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Theory of quantum beat and polarization interference in four-wave mixing
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We analyze theoretically the quantum beat and the polarization interference phenomena observed
as oscillations in pulsed four-wave mixing. We show that resolution of the signal with respect to the
delay between the incoming pulses as well as the detection frequency provides valuable information on
the nature of the oscillations. Most importantly, it is very simple to distinguish between polarization
interference from two independent optical transitions and quantum beats from a three-level system.
In case of polarization interference, the phase of the oscillations shifts vr when the detected frequency
passes any of the resonances. In case of quantum beat, the phase has little dependence on the detected
frequency near the resonance.

PACS number(s): 42.65.An, 42.50.Md, 71.35.+z, 73.20.Dx

I. INTRODUCTION

In the exploration of exciton kinetics and dynamics in
solids the nonlinear optical phenomena studied by ultra-
fast spectroscopy are very essential [1—5]. Accurate infor-
mation has been gained by studying the four-wave mixing
(FWM) signal as a function of the delay w between the
two incident pulses. If the solid contains atomic systems
with two closely lying transitions, one may observe oscil-
lations in the delay time domain with the beat frequency
of the pair of transitions. Such oscillations have been ob-
served in GaAs quantum wells and assigned to the inter-
ference between heavy-hole and light-hole excitons [6—8],
between free and bound excitons [9,10], between excitons
and biexcitons [11,12], and between Landau split magne-
toexcitons [13].

The solid may contain two types of independent, but
coherently excited two-level systems. Or it may contain
a three-level system with two closely lying transition fre-
quencies. The two oscillatory phemomena are called po-
larization interference and quantum beat, respectively.

As did Koch et aL [14], we address the question of how
to distinguish experimentally between polarization inter-
ference and quantum beat. In Ref. [14] a method based
on the true time resolution of the FWM signal by means
of a third laser beam was developed. An alternative
method to be considered in this paper is the frequency-
domain counterpart, namely the dependence on the de-
tected frequency studied experimentally by Lyssenko et
al. [15].

We consider here a thin sample illuminated by two
pulsed laser beams propagating nearly normal to the
sample. The atomic system in the sample is charac-
terized by two distinct dipole-allowed optical transitions
with nearly the same transition frequency. This can be
realized in the following model systems:

(a) Two independent two-level systems with nearly
equal transition frequencies. In the present paper this
shall be called a II system, as the double I symbolizes
the structure of the transitions.

(b) A V-type three-level system with two allowed tran-
sitions between a common ground state and two closely
lying excited states.

where I' is the space coordinate and t is the time. For
simplicity we let the two pulses have a common tempo-
ral envelope function E„(t)(centered about t = 0) and
a common carrier &equency uz. The two pulses have
diferent wave vectors k~, k~ and arrival times. We as-
sume a near-resonant condition, relatively short pulses,
and small-area pulses. Thus u„is close to the transition
frequencies, and

~~, —~, ~, p;, && (1/[width of E„(t)])&& ~;,
„
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FIG. 1. Level diagrams of types II, V, A, and E, consid-
ered in the text.

(c) A A-type three-level system with two allowed tran-
sitions between a higher state and two closely lying lower
states.

(d) A cascade system with almost equal frequencies of
lower and upper transition. Let us use the name E type
for this three-level system since the letter E symbolizes
the level diagram.

These four situations are shown in Figs. 1(a)—(d).
Let the applied electric field of the beams consist of

two pulses, one delayed w with respect to the other. The
fields of the two pulses are given by

Eq ——E„(t)exp[i(kq r —ur„t)],

E2 ——E„(t—w) exp[i(k2 r —w„t)],
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where wi, p, , and Mi are frequency, linewidth, and dipole
moment, respectively, of the ith transition. We detect the
signal diffracted in the direction 2k2 —k». This means
that we detect the waves generated by the third-order po-
larization P (t, 7) proportional to E2E2E1 In .order to
gain maximum information it is useful to perform a spec-
tral selection of the diffracted signal. The frequency of
the detected signal will be denoted by u. Thus the optical
intensity detected is proportional to [P( )(w, r) + c.c.]
where P(3) (a, r) is the Fourier transform of P(3) (t, 7 )
with respect to t.

II. THIRD-ORDER RESPONSE OF
THREE-LEVEL SYSTEMS

In the present section we set up the density matrix
equations of motions for a general three-level system with
the levels 1, 2, and 3, see Fig. 1. The 1-2 and the 2-3 tran-
sitions are dipole allowed with transition dipole moments
M21 and M32. We introduce the complex frequencies 0
as follows:

02» = M2 —&» —Z+2») 032 = M3 —&2 —Z+32) 03» = M3 —&»)

where hei are energies of the levels and the quantities p,~

describe the dephasing rates. In the following we shall
calculate the response of an E-type system, but the Anal
results can be applied to V- and A-type systems by a
suitable sign change of the frequencies involved.

We introduce the occupation densities, i.e. , the diag-
onal density matrix elements n», n2, and n3. The tran-
sition amplitudes, i.e. , the off-diagonal density matrix
elements, will be denoted as s21, s32, and s31.

In setting up the optical Bloch equations we neglect
longitudinal relaxation, i.e. , relaxation of the occupation
densities towards equillibrium. Then [16]

P (t) = M21821 + M32832(3) (3) (3)

dt' dt" Ct'"E(t') E(t")

x [A(t, t', t", t"')E*(t'")+ B(t, t', t", t"')E(t"')],
(10)

P (t) = M21s21 + M32832(3) (3)

t t' t I I

dt' dt"'
—OO —OO —OO

x [A(t, t', t", t"')E,(t') E,(t")E,*(t"')
+B(t, t', t", t'")E*(t')E (t")E (t"')]. (ll)

dt"

Our result for A is

Z 2»C

x [2M2 iB2t(t" —t"') + M2 iB32(t"—t'"))
21 32

—Z 32C-NM2 —iQ32 (t—t')

x [2M2 xBtt (t" t"') + M2 —iBt~ (t" t"')1—
32 21 (12)

B is given by

where A and B contain appropriate Greens functions.
When the electric field is considered as a sum E(t)
Ei(t) + E2(t), then the above expression multiplies 16-
fold. Therefore there is a great need for neglecting irrele-
vant terms at an early stage. We consider only terms
selected by the wave vector conservation, we neglect
terms that vanish for vanishing pulse overlap and retain
only resonant terms. This leads to the following selec-
tion: In V- and A-type systems the only relevant term is
E2(t')E2(t")Ei (t"'). In E-type systems this term as well
as Ei (t')E2(t")E2(t"') are relevant, the latter giving a
response via s31

~ (2)

The resulting expression then becomes

$21 + x021821 —(t/h) [M21(nl n2) ™32831]E
s32 + xA21832 —(i/h) [M32(n2 —n3) + M2183i]E

+ t+31831 (Z/h) [M32S21 ™21832]E)
n, = (i/h) M21[821 —82,]E,
n3 ———(i/h) M32 [832 —832]E,
n2 ——N —n» —n3,

(4)
(5)
(6)
(7)
(8)
(9)

B= NM M32~

[
—iQ„(t t') + —iB„—(t —t'))

Inserting a pair of pulses given by (1) we find

P( )(t, r) oc A(t, 1 T 0)e(t —~)e(r)
+B(t,0, T 7')e(t)e( —7 ), (14)

where N is the density of three-level systems. We solve
the above equations using Greens-function techniques
similar to those employed by Yajima and Taira [17].

Let us first assume that level 2 is initially occupied.
Then n2(t = 0) = W, and ni(t = 0) = n3(t = 0) = 0.
The initial transition amplitudes s,~ are also considered

to be zero. The Grst-order transition amplitudes s21 and

s32 are calculated using Eqs. (4) and (5) with the den-
sity matrices at their initial values. Next the electric field
and the first-order matrices produce second-order quan-
tities ni, n3, n2, and s31 via Eqs. (6)—(9). Finally
these second-order quantities and the electric field create
the third-order transition amplitudes s21 and s32 via
Eqs. (4) and (5). The final expression for the third-order
polarization can be written as

P (ld, T ) 0) CC

M4 ~iO&&T + M2 M2 +i032T
21 21 32

02» —&

322M4 ein32w + M2 M2 &i02
21 32

032 —M

The signal for negative delay is given by

where 6 is the unit step function. Various integrations
involving the envelope function E„(t)of (1) are not writ-
ten explicitly. It is seen that A and B describe the signal
for positive and negative delays, respectively.

In case of frequency selection of the diffracted signal
used by Lyssenko et aL [15], it is relevant to calculate
the Fourier transform of P( )(t, 7.) and insert the above
expressions for A and B. For positive delay we get
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P( ) ((u, 7 ( 0) oc 2MziMsz
Ogy —cd

+ 03' —w
e

—i0317.

(16)

ln(J )

The above results apply to E-type systems with level
2 initially occupied. Only slight modifications are nec-
essary for treating V-type or A-type systems (also with
level 2 initially occupied): There is no signal for nega-
tive delay (R is zero), the definitions of Re(Bzi) for the
V-type system and of Re(Osz) for the A-type systems
should reverse sign, and the minus sign in (15) should be
changed to a plus sign.

We now turn to the situation in which the level I or
3 is initially occupied. The calculations proceed along
the same lines. We shall not give the analytical results
here because they hold little interest in relation to os-
cillations. The signal in this case is nonoscillatory. The
reason for this is that quantum beat requires that two
transitions with almost equal transition frequency be co-
herently driven by the erst pulse. This condition is not
fuKlled when level 1 or 3 is initially occupied.

Results for II systems can easily be derived from the
above calculations. Considering (16) with Msz ——0 we
get the contribution from a single two-level system. Two
such systems [see Fig. 1(a)] give the third-order polariza-
tion expressed as

2M e' » 2M e' 43P()(~, 7 &0) oc
' +

Ogg —(u Og3 —(d
(17)

&o)

e(t &) [2M4 e
—iurzz(t 2z ) + 2M4 e

—izL33(t—2z)]-
+M2 M2 e(t &) [e

—zM2z (t —1 ) 4+/3z2T

—t&3$ (t—7 )+f421' T 1+e

The above results all refer to experiments based on
frequency selection of the diffracted signal. In case of
the real-time resolution performed by Koch et aL [14],
it is relevant to consider the result given in Eq. (14)
directly (without Fourier transform) . For V-type systems
in which B is zero we get

0.

FIG. 2. (cu, 7) dependence of the diffracted signal near
the upper resonance of a II-type system. The parameters are
+~ —~12 ~34 —0 04 ~12 and +12 —+34 —0.002 ~12-

is an exponential decay with superimposed oscillations.
It is appropriate to express any of the results (15), (16),

or (17) as

I( ) = I„,[1 + I sin(Au7 + P)], (2o)

where L~ is the difference between the two transition
frequencies. I

„„
I, and P can be expressed as analyti-

cally functions of ~ and/or 7 . Note that P depends only
on u. Instead of giving all the analytical results explic-
itly we show in Fig. 4 an overview of the characteristics
of the systems considered.

As seen in Figs. 2—4, there is a distinct difference be-
tween three-level systems exhibiting quantum beats and
II systems exhibiting polarization interference:

(i) Quantum beat is characterized by a small or no
change of P and I when passing through the resonance.
The reason for this is that the beating between the two
terms with different frequency denominator is unimpor-

For II-type systems we get

P (t, 7 &0)

p(t ) [M4 —zuzz (t 2z ) + M4 ——zur43(t —2z )] (1g)

III. DISCUSSION

Here we shall apply the above results to the case where
the dephasing rates are somewhat smaller than the fre-
quency difference, i.e. , no spectral overlap of the two
transitions.

The square of the real part of the third-order polar-
ization P~ ~ is the detected signal I~ ~. We show in Fig.
2 the dependence of I~ ~ on 7 and u near one of the
resonances for a II system as given in (17). In Fig. 3
we show the result for a three-level system with level 2
initially occupied, as given in (15). Note that the depen-
dence of the signal on the detector u is characterized by
Lorenzians about each resonance. The dependence on w

0.

~ 0)

FIG. 3. (u, 7 ) dependence of the diffracted signal near the
upper resonance of a V-type system. The units on the axes
are arbitrary. b,u = (~if lJP33) = 0.04~$3 and pig = pals =
0.002 u12.
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tant. A detailed analysis of (15) shows that behoeen the
resonances P changes from —rr/2 to rr/2 and back. But
this happens where the FWM signal is small.

(ii) In contrast to this, the polarization interference
must include two terms with diferent frequency denom-
inators (17). Therefore this case has the following char-
acteristics: P changes &om —rr/2 to rr/2 (or visa versa)
and [I [

goes through a minimum when the detector
frequency passes any of the resonances.

As for the real-time behavior, Eq. (18) indicates a
complex quantum beat behavior. Taking the square of
(18) and considering components with frequency Aw =
QJ2$ (A)32 it can be shown that the beat contains terms
with phases Ac@(t —2r), Bur(t —r), Burt, , and Awr. This
situation for quantum beat is somewhat more compli-
cated than claimed in [14]. As for polarization interfer-
ence it is seen &om (19) that one obtains a single beat
term and that this has the phase Aw(t —2r), which is
also found in [14].

x&0

System type

Level initially
occupied

V, A, E V, A, E

1, 3 1, 2, 3

II, V, A

1, 2, 3

ave

&L ~l &L i& iL J(. iL J&

no
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quantum
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quantum
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FIG. 4. Characteristics of the difFracted signal in terms of
the functions I ~„I, and P for different systems, sign of r,
and level initially occupied. The curves shower the functions of
the detected frequency.

IV. CONCLUSION AND OUTLOOK

There is a detailed agreement between the above men-
tioned theoretical results for II and V systems and the
experiments by Lyssenko et aL [15]. Here the II system is
the Iq, I2 transitions in CdSe, and the V-type three-level
system is the light-hole and heavy-hole excition transi-
tions in GaAs quantum wells.

This agreement encourages further theoretical studies
of related systems. The most obvious is to consider the
exciton-biexciton system. A proper model is then a four-
level system: the ground state, the exciton state, the
biexciton state, and the state formed by two free excitons.
Preliminary considerations of these systems give oscilla-
tions also for negative delay. Another interesting aspect

of the exciton-biexciton system is the case of spectrally
narrow incident pulses at the two-photon transition. The
(ur, r) dependence of the diifracted signal in this case is
yet to be explored.

Our results also call for further experimental studies of
A and V systems, in order to con6rm the peculiar depen-
dence of the phase P in the region between the resonances
where the signal is rather small (see Fig. 4).
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