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In this paper the second-order nuclear-structure correction to the energy of hydrogenlike systems
is estimated and previous results are corrected. Both deuterium and hydrogen are considered. In
the case of deuterium the correction is proportional to the nuclear polarizability and amounts to
about —19 kHz for the 1S state. For hydrogen the resulting energy shift is about —60 Hz.

PACS number(s): 32.30.Jc, 12.20.Ds

Recent advances in the experimental precision of laser
spectroscopy on atomic hydrogen and deuterium [1—3]
make it possible to compare theory and measured val-
ues up to an accuracy where eÃects that have been ne-
glected so far start to play a role. The isotope shift of the
18-2S transition in atomic hydrogen and deuterium was
directly measured [2] with the help of a novel ultrafast
electro-optic modulator [4]. The result of 670 994.337(22)
MHz has an uncertainty 25 times smaller than the pre-
vious best experimental value [5]. It is comparable to
the precision of the theoretical value of 670994.414(18)
MHz (without the nuclear-structure contribution) that is
limited by the uncertainty in the charge radii difference.

In this paper the second-order energy correction due
to the nuclear structure, which is expected to explain
the difference in theoretical and experimental results, is
estimated, and it is pointed out that the experimental
accuracy needed to resolve these corrections in an iso-
tope shift measurement is on the horizon, provided the
quadratic charge radii are better known. There is a pro-
posal of Taqqu [7] to improve the accuracy of these values
by measurements with muonic atoms. If this is done, the
nuclear properties could be measured by high-resolution
spectroscopy in a domain of relative momentum of nu-
cleus and electron that is intrinsically inaccessible to col-
lider experiments.

The second-order nuclear-structure correction for light
atoms has been analyzed in detail in the context of the
hydrogen hyperfine structure, but there is no similar
analysis for the Lamb- or isotope-shift problem, mainly
due to the smallness of this effect. One paper [8] on this
problem gives an incorrect estimation, as was noticed by
Sapirstein [9], because the crossed graph [the second term
in Eq. (15)] was not included. In another paper [10] only

the heavy atoms are considered.
We start from the nonrelativistic treatment of the deu-

terium structure correction, to show that the relativistic
electron momentum dominates in the sum over interme-
diate states. The second-order correction to the energy
is given by the formula [ll]

(@~ e e -zo —zo ~~) 'Hg+ H, —E~o —Eo

where Hg is the internal deuteron Hamiltonian, H, is
the electron Hamiltonian in the pointlike source of the
Coulomb field,

H, = p 0!
(2)2m r'

and Edo, Eo, @,P are ground-state energies and wave func-
tions of the deuteron and the electron, respectively. For
simplicity we put h = c = 1. The interaction Hamilto-
nian V has the form

(1
!

V= —a/ ——
(r [-,'~ —r[p

'

where R is the distance between the proton and the neu-
tron in the deuteron. In other words, R describes the ac-
tual position of the charge because the proton is treated
as a pointlike particle. The recoil effects are partially
included in the definition of p and r as relative electron
coordinates with respect to the center of deuterium mass,
and of m as a reduced electron mass. As the first step
the electron matrix element P is considered. Denoting
the difference

d @d (4)
one has
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This matrix element depends on n. Since a is small we expand in it and take only the leading term. This expansion
is equivalent to the following replacements:

P(r) ~ P(0), (6)

After these replacements P becomes,

(7)

(8)

P = c(: P(0)
d q (4vr) 1 'q.R 1

—~q R'
(2~)s ( qz ) A + q2/(2m) (9)

dsq (4'�) q R q R'
(2~)s qqz)

R R'2 2 2 R R

P=n P(0)—
A

(12)

Inserting this expression into (1), EE becomes

= —4m' P(0) ng,

where ng denotes the deuterium polarizability and will
be calculated later.

From this nonrelativistic consideration, one sees that
the relativistic electron momentum plays the dominant

I

Because the electron is treated nonrelativistically its mo-
mentum should be somehow limited. The simplest way
is the condition lg I

& m. This inequality implies

q R mug =5.5 x 10 g(1,
where Bg = 2.12 fm is the deuteron radius; hence one can
apply the dipole approximation. Since the lowest value
of A is the binding energy E~ [cf. (26)]

m/A & 0.2 && 1, (»)
one obt;ains for the electron matrix element P

I

role in the energy shift, because without a cutoff the in-
tegral in (9) will strongly diverge. Thus one should treat
the electron in a relativistic manner. The correction to
the energy shift is now given by the formula

l(AIV~ol4„4 &I' l(AVIV

E.' —E+ —A E,' —E +A

=) (qylV~o S+(E'. —A )V~ol&)
m

+ (@IIV~,S (E', +A )-Vwol4@),

where A is the deuteron energy level with respect to the
ground state and E+ and E„are positive and negative
eigenvalues of the Dirac Hamiltonian, respectively. In
the lowest order in n one can replace P(r) by P(0) and
neglect n in the Coulomb-Dirac Hamiltonian; thus H =
n p+Pm and

Eq+H 1

2E E —E ~'
q q

Eq —H 1

2E E E ~'
q + q

with Eq = gqz + m2.
Hence for the electron matrix element P one obtains

P = (PIVvo (8+(E, —A) + S (E, + A)) Veld)
d q (4qr), ~, ~ (Eq+m 1 Eq — 1

( )= ~'4(0)'
(2'|~ (2~y g 2E~ m —A —E~ 2E~ m+A+E~)1 —e2~' 1 —e 2~ +

Among the arguments of P, R ~ is much larger than rn and A; thus one can expand in B, and it is equivalent to the
dipole approximation

R K'
P = n P(0)

dsq (4m)2 (Eq+m 1 Eq —rn 1

(2~)s q2 ( 2Eq m A Eq 2Eq m+ A+ Eq)
+ (19)

Since (11) holds, one also expands in m/A and obtains for P

P= —c(. P(0) ——1+in! 2— R R ., 2m
3A pm

(2o)
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Hence for the energy shift one has

AE= —ma P(0) — i R 1+ln~~ 2
~

R i).2 2 1 f('H —Eo) i
(21)

Ag = —0! — —R (23)

To calculate ag and E one needs to know something
about the deuteron Hamiltonian H. We choose the sim-
plest, with a square well potential for the neutron-proton
interaction,

= p'
H = +V(r), (24)

VO for r &BO
0 for r )Ro, (25)

where M here is a reduced proton-neutron mass. The
values for Eo, Ro, Vo are taken to be consistent with the
measured values of [12]

E~ = —Eo ——2.226 MeV,

Ro = 2.04 fm,

Vo ——35.411 MeV .

(26)
(27)
(28)

In calculating the polarizability we first find the ground-
state wave function

p R sin(A r)'" =Ae )r
~

—Pr
gP"' = A sin(n Ro) r

(29)

(3o)

and then the eigenstate from the continuum spectrum
with the angular momentum / = 1:

@i"= B&i(k'r)
Qf,

"' = 2 k [cos(P) ji(k r) —sin(P) ni(k r)],
(31)
(32)

where n = +2M(VO —E~), P = /2ME~, k'

/2M (E+ Va), k = /2ME, and ji and ni are the
Bessel functions

sin x
X2

cos x
(33)

The first term in square brackets in the above expression
reproduces the previously obtained nonrelativistic result.

If we replace the energy difference in the logarithm by
the average energy E = H Eo, —the energy shift becomes

Z E = —4m~y(0)'~„1+in~ 2—
I

/' El
m)

where up was defined previously and denotes the
deuteron polarizability

cos(x) sin(x)
ni x

x2 x (34)

The coefficients A, B, and P are determined by the nor
malization and continuity conditions. The polarizability
and the average energy are then given by the integral

dk 2 1
2 (41rlA)'E
27r

( E+Egyl
ln 2

m )

6o,g o 2m E+ Egg

fxln 2
rn

Our calculation gives

ag = 0.635 fm,
E =4.915 MeV —2E~.

(35)

(36)

(37)
(38)

We would like to stress that this value is only a rough
estimation. We performed a quite strong approximation;
e.g. , we assumed that the proton and neutron were point-
like particles, although the proton size R„=0.87 fm was
not much smaller than the deuteron size Rg = 2.12 fm
[6]. Furthermore we also took a rather crude interaction
Hamiltonian and we neglected the electric quadrupole
moment of the deuteron.

We now turn to the case of the hydrogen atom. The
energy shift can be expressed as

AE = EE„+EE„,
where the first term is a rigid term, i.e. , A in the denom-
inator in (5) is equal to zero and the second term is a
polarizability term. The interaction Hamiltonian V is

)1V= o.
I

———
i,r

1

/R —r/)
'

where R describes the local position of proton charge
density. The electron matrix element P for the rigid con-
tribution reads

The result for ng coincides with those listed in [13] and
is close to the measured value of nq = 0.70(5) fm [14].
Finally, for the second-order nuclear structure correction
to the deuterium energy, we obtain

AE = —19.45 kHz.

P„=a P(0)

= —2m+ P(0)~
d3 4m 2

( ) (1 iq R) 1
—iq R'

(2~)s qs (42)
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6E„=—16mn P(0)
1

dq —[1 —Fi(q )]q4

where F~ is a proton form factor. We can roughly esti-
mate the value of the above integral by assuming that a
proton is a charged sphere with the radius Rz..

After inserting this into (1) the rigid contribution to the
energy becomes

4E' = d rP (0)(—2 m a r)V(r)

2K
m cr gP (0) R„-—18.75 Hz. (45)

The polarizability contribution consists of the sum over
the excited states of the proton. All other energies can
be neglected with respect to the proton excitation energy
A. Thus the electron matrix element becomes

EE„=— ma P (0) R„=—11.25Hz.

There is another term from the first-order nuclear size
contribution that is of the same order, namely (for the
18 state)

The integral over q in the leading order in m R& (mR&—
5.3 x 10 s (( 1 ) is the following:

~'q, ' (i —e*'~) (i —e-'~ ~')

C~, 1 (~[a.- R'[&
(47)

If we neglect the weak logarithmic dependence ln [R—R,'[
and replace it by ln(R„), the R and R'z terms in the
above equation give no contribution and we obtain for
the energy shift,

~E„=2~r P(0)'c „ln
i

(mR„ &
(48)

where a„ is the proton polarizability. n& was recently
measured [15] and amounts to n„= 10.8(1) x 10 4 fm .
This contribution gives a correction of about —30 Hz.
The sum of second-order contributions AE'+ AE„+6E„
is about —60 Hz, and thus is below experimental observ-
ability.

In conclusion the second-order nuclear-structure cor-

rection to the energy level can be observable not only for
heavy atoms but also for the light ones. In deuterium
this correction is mainly governed by the nuclear polar-
izability, and amounts to about —19 kHz. Because the
energy corrections for the deuterium 2S state and those
for the lS and 28 states in hydrogen are much smaller
than the latter value, a measurement of the 18-2S iso-
tope shift difference between these atoms is mainly sen-
sitive to the 1S nuclear-structure correction to the deu-
terium energy. The present experimental resolution of
22 kHz is nearly suKcient to measure that contribution.
So precision spectroscopy is now on the horizon for a
new application field, namely to measure nuclear prop-
erties and thus complement the hyperfine-structure and
collider measurements.
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