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Wavelength dependence of nonsequential double ionization in He
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An enhancement of the He + yield near the appearance intensity was not observed by linearly polar-
ized Krp laser light (248 nm), whereas a significant enhancement was observed by linearly polarized
Ti:sapphire laser light (745 nm). These results are consistent with the quasistatic model proposed by
Corkum [Technical Digest of Short Wavelength V: Physics with Intense Laser Pulses (Optical Society of
America, Washington, DC, 1993), p. 25].

PACS number(s): 32.80.Rm, 32.90.+a, 42.50.Hz

A significant enhancement of He + ionization has re-
cently been observed near the appearance intensity by us-
ing linearly polarized 614-nm light by Fittinghoff et al.
[1], and this ionization has been interpreted as evidence
of nonsequential double ionization. To explain this
phenomenon, they proposed a shake-off mechanism
where the second electron left in an excited state is ion-
ized, during the same laser cycle, immediately after the
first electron leaves the atom. According to this model,
the shake-off mechanism for nonsequential ionization
should remain with circular polarization and all optical
wavelengths provided the pulse width is short enough [1].
Two-electron ejection should therefore be observed both
with circular polarization and with short wavelengths.
More recently, however, the same group reported that
there was no enhancement of He + and Ne + ionization
with circular polarization at 614 nrn, whereas significant
enhancements were observed for both ions with linear po-
larization [2]. Corkum proposed a different model as the
quasistatic model [3], which can explain this enhance-
ment. This model can also explain the cutoff' photon en-
ergy of the harmonic plateau [4,5] and the high-energy
tail in the above-threshold ionization (ATI) spectrum [6].
Schafer et al. also described the similar model, as a
"two-step" semiclassical model, to explain a cutoff pho-
ton energy of the harmonic plateau [7]. In the quasistatic
model, there is a significant probability of the electron re-
turning to the vicinity of the ion-wore within a laser cycle
after tunneling ionization induced by using linearly polar-
ized light. The maximum kinetic energy of the returning
electron is estimated to be 3.17U by this model, where
U is the ponderomotive potential. At a longer laser
wavelength, for example 614 or 745 nm, the maximum
kinetic energy becomes well above the ionization poten-
tial of He+ (54.4 eV), and the electron-impact ionization
of He occurs to an extent that results in two-electron
ejection within one laser cycle [8]. If this model is valid,
two-electron ejection from He should not occur with cir-
cular polarization because the ionized electron would
never return to the vicinity of the ion core. And this is
consistent with the experimental results in Ref. [2]. At
shorter laser wavelengths, for example 248 nm, the max-
imum kinetic energy (3.17U ) becomes less than the ion-
ization potential of He+ and two-electron ejection from

He would not occur even if linearly polarized light were
used.

In this study, we observed the yield of He+ and He +

in high-field ionization of He using ultrashort KrF and
Ti:sapphire lasers. When a linearly polarized Ti:sapphire
laser (745 nm) was used for ionization of He, a significant
enhancement of He + near the appearance intensity was
observed. There was, however, no enhancement when a
linearly polarized KrF laser was used. This result is con-
sistent with the quasistatic model proposed by Corkum
I:3].

Two kinds of ultrashort pulse lasers were used in this
study. One was a KrF laser, with a typical energy and
pulse width of 200 mJ and 440 fs. The other was a
Ti:sapphire laser, with a typical energy and pulse width
of 45 mJ and 200 fs. Details of these systems are report-
ed in Ref. [9]. The Ti:sapphire laser was operated at 745
nm and the KrF laser at 248 nm. Typical spot diameters
were 7 pm at 248 nm, by using an achromatic lens (f/300
mm), and 26 pm at 745 nm, by using a planoconvex lens
(f/300 mm). The peak intensity in the experiment was
estimated as 0.61E/(rrrr ), where E is the laser energy, r
is the pulse width [full width at half maximum (FWHM)],
and r is the spot radius [half width at half maximum
(HWHM)].

First we measured the ion yield of He+ and He + for
the Ti:sapphire laser. A time-of-fiight (TOF) analyzer (R.
M. Jordan Co.) was used for this measurement. Helium
( He) backfilled the target chamber to a pressure of
4.7X10 Torr after a turbomolecular pump had evacu-
ated the chamber to below 5 X 10 Torr. The accelera-
tion field was 900 V/cm and the drift length was 1.4 m.
The ions were detected with a two-state microchannel
plate (MCP) that had a total gain of about 10 . The time
resolution was good enough to clearly resolve Hz+ from
He + even though their mass-to-charge ratios were both
close to 2 (2.0013 for He + and 2.0164 for H2+). The ion
spectra were recorded by a digital signal analyzer (Tek-
tronix DSA 602). When we measured the ion yield of
He +, the time window was carefully set to the He + po-
sition in order to exclude the Hz signal [1]. The intensi-
ty dependence of He ionization by Ti:sapphire laser light
with linear polarization is shown in Fig. 1. Solid curves
are predicted by the quasistatic model [3] for each charge
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