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Stabilization of Rydberg atoms in superintense laser fields
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We investigate numerically the stabilization of Rydberg states of atomic hydrogen in superintense
laser light. No stabilization could be observed at frequencies comparable with the Rydberg energies.
We show that the stabilization observed at higher frequencies is governed by the spreading and
decrease of the coupling potentials at high intensities rather than by a reduction of the wave-function
amplitude in the interaction region.

PACS number(s): 32.80.Rm, 32.80.Fb

The interaction of a (one-electron) Rydberg atom with
a strong electromagnetic Beld has recently at tracted
much attention, since it is under this condition that
strong-Beld atomic stabilization is expected to be ob-
served. By stabilization, we mean a process leading to
a decreasing ionization rate with increasing Beld inten-
sity, the frequency of the Beld being fixed. Two difFerent
physical mechanisms are at the origin of stabilization:
the first one, which occurs at high frequency (photon
energy higher than the ionization potential), is essen-
tially kinematical. The second one, which occurs in a
wider range of frequencies, results from an interference
efFect owing to Raman-type transitions via the contin-
uum. Although these mechanisms are well understood
and documented in the literature, ionization rates Rom
very-high-lying Rydberg states have not been calculated
so far [1]. In this Rapid Communication we analyze the
ionization rates from Rydberg states of principal quan-
tum number equal to 20 and discuss the above-mentioned
mechanisms.

Stabilization at high frequency and high intensity is
usually associated with a laser-induced delocalization,
the so-called dichotomy in the atomic wave [2]. This
means that the electron cloud is kept away from the nu-
cleus such that the necessary exchange of momentum for
the ejection of the electron is suppressed. A condition for
the validity of this picture is a laser frequency u )) E,
where E is the binding energy of the electron in the laser
field. The field intensities, on the other hand, must be
such that the oscillation amplitude of a free electron in
the laser field no —— IFIiio at a field amplitude F is
comparable to the atomic dimensions. This stabiliza-
tion process has been studied with both time-dependent
[3] and time-independent [4] methods in a case where
the atom is in its ground state or a low-lying excited
state. The atomic dimensions of Rydberg states n are
very large. Therefore, following the established picture of
high-frequency stabilization, one would expect that very
large 0.0 are required for stabilization. In fact, we demon-
strate below that stabilization begins at much lower in-
tensities than expected. Our results confirm those of
Pont and Shakeshaft [5], who showed that stabilization

starts when the ponderomotive energy becomes roughly
equal to the photon energy.

A quite difFerent mechanism for the stabilization of
highly excited states was proposed, where the decay of
several coherently populated Rydberg levels is inhibited
by destructive interference of the transitions to the con-
tinuum [6]. This stabilization by interference was pre-
dicted to occur already at very low frequencies (compa-
rable to, though larger than the Rydberg energies) and
at intensities, where the coupling matrix element of the
bound-continuum transition V ~ exceeds the spacing be-
tween the Rydberg levels [8]. Stabilization already at
very low frequencies is what clearly distinguishes the pre-
dictions of this model from the Brst mechanism described
above. In our numerical studies, however, we could not
detect stabilization at these low frequencies.

For the experimental observability of stable configura-
tions the time evolution of the laser intensity was shown
to be important [5]. Yet the question whether stabilized
states exist at all is best decided by studying the life-
time of the atom in monochromatic laser light of constant
intensity. In the present work we numerically studied
mechanisms of the stabilization of highly excited states
in linearly polarized laser light. The observed stabiliza-
tion was investigated as to whether it was of the high-
frequency or of the interference type. Two laser frequen-
cies io = 0.002 and io = 0.2 were used. (Atomic units are
used unless indicated otherwise. ) The larger frequency
lies close to the visible, where very high laser intensities
are experimentally available. The frequency u = 0.002
in the far infrared was chosen to detect possible interfer-
ence stabilization in this range. Hydrogenic levels with
principal quantum numbers between n = 5 and 20 were
investigated.

All calculations were performed in the Kramers-
Henneberger (accelerated) frame of reference [8], which is
particularly well suited for the high-frequency regime [9].
After subtracting the ponderomotive motion and making
the Floquet ansatz for the wave function, the hydrogen
atom in the laser field is described by the following sys-
tem of equations [9]:
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The potentials V are given by

V (cxo, r) = (i /7r) Ir+ noul

xT (u)(1 —u ) i du, (2) 0"
T

30
where T (u) are the Chebyshev polynomials and no ——

o!pF. In the limit of very high frequencies, the system of
equations (1) decouples, leaving the single equation

(—2A+ Vo —U)C = 0.

Below we will show by explicit computation that the de-
coupling may already occur at quite low frequencies.

To find the quasibound states of the system we use
the exterior complex scaling technique [10], where the
width is found as twice the imaginary part of a complex
eigenvalue W = E —iI'/2. A mathematical proof of the
applicability of the technique to the case of the hydrogen
atom in a laser field can be found in [ll]. The general
principle of its computational implementation using finite
elements basis functions is explained in [12].

For the present calculation an upgraded three-
dirnensional version of the program described in [12] was
used. Each Floquet component 4 was expanded into
basis functions using polar coordinates

L

@~ = ) c~i(coso) X~i(r),

where the radial functions are expanded in a finite ele-
ment basis [12] with a typical number of 200 basis func-
tions for each y ~. The z component of angular momen-
tum is conserved due to the cylindrical symmetry of the
atom in linearly polarized light. We assume here that the
atom is initially in an 8 state. Due to parity conservation
only Floquet components with equal generalized parity
(—1) + couple, which restricts the expansion by setting
ci = 0 for (—1) +i either equal to 1 or —1.

Now we brieHy present the results obtained for the
infrared laser frequency u = 0.002. We calculated the
ionization width for three states around the n = 20
Rydberg level in a very restricted basis, where only 8 and
p states (I = 2) with parity (—1) + = 1 were included,
and the Floquet blocks were restricted to one continuum
block above and one block below the Rydberg states.
These conditions are fairly close to the basic model as-
sumptions made in [6] to demonstrate the stabilization
mechanism by interference. According to [7], we should
expect a peak of the width at the field strength where
V-~l' = IFI'/(u'~io') = 1/u' or ~o = ~ "' = 8.

The maximum width there should be comparable to the
spacing between the Rydberg levels.

Figure 1 shows the dependence of the ionization widths
on o;p in the range up to ap ——40. One of the states ex-
hibits a quite strong maximum of the width, but this
maximum is not a general property of the Rydberg
states, rather it is due to the one-photon resonance of
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FIG. l. Ionization widths of the Rydberg states 198, 208,
and 218 for a laser frequency u = 0.002 a.u. The results were
obtained in a strongly restricted basis including only 8 and p
states and a total of only three Floquet blocks. The maxima
are due to resonances with lower states, and disappear when
these resonances are suppressed.

a lower-lying state with this particular state and it dis-
appears when one suppresses the lower Floquet compo-
nents 4 &p. When on the other hand one adds more
Floquet blocks, two- and three-photon resonances com-
pletely change and enhance the ionization widths. We
were not able to find the proper stabilization that would
show equally in all states at this very low frequency.

Another prediction of the interference mechanism is
that at sufFiciently high field strength the energies of
the states level out at values between the original field-
free Rydberg levels. Following the energy levels with in-
creasing field we do not observe such leveling out, rather
all energies keep increasing well beyond the next higher
Rydberg energies.

We could not clearly identify the reason for the appar-
ently strong disagreement between the model of interfer-
ence stabilization [7] and our numerical calculations. Of
course, one has to be aware of the fact that that model is
formulated in terms of field-free Rydberg states, while
our calculation uses the Kramers-Henneberger f'rame,
such that the restrictions of the basis to 8 and p states
as imposed in the present work cannot be exactly set
equal to the suppression of degeneracy used in the sim-
plest model assumptions [7]. Further, in the length or
velocity gauge the bound-continuum matrix elements in-
crease linearly with the field strength, which inevitably
leads to strong coupling of the Rydberg states once the
matrix elements become comparable to the spacing be-
tween the levels. Contrary to that, the bound-continuum
matrix elements in the Kramers-Henneberger frame re-
main bounded to values that are in general much smaller
than the spacing between the Rydberg levels.

Another question is whether the very low laser &e-
quency employed here is in the range of validity of the
interference model. In fact, at one step in the derivation
of the basic formulas for the model [7], the approximation

E + ~ is used, which amounts to a high-frequency
condition. This condition is clearly violated for our choice
of parameters, which, however, lie within the ranges of
validity for the model as given in [7].

Both, the model [7] and our calculation, are for con-
stant laser intensity. We found our current results con-
firmed by time-dependent calculations with a realistic
laser pulse shape and with parameters in the range given
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U (np, r) = np 'U (np, r/np), (5)

i.e., the integral of the coupling potential remains con-
stant, but its distribution becomes Hatter with increas-
ing o.p. Once the coupling potentials spread over more
than one wavelength, the coupling matrix element starts
to decrease. Simple as this picture is, it allows two qual-

15-

above [13].
I et us now turn to the higher frequency ~ = 0.2. This

value somewhat above the visible light was chosen to
avoid having the 2p states in resonance with the Rydberg
levels. Such resonances obscure the picture by causing
spikes in the ionization rates, although the general char-
acteristics of stabilization at higher frequencies is main-
tained. Again the basic mechanism of stabilization is best
studied in a strongly restricted. basis of s and p states,
including only one Floquet block above and below the
Rydberg levels.

Figure 2 shows the width of the state with principal
quantum number n = 20 for frequencies u = 0.2 and
higher. One clearly sees stabilization at high intensities.
This stabilization could be identified unambiguously as
being of the high-frequency type by calculating the over-
lap of the central Floquet component @p(np) with the
corresponding solution 4(np) in the high-frequency limit,
Eq. (3). It was found that the admixture in @p(np) of
wave functions other than 4(np) decreases Rom a few
percent at np = 5 where the width assumes its maxi-
mum, to less then 10 at o.p ——15.

We do not want to repeat here the kinematical consid-
erations used by Pont and Shakeshaft [5] to show that
effective stabilization starts when the ponderomotive en-
ergy P = I" /4w exceeds the photon energy. Instead,
we would like to adopt a different point of view. The ini-
tial drop from the maximum width can be explained by
a quick decay of the coupling matrix element due to the
oscillating character of the continuum state. Consider-
ing for the moment the wavelength of the Rydberg wave
function as long, the length scales to be compared are,
on the one hand, the range of the coupling potentials V
which is given by the classical excursion amplitude Q.'p,
and, on the other hand, the wavelength of the continuum
state gl/w. From Eq. (2), one sees that the potentials
V scale with o.p like

itative predictions. First, since there are only two rele-
vant length scales, np and gl/u, the np where the width
reaches a maximum scales like gl/tu T. his property is
very general and also follows from the above condition
on the ponderomotive energy.

Figure 2 shows the extent to which this scaling argu-
ment is valid for the frequencies cu = 0.2, 0.8, 1.8, and 3.2.
At the lowest frequency there is some deviation from the
~is scaling of the np axis, which again is caused by the
coupling to lower bound states. At the other frequencies
the widths assume their maxima at np = 1.2/~u).

Second, the width scales with the principal quan-
tum number n like the squares of the amplitudes, i.e.,
I'(np, n) = np/n I'(np, np). This scaling behavior could
be verified numerically for the np around the maximum
decay width (Fig. 3). For the states between n = 10
and 20 the scaling applies quite well, while for n = 5 the
widths are somewhat lower than expected by the scaling
law. This is quite plausible, since the maximum width is
reached around o.p = 5 which may already significantly
distort the n = 5 state, leading to additional stabiliza-
tion. One can also directly verify that the amplitude of
the wave functions in the range ~r~

& np does not signif-
icantly depend on o.p. Over the range from np ——4 to
15 the integrals J ~@p(np, r)

~
dr, R = 10, 25, and 50

vary by no more than 20%, while the width decreases by
several orders of magnitude.

In this picture it is the spreading of the coupling rather
than the distortion of the bound state that decouples the
bound state from the continuum. Of course, this spread-
ing of the coupling potential exactly reHects the general
physical reasoning that with increasing intensity there is
not enough force to accelerate the electron to the one-
photon continuum. The picture is also consistent with
recent findings [4] that the maximal ionization widths
are smaller and occur at lower np than predicted in [2].

The numerical results discussed so far were obtained
in a strongly restricted basis. Now we present results in
a larger basis, including L = 10 angular momenta and
five Floquet blocks m = —2, —1, . . . , 2. We concentrate
on the states with principal quantum number' n = 10
and with the z component of angular momentum equal
to 0. We discuss only states with parity (—1) +' = 1;
identical conclusions can be drawn for the states with
negative parity.

Figure 4 shows the widths of the states that evolve
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FIG. 2. Ionization widths I' of the Rydberg state 20s for
laser frequencies u & 0.2 a.u. The basis is restricted in the
same manner as for Fig. 1. The decrease of the width at
higher no is due to high-frequency stabilization (see text).
The maxima of the widths are located at note) 1.2.
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FIG. 3. Dependence of the ionization widths I' on the prin-
cipal quantum number n Stronger deviatio. ns from the 1/n
scaling are observed for the lowest state n = 5.
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FIG. 4. Ionization widths I' of the n = 10 Rydberg states
that evolve from the field-free states l = 0, 2, 4, 6, and 8 an d
l = 0. The laser frequency is ~ = 0.2 a.u. Up to ciao 1
the results are accurate on the level of & 20'Pa. The high peak
around no 8 is due to a 2u resonance with the 18 level.

&om the Geld-free states of angular momenta
0 2 4 6 and 8. The states l = 0 and 2 have distinct) ) 1 )

~ ~ ~maxima of the decay width in the range of o,o depicted.
The higher angular momentum states couple only weakly
to the continuum due to the centrifugal barrier that keeps
them away &om the interaction region. The first maxi-
mum in the decay widths belongs to the l = 0 state. Sur-
prrisingly, there is a second maximum even ig er than
the first at larger ao. However, this maximum is caused
by the crossing of the 18+2u state through the region of
the Rydberg states. This is reflected by an increase of the
corresponding Floquet component, while the maximum
disappears when one suppresses that Floquet component.

By comparing calculations with L = 14 an 10 both
using only three Floquet blocks, we conclude that the
results shown are quantitatively correct up to o.o + 15.
Beyond that range the l = 6 and 8 states are expected to
have higher width than given in Fig. 4. The addition of
more Floquet blocks afI'ects the widths only to the order

The I/n scaling law could be verified also for this
b ' ith L = 10. The scaling of the no axis with gl/wasis wi

i of the 18is not as clearly visible here, since the crossing o t e 8
state disappears for higher frequencies, wniie for lower
frequencies crossings with the 2p state show up.

In summary we draw the following conclusions from
our calculations. We were not able to detect the stabiliza-
tion of Rydberg states predicted for very low frequencies.
It may be that the interference mechanism considered for
such stabilization implicitly relies on a high-frequency as-
sumption of the type u )) E. At higher frequencies sta-
bilization is readily observed. For Rydberg states the sta-
bilization is most adequately ascribed to the decrease of
the coupling matrix element once the range of the inter-
action region in the Kramers-Henneberger frame excee s
the wavelength of the free electron. For sufficiently high
Rydberg states (n + 10) the dependence of the decay
width on o.o around the maximum becomes independent
of the principal quantum number of the state and scales
simply with n
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