1+85
2

In the special case where —
—,
' 5 —', there are energy ei-

genvalues given by

u =—' E =i~8 N+1—
4

and the structure function is

The existence of a finite representation of the algebra for
each energy eigenvalue implies that the structure func-
tion satisfies Eq. (16). Therefore we can find the possible
energy eigenvalues having degeneracy equal to N + 1:

The method presented here is of general applicability.
Such a construction can be carried out for the Kepler sys-
tem in a two-dimensional space with constant curvature,
a quantum superintegrable system also studied in [7].
The method can also be used for constructing the quan-
turn superintegrable versions of well-known classical su-
perintegrable systems in two dimensions, such as the
Fokas-Lagerstrom potential [18], the Smorodinsky-
Winternitz potential ([19]and references therein), and the
Hartmann potential ([20] and references therein). It can
also be extended to quantum superintegrable systems in
three dimensions [6]. Work in these directions is in pro-
gress.

In Ref. [21] the deformed oscillator theory has been
connected to N =2 supersymmetric quantum mechanics,
by proving that the deformed oscillator corresponds to an
example of N =2 SUSY QM (supersymmetric quantum
mechanics), where the operators A A and A A com-
mute. Furthermore, in Ref. [22] a connection between
N =2 SUSY QM and the representation of the
Korteweg —deVries (KdV) equation has been provided.
The connection of the deformed oscillator theory through
N =2 SUSY QM to the representations of the KdV equa-
tions is an interesting open problem.

4(E~,x)=2 x (N+1 —x) N+1 —x—23/2 &1+85

which is positive for 0 (x ~ X if —
—,
' ~ 6 ~ —', .
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