
PHYSICAL REVIEW A VOLUME 48, NUMBER 2 AUGUST 1993

Quantum tunneling in dissipative systems
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As a prelude to a discussion of tunneling in the presence of dissipation, we discuss the damped har-
monic oscillator. We show that for a harmonic-oscillator potential, the Caldeira-Leggett Hamiltonian
can be reduced to a sum of independent harmonic-oscillator Hamiltonians by a normal-mode transfor-
mation. We then discuss tunneling through a parabolic barrier and explain the apparently contradictory
results in the literature. The decay of a metastable state is then discussed. We argue that much of the
published work on tunneling in dissipative systems has assumed unphysical initial conditions. We calcu-
late the tunneling out of a metastable state, on the assumption that the environment is initially at zero
temperature, and find that quantum tunneling is enhanced by dissipation.

PACS number{s): 03.65.8z, 05.40.+j

I. INTRODUCTION

In recent years there has been considerable interest in
the tunneling of a particle through an energy barrier
when dissipation is present. The problem was considered
in detail by Caldeira and Leggett [1,2]. They considered
tunneling of a particle in a potential of the form
V(q) =cooq /2 —Pq, although their conclusions were not
limited to this particular form. They concluded that "the
presence of dissipation always tends to suppress quantum
tunneling" (Ref. [2], p. 423). (This statement must be in-
terpreted in the context of their paper; it was not intend-
ed to be absolute. ) Widom and Clark [3] considered tun-
neling through a parabolic potential barrier and found
that dissipation enhanced tunneling. In an exchange of
Comments [4,5] the authors could not reach agreement.
Bruinsma and Bak [6] also considered tunneling through
a barrier and found that at zero temperature the tunnel-
ing rate may be either increased or decreased by dissipa-
tion. Widom and Clark [7] investigated tunneling in a
model ferroelectric capacitor with linear passable dissipa-
tion and found that dissipation does not impede macro-
scopic tunneling. In an adjacent paper Leggett [8] con-
sidered tunneling in the presence of an arbitrary dissipa-
tion mechanism and found that, normally, dissipation im-
pedes tunneling, but he also found an anomalous case in
which dissipation assists the tunneling process. Razavy
[9] considered tunneling in a symmetric double-well po-
tential and concluded that dissipation could inhibit or
suppress tunneling. Fujikawa et al. [10] also considered
tunneling in a double-well potential and found an
enhancement of tunnehng. It is not easy to reconcile
these results since different authors attacked different
problems by different methods. Caldeira and Leggett
[1,2] calculated the decay rate for a particle in a metasta-
ble state using a field-theoretic technique (instanton tech-
nique). This technique is of quasiclassical accuracy in the
sense that Planck's constant fi is considered to be small.
Motivated by some skepticism which has been expressed
concerning the instanton technique, Schmid [11]carried
out a quasiclassical calculation by more generally accept-

ed techniques with results in agreement with Caldeira
and I.eggett.

In classical mechanics dissipation can be introduced
through a phenomenological frictional force. In quan-
turn mechanics this is not possible; one must begin with a
Hamiltonian. What is commonly done is to couple the
system of interest (a particle moving in a potential in the
work discussed here) to an ensemble of harmonic oscilla-
tors. We shall call this ensemble "the environment. " A
Hamiltonian is written for the combined system of parti-
cle and oscillators. Energy and momentum can be ex-
changed between the particle and oscillators. With ap-
propriately chosen initial conditions, the motion of the
particle is damped. Since energy may be transferred from
the oscillators to the particle as well as from the particle
to the oscillators, it is possible to choose initial conditions
so that the motion of the particle is undamped, or the
damping is negative. These solutions are unphysical in
the sense that they require a fine tuning of the environ-
ment (the ensemble of oscillators) that is unachievable.
In this paper we shall argue that in much of the pub-
lished work on tunneling in dissipative systems, unphysi-
cal initial conditions have been chosen, and that the re-
sults obtained are not relevant to the real world.

In Sec. II we present the Hamiltonian used in our cal-
culations. This is a slight modification of the Hamiltoni-
an used by Unruh and Zurek [12] and by Harris [13] to
treat the damped harmonic oscillator. We show that by a
canonical transformation it can be transformed to the
Hamiltonian used by Caldeira and Leggett [1,2]. We
show that Hamilton's equations have solutions in which
the motion of the particle is either positively or negative-
ly damped. Indeed, almost any motion of the particle can
be obtained by proper choice of the initial conditions.

In Sec. III we discuss the case of the particle moving in
a harmonic-oscillator potential. This problem can be
solved exactly by a transformation to normal coordinates.
This transformation has been made previously by van
Kampen [14], Sollfrey and Goertzel [15], and Ullersma
[16]. In the normal coordinate solution the motion of the
particle is, on the average, undamped. The particle alter-
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nately takes energy from and gives energy to the environ-
ment. This behavior is quite unlike that found by Harris
[13]. In his solution the ensemble of oscillators was as-
sumed to be initially in thermal equilibrium. As time in-
creases, the particle approaches thermal equilibrium with
the oscillators. If the initial temperature is zero, the en-
ergy of the particle decays until it reached the ground
state. It is this solution rather than the normal coordi-
nate solution that we believe to be physically realistic.

The transformation to normal coordinates works just
as well when the parabolic potential well is inverted to
give a potential barrier. We use this in Sec. III to calcu-
late the transmission probability through a parabolic bar-
rier, the problem treated by Widom and Clark [3]. The
Hamiltonian used by Widom and Clark differed from
that of Caldeira and Leggett by the omission of a renor-
malization term. Using the Widom-Clark Hamiltonian
we find, as they did, that tunneling is enhanced by dissi-
pation. Using the Caldeira-Leggett Hamiltonian we find
that dissipation tends to suppress tunneling. Calculation
of the classical motion of the particle reveals that at
t = —~ the particle has a negatively infinite energy. As
it approaches the classical turning point it absorbs energy
from the environment and reaches the turning point with
a finite energy. Then, as it recedes from the turning
point, it gives up energy to the environment, and its ener-
gy becomes negatively infinite again at t=+ ~. At all
times the sum of particle, oscillators, and interaction en-
ergies is constant and finite. We think that no con-
clusions about tunneling in real systems should be drawn
from this unphysical behavior.

In Sec. IV we discuss decay of a metastable state by
tunneling. The initial state of the system is a superposi-
tion of states that interfere constructively in the region
where the particle is initially confined. If the states that
constitute the superposition are eigenstates of the Hamil-
tonian, then the expectation value of the particle's energy
in each of these states is constant, indicating that there is
no net transfer of energy from the particle to the environ-
ment. To prepare the system in one of these states would
require an unattainable fine tuning of the environment.
The assumption that the system is initially in a superposi-
tion of such states is unrealistic. We think that it is more
realistic to assume that initially the particle is confined
and the environment is in thermal equilibrium. In our
calculation we take the temperature of the environment
to be zero. The states that compose the superposition are
then time-dependent states that decay toward the ground
state. The effect of this decay is to shorten the lifetime of
the particle in the metastable state.

Finally, in Sec. V we summarize our conclusions and
comment on previous work on dissipative tunneling.

II. MODEL

We consider a particle with coordinate q0 and momen-
tum po moving in a potential V(qo). Its Hamiltonian is
po/2mo+ V(qo). It is coupled to a one-dimensional sca-
lar field @(x,t) confined between x = Land +L. The-
field obeys the wave equation @=v B„N where v is the
wave velocity. When the field is written as a Fourier

series in x and the amplitudes Q„are taken as coordi-
nates, the Hamiltonian for the field has the form of a sum
of harmonic-oscillator Hamiltonians. We adopt the form
of the coupling assumed by Unruh and Zurek [12] and
write the Hamiltonian for the coupled system of particle
and field as

H=p 0/2m o+V(qo)+ —,
' g [(P„+e„qo/L'~ co„) /m„

n =1

F(q„,Q„)=—g m„co„q„Q„.
n=1

The transformation equations are

(2a)

P =—
n

aF ()F
n~nqn ~ pn ~ n~nQn

oQ„ n

(2b)

The transformed Hamiltonian is found to be

H=po/2mo+ V(qo)+ —,
' g [p„/m„+m„to„q„]

n=1

+ I/L'~ g e„qoq„+qo/2L g e„/m„co„.
n=1 n =1

(2c)

This is the Caldeira-Leggett Hamiltonian written in a
different notation. The coupling constant C„of Caldeira
and Leggett is our coupling constant e„ /L ' . We have
found it convenient to retain L in the formulas until such
a time that we shall let L approach infinity and convert
sums over n into integrals over co according to the
prescription

~(L/harv) J dc' as L~oo
n =1 0

(3)

Leggett [8] has shown that a large class of Hamiltonians
may be reduced to the form of Eq. (2c) by appropriate
transformations. Before continuing it is convenient to
simplify the equations by defining new variables so as to
eliminate the masses from H. We define q„'=m„' qn,
p„'=p„/m„', and e'„=E„/(mom„)'~ . We make this
change of variable in Eq. (2c) but drop the cumbersome
primes and obtain

M=po/2+ V(qo)+ —,
' g [p2+co„q„]

n=1

+1/L g e„qoq„+qo/2L g e„/to„.
n=1 n=1

(4)

This is the Hamiltonian that shall be used throughout
this paper.

+m„co„Q„]

where co„=(n —I/2)harv/L. This Hamiltonian differs in
some minor ways from that of Ref. [13]where the deriva-
tion can be found. We have assigned masses m0 and mn
to the particle and field oscillators and have assigned the
coupling constants e„differently to facilitate comparison
with the Caldeira-Leggett Hamiltonian.

We make a canonical transformation from (Q„,P„) to
(q„,p„) for n = 1,2, 3, . . . using the generating function
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Either Hamilton's equations for the classical variables
or the Heisenberg equations for the quantum-mechanical
operators yield the equations of motion

q +~ q = —p„qo/L for pg =1,2 3, . . . (Sa)

qo+ = —g [e„q„/L' +e„qo/Lco„] .
q0 n=1

(Sb)

We may solve Eq. (5a) as an initial value problem and
substitute the results into Eq. (5b) to obtain

q, + + j dt'G(t —t')q, (t')av d

BqO dt O

large. The only restriction on the choice of qo(t) is that it
must be possible to represent F(t) by a Fourier series.
For such a solution to be realized, the initial coordinates
and momenta of the infinite number of field oscillators
must be carefully chosen. This requires an impossibly
difficult fine tuning of the environment.

III. NORMAL COORDINATES
AND THE DAMPED HARMONIC OSCILLATOR

In this section we choose V to be the harmonic-
oscillator potential V(qo)=cooqo/2. We assume a solu-
tion= —1/L ' g e„[q„(0)cos(co„t)

n=1 q„(t)=a„cos(At+5) (7a)

where

+ (1/co„)p„(0)sin(co„t ) ] (6a) for n =0, 1,2, 3, . . . where the a„'s are constants and 0 is
a frequency still to be determined. Substituting this into
Eq. (5a) we find

G(t t')=—(4v/L) g y„cos[co„(t t')]-
n =1

(6b) &naoa„=
L 1/2(~2 2

)~n
(7b)

and y„=e„/4uco„.
The third term on the left-hand side of Eq. (6a) is a

(generally nonlocal) damping term. It takes a particular-
ly simple form if y „=y =const for then
G(t —t') =4y5(t t') and Eq. (—6a) has the form

qo+2y 8(t)qo(t)+d BV
dt '

aqO

OO

0 =coo+(4u/L)Q
„=i (fl —co„)

which may also be written as

(7c)

for n = 1,2, 3, . . . . Substituting this into Eq. (5b) and
canceling ao from both sides gives

= —1/L 'i g e„[q„(0)cosco„t
n= —1

�

@2 oo

0=coo+ ( 4u /L )
(0+coo) „ i (Q~ —co2 )

(7d)

+ ( I /co„)p„(0)sinco„t ] (6c)

where 8(t)=+I for t) 0 and —1 for t (0. If qo and q„
are interpreted as classical variables, we may choose the
initial conditions q„(0)=p„(0)=0. Then, Eq. (6) de-
scribes a particle moving in a potential V(qo ) subject to a
damping force —2yq for t )0 and a negative damping
force +2yq for t (0. (There is nothing special about the
time t =0; we could equally well have chosen an arbitrary
time to )The prese. nce of negatively damped solutions
does not seem to have been commented on in previous
work with which I am familiar. Clearly, such solutions
must exist for Hamilton's equations are invariant under
time reversal. If qo and qn are interpreted as quantum-
mechanical operators, then we cannot choose q„(0) and
p„(0) to vanish, but we can choose their expectation
values (q„(0)) and (p„(0)) to vanish.

It is clear from inspection of Eq (6a) that almost any
motion of a classical particle can be obtained by the ap-
propriate choice of q„(0) and p„(0). Suppose we choose
some sufficiently well-behaved function qo(t) defined on
the interval —T ( t (T where T=L /U. We substitute it
into the left-hand side of Eq. (6a) and denote the left-
hand side by F(t), which is now a known function. We
recognize the resulting equation as a Fourier series for
F(t) with e„q„(0)/L'i and e„(p0) L/' as the Fourier
coefficients. These coefficients can be calculated by the
usual formulas. L, and hence T, can be made arbitrarily

0=—,
' g p„'+ —,

' g g u„q„q
n=0 n=Om=0

(8a)

where v„=v „,v„„=co„,Vo„=e„/&L for n =1,2, 3,

uoo=coo+1/L g e„/ „c,o
n=1

(8b)

and others are equal to zero. We normalize the a„'s by
choosing

OO g2

ao = 1+1/L
(Q2 2 )2

—1/2

It is easily shown that

anaanti ~ap |
n=0

(9b)

2X nm ma IIa na
m=0

(9c)

This equation gives the possible values of Q. It can be
solved graphically by plotting the left- and right-hand
sides of the equation against Q and finding the intersec-
tions [17]. We shall label the solutions 0 and choose
their order so that Q approaches m as the coupling con-
stants y„approach zero. We shall label the correspond-
ing values of a„as a„. The Hamiltonian of Eq. (4) may
be written as
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q„(t)= g a„g (t) .
a=O

(1Oa)

Substituting into Eq. (8) and using Eqs. (9a) and (9b) we
obtain

We define normal coordinates Q and momenta
P =Q by

damped, or undamped motion, but in practice only
damped motion is observed, because the experimenter
has very little control over the initial positions and veloc-
ities of the gas molecules. A more reasonable assumption
about the environment is that it is in thermal equilibrium
at some temperature (which may be zero).

The Hamiltonian of Eq. (10b) has the energy eigenval-
ues

H= —,'g(P +QQ ).
a=O

(lob) E= g A'Q ( N + —,
'

)
a=O

(13a)

This is the Hamiltonian for a collection of independent
oscillators. The classical particle, which in the absence of
interaction with the environment oscillated with frequen-
cy Q)o has been replaced by an oscillator with the fre-
quency Qo whose motion is not damped. For a
harmonic-oscillator potential the expectation values obey
the same equations of motion as the classical variables, so
the same remark may be made about (q0(t) &.

Let us suppose that Q =0 for a&0 and Q0= A0cos(Q0t). The calculation of the energy of the parti-
cle, the energy of the field, and the interaction energy
gives

and the eigenvectors

IE&=IN0&INi &IN2&

where

—,'(P +Q Q ) N &=%co„(N + —,')iN

(13b)

(13c)

and the X 's are integers. The expectation value of the
particles' energy can be calculated for this state with the
results

(&, & =( —,'(P0+~0q0) &

oo ( Q —co0)
a0 RQ (N + —,') 1— (13d)

(Q0—co0)cos Q0t=
—,'aOOA OQO

AO
(1 la)

Eq= ,' g I:p.'+~—'.q.')
n=1

oo

=AOaOOQO ~0 00 0 ~2L(Q&2)P
(Q0—co„)cos Q0t

X 1—
QO

(1 lb)

E, = g (F.„q0q„/&L +e„q0/2Lco„)
n=1

e„(Q0+co„)= A0a00cos (Q0t)
, 2Lco„(Q0—co„)

(1 lc)

The energy of the particle oscillates as energy is alter-
nately transferred from the particle to the environment
and back to the particle. The field energy and interaction
energy also oscillate in such a way that the sum of parti-
cle, field, and interaction energies is the constant
3 OQO/2.

To achieve such an undamped state the initial values of
the Geld coordinates must be adjusted to the values

&.qo(o)

L in(Q~ 2
)

q„(0)=
O ~n

Such an initial state is not attainable in practice. For ex-
ample, consider a pendulum mounted in a container of
gas. In principle one could write a Hamiltonian for the
interacting system of pendulum and gas molecules.
There must be solutions of the equations of motion in
which the pendulum executes damped, negatively

(q„(0)&
= (p„(0)& =o,

(q„(0)q„(0)&=(p„(0)p„(0)&=0 for nWn',

(14a)

(14b)

(q„(0)p„(0)+p„.(0)q„(0)& =0 for all n and n', (14c)

co„(q„(0)&
= (p„(0)& =(fico„/2)coth(A'co„P/2) . (14d)

We shall quote the results for the case of weak damping
(y ((co0) and the initial conditions (q0(0) &

= (p0(0) &

=(q0(0)p0(0)+p0(0)q0(0) &=0. (A more extensive dis-
cussion may be found in Ref.

I 13].) The expectation value

If X =0 for all a except o, =o, we can compare this with
the classical E of Eq. (1 la). The term with a=o in Eq.
(13c) is like that of Eq. (1 la) with A0Q0/2 replaced by
A'Q0(N0+ —,

'
) and cos Q0t replaced by its average value of

The terms with a &0 represent the contributions of
the zero-point vibrations of the field oscillators to the en-
ergy of the particle.

A quite di6'erent result is obtained if it is assumed that
initially the environment is in thermal equilibrium at a
temperature /3 '. We have treated this problem in some
detail elsewhere I13] and shall briefly review some of the
results here. The calculation is based on Eq. (6c) for t )0
and V(q0)=co0/2. This is the Heisenberg equation of
motion for the operator qo. It can be solved exactly for
q0(t) in terms of the initial values of all of the operators
q„(0) and p„(0). Then the expectation values (q„(t) &,

(p„(t) &, (q„(t) &, and (p„(t) & can be calculated in terms
of initial expectation values. Here the angular brackets
denote both a quantum-mechanical average and an aver-
age over a thermal ensemble. For the field oscillators we
shall assume the initial conditions
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of the particles energy is

& —,
' [pp(t)+~pqp(t)])

=
& —,

' [pp(0)+ copqp(0) ] )exp( 2y—t )

+ (iricop/2)coth(A'cog/2) [1—exp( 2—y t ) ] . (15)

The initial energy decays and the particle approaches
thermal equilibrium with the environment in a time of
the order of 1/2y. If the temperature of the environment
is zero, the final energy of the particle is %coo/2 the zero-
point energy.

It is worth noting that the same conclusion would be
reached by applying time-dependent perturbation theory
with the terms containing qpq„ in Eq. (4) as the perturba-
tion. It is useful to introduce the annihilation operators
for field quanta

Xn~o
Qp—- cop+(2v/L) g

COP COn

(19a)

0 =co„—(2v/L )
CO„

(19b)

These formulas agree to order E„with the exact formulas
of Eq. (7d).

It is of some interest to see how accurately the energy
eigenvalues of Eq. (13a) can be calculated from perturba-
tion theory. We have treated the terms containing E„ in
Eq. (4) as perturbations and used second-order time-
independent perturbation theory. The results can be put
in the form of Eq. (13a) with the frequencies Q given by

C„=(co„/2A)'~ q„+ip„/(2%co„)'~ (16a) IV. TUNNELING THROUGH A PARABOLIC BARRIER

and their adjoints C„, the corresponding creation opera-
tors. In terms of these operators, the Hamiltonian of Eq.
(4) becomes

H=pp/2+ V(qp)+ g ]rico„C„C„
n=1

+qp/L' g e„(A'/2co„)' (C„+C„)
n=1

+(qp/L) g e/ c„o.
n=1

(16b)

We will write this as H =Ho+H1+H2 where Ho is the
sum of the particle and field Hamiltonians, H1 is the sum
of terms containing En, and H2 is the sum of the terms
containing E„. Assuming y „=E„ /4U co„=y =const and
using the Fermi golden rule we calculate the transition
probability per unit time from an initial eigenstate of Ho
in which the particle is in the state I]p, ) and all of the
field oscillators are in their ground states to a final eigen-
state in which the particles is in the state I]I]& ) and one of
the field oscillators is in its first excited state. We find

T(i ~f ) =(4y /&) I & +/lqp I
~I'; ) I'co;/ (17)

where co;& =(E, E&)/fi and E;—and E& are particle ener-
gies. If V(qp) is the harmonic-oscillator potential, the
matrix element vanishes except for neighboring states.
Taking the initial state to have the energy

E=A' co(Npp+—,') and the final state to have the energy
iiicop(Np —1+—,

' ), the matrix element is found to be
A'Np/2cop This gives T. (i ~f ) =2yNp. The energy lost
by the particle in this transition is Sicko. Replacing the
jumps between discrete levels by a continuous change, we
may write the rate of change of the energy as

dE = —(2yNp )A'cop= —2y(E ficop/2) . —

P(E, cop) = [1+exp( 2irE/Ac—op)] (20)

This expression is rigorous and well known [18,19].
The transformation to normal coordinates goes

through as in the preceding section and gives the Hamil-
tonian

] (p2 II2g2 )+ ] y (p2 +II2g2 )
a=1

(21)

The frequency of interest Q,o is found by assuming a solu-
tion

q„=a„coshQot

for all n Substit.uting into Eq. (5a) gives

(22a)

En aO

L ' (Op+co„)
n=1, 2, 3, . . . . (22b)

Using this in Eq. (5b) and canceling ap from both sides
gives

Ap cop (4v Ao/L )
„=i (Op+co„)

(22c)

which is to be solved for Q,o. We shall label the solution
Qp(CL) since it was obtained using the Caldeira-Leggett
Hamiltonian. Clearly, Qp(CL) & cop.

Widom and Clark used the Hamiltonian of Eq. (4), but
with the last term omitted. This leads to

We take the potential in Eq. (4) to be
V(qp) = —copqp/2; now the parabolic well of the preced-
ing section has become a parabolic barrier. Classically, a
particle incident on the barrier would be rejected if its
energy is negative and transmitted if its energy is posi-
tive. The quantum-mechanical transmission probability
for a particle of energy E is

The solution of this equation is

2

Qp =cop+ (4v /L ) g„=i (Op+co„)
(23)

E(t) =E(0)exp( —2yt )+(i]icop/2)[1 —exp( —
2yt )] .

(18b)
We shall label the solution Qp(WC). Clearly, Qp(WC)) cop. Taking the limit as L —+ oo and using Eq. (3) gives
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Qo(CL) =coo—(4QO/m. ) J dc&i
Qp+m

2

Qo(WC) =coo+(4/~) J den
Qp+ Ct)

(24a)

(24b)
Ef+E; =

—,'aoQo(y/lQol)(2cosh Qot —1) .

The total energy is

(28a)

lation would not occur. Canceling the divergent terms
and carrying out the integrals gives

Equation (24b) agrees with the expression found by Wi-
dom and Clark using an analyticity dispersion relation
for the friction coefficient y(co).

We see that

Qo(CL) & coo& Qo(WC) .

From Eq. (18) it follows that

(25a)

P(E,Qo(CL) ) & P(E, coo) & P(E, Qo(WC) ) (25b)

Qo+ 2y I QOI coo =0

with the solution

y+( 2+y2)1/2

(26a)

(26b)

and Qo=+lQol. Using Eqs. (22a) and (22b) we calculate

= —
—,
' a 0 Qo I (2y /l Qo l

)cosh Qot + 1 I, (27a)

when E is negative. Whether one concludes that dissipa-
tion enhances the tunneling probability as claimed by Wi-
dom and Clark or decreases it as claimed by Caldeira and
Leggett depends on which Hamiltonian is used in the cal-
culation.

Widom and Clark attributed this difference in the re-
sults to a divergent renormalization used by Caldeira and
Leggett. We note that the last term in Eq. (4) is divergent
if one assumes y„=e„/4Uco„=y =const. To investigate
this question further it is enlightening to calculate the en-
ergy of the particle, the energy of the field, and the in-
teraction energy separately. First, we note that when
y(co) =y =const, the integral in Eq. (24a) can be done to
yield the quadratic equation

E=E~+Ef+E,= —,'aoQO(1+y/lQol) . (28b)

E =
—,'aoQot 1 —(2y/Qo)sinh Qot I, (29a)

Ef+E, =
—,'aoQOIy/Q. o

—(2y/Qo)sinh Qot] . (29b)

Once again divergent terms have canceled when Ef and
E, are added. The velocity of the particle as it passes
over the top of the barrier is uo(0)=aoQO. The case of a
free particle is also of interest. If we set cop=0 in Eq.
(22c), we find QO=O is a solution. We let QO~O and
ap ~ ~ in such a way that Apap = vp =const. Then
qo=uot, E =vo/2, and Ef+E; —+(vo/2)(y/Qo) —+ ~.
The particles moves with a constant velocity, but the en-
ergy in the field and the interaction is infinite. This is
clearly unphysical.

At t = —~ the particle has an energy of E = —~,
and Ef +E;=+ ~. As the particle approaches the turn-
ing point at qp =ap, its energy increases, and Ef +E; de-
creases; energy is being transferred from the field to the
particle. After being reAected at the turning point, E
decreases and Ef+E, increases as energy is transferred
from the particle to the field. This behavior requires a
fine tuning of the initial values of the field coordinates
q„(0) and momenta p„(0) that could never be attained.
This strange combination of negatively damped and posi-
tively damped motion of the particle is quite unphysical.
In our view no conclusions about real systems should be
drawn from these calculations.

We have also considered positive-energy solutions of
the form q„=a„sinhQt for n =0, 1,2, 3, . . . . In these
solutions the particle passes over the top of the barrier at
time t =0. Q is again given by Eq. (22c). We find the en-
ergies

E —1 g (p2+~2q2)
n=i

ct) cosh Qp t=
—,'ao(4y/m) J dro

(Qo+co )

2@2
0

(Qo+co )

V. DECAY OF A METASTABLE STATE

For the purposes of this section it is useful to consider
a potential that is suf5ciently simple to discuss in some
detail. Let

E, =(1/L' ) g e„qoq„+(qo/2L) g e„/co„
n =1 n=i

(Qo —ai )cosh Qot=
—,'a 0 (4y /~) dry

0 (Qo+co )

(27b)

(27c)

for qp &0

0 for 0&qp &a

V(qo)= ~ V, for a &qo&b

0 for b &qp &c
~ for c &qp

(30)

Both Ef and E; are seen to contain divergent integrals,
but when they are added together the divergences cancel.
One can assume that y(co ) vanishes above some arbitrari-
ly large but finite value of co, then after the cancellation
occurs, we let the cutoft value approach infinity. This
seems unobjectionable. If the last term in E; were omit-
ted as it was in the work of Widom and Clark, the cancel-

where V, is constant. A classical particle with E & V&

could be confined in the region 0 & qp & a, but a
quantum-mechanical particle could tunnel through the
barrier and emerge in the region b & qp & c. The
Schrodinger equation for a particle in this potential is
easily solved for %(E,qo), the energy eigenfunctions of
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the operator —,'(po+cooqo). Details of the solution have
been relegated to the Appendix. A computer program
has been written to calculate the eigenvalues, the eigen-
functions, and the transition probabilities from any state
to any other state.

We shaH consider three special cases that depend on
the assumed values c and G=(b —a)[2(V, E)—/A' ]'
The first case considered is that of c —b =a; then the well
is symmetric about the point qo=c/2, and the particle
tunnels back and forth between the two potential wells.
In the second case, (c b) )—)a and a ))c exp( —G). In
this case the stationary states can be divided into two
groups. In one group the particle is primarily confined to
the narrow potential well and in the other group it is pri-
marily confined in the wide potential well. The case of
most interact is the final case c = ~. Here the states form
a continuum and a metastable state is formed by a super-
position of these continuum states.

A. c=b=a
The potential is symmetric about the point qo=c/2.

The eigenfunctions of the particles Hamiltonian are ei-
ther symmetric or antisymmetric about this point. If
exp( —G) «1, the eigenvalues occur in closely spaced
pairs with the one corresponding to the symmetric eigen-
function being lower than that corresponding to the an-
tisymmetric wave function. Let us suppose that initially
the particle is initially in a state which is a linear com-
bination of such a pair 4, +%„where the subscripts
denote symmetric and antisymmetric states. If we sup-
pose that the wave functions interfere constructively in
the region 0 & qo & a and destructively in the region
b & qo & c, then initially (qo ) =a/2. In the absence of in-
teraction with the environment, the probability density
for later times is

I +(qo t ) I'= I+, I'+ I +.I'+ +.lIlq'. Icosco„t (31)

where co„=(E, E, )/R. The —expectation value (qo(t) )
oscillates back and forth between the regions 0& qo & a
and b & qo & c with the frequency co„. For very closely
spaced levels, the frequency of oscillation may be calcu-
lated to be approximately

S 2E '"
(E/V, )'i (1 E/V, )'i exp( ——G) (32)

a + 1/sc

where E = (E, +E, ) /2 and this value of E is to be used in
~ and G. The derivation is given in the Appendix. As a
crude classical picture, we may think of the particle
bouncing back and forth with velocity (2E)'~ over a dis-
tance a+1/a=a; at each encounter with the potential
barrier it has a probability amplitude proportional to
exp( —G) of penetrating the barrier. The rate at which
tunneling occurs depends on the energy difference and
would vanish if the states were degenerate.

Now we ask how tunneling is affected by interaction
with the environment. In the case of the harmonic oscil-
lator we found the energy levels were shifted from
ficoo(N+ —,') to AQO(N+ —,'). If we were sufficiently clever
to find exact solutions as we did in the case of the para-

bolic potential, we would expect a similar energy shift.
Whether the tunneling rate is increased or decreased by
the interaction would depend on whether the energy
difference between the closely lying symmetric and an-
tisymmetric states is increased or decreased. The shift in
energies due to interaction could be calculated by pertur-
bation theory. This was done by Fujikawa et al. [10] for
a different form of potential. In our view calculations of
tunneling rates based on exact eigenvalues and eigenfunc-
tions or approximations to them are physically irrelevant.
Since these are stationary states there must be no net
transfer of energy from the particle to the environment as
should occur in a truly dissipative system. The construc-
tion of such stationary states requires an unattainable fine
tuning of the environment.

Except for the different shape of the potential this is
not different in principle from a particle moving in a
harmonic-oscillator potential. The lowest state is sym-
metric and the first excited state antisymmetric. If the
state is a linear combination of these two states with ap-
propriately chosen coefficients, (qo(t) ) will oscillate back
and forth across qo=0 with the frequency coo if there is
no interaction with the environment. If exact eigenvalues
and eigenfunctions are used, the frequency will be Qo
where Qo is found by solving Eq. (7d). A quite difFerent
result is obtained if initially the environment is at zero
temperature. Equation (15) tells us that the particle de-
cays to its ground state in a time of order I/2y. In the
language of perturbation theory, we would say that there
was a transition from the state a, %, +a, %, to the state
4, with emission of a quantum of energy into the envi-
ronment. We expect similar conclusions for any form of
potential. Interaction with a zero-temperature environ-
ment both shifts the energy levels and causes the particle
to decay to its ground state.

We can use perturbation theory to calculate the transi-
tion probability per unit time from the state 4, +4, to
the state 4, where 4, and 4, are the two lowest states in
the potential of Eq. (30). We estimate (V, IqoI%', ) =a.
Then using Eq. (17) we find T(i~f )=4ya co„/fi. Ulti-
mately, the particle decays to its ground state. The
ground state is symmetric and the particle is equally like-
ly to be in either potential well.

It is helpful to consider the analogy with a more realis-
tic physical system. Consider a hydrogen atom interact-
ing with an electromagnetic field [20]. Both field and
atom may be confined in a large box. (The system de-
scribed by the Caldeira-Leggett Hamiltonian may be re-
garded as toy model of this more realistic system. ) If we
were sufficiently clever, we could find eigenvalues and
eigenfunctions for the interacting system. Some of these
would correspond to excited states of the atom which do
not decay because energy emitted into the field is bal-
anced by energy absorbed from the field in analogy with
the harmonic oscillator of Sec. III. These are not ob-
served in nature. To prepare the system in such a state
would require an unattainable control over the initial
state of the field. If there were no photons present in the
initial state, the effect of the interaction would be to shift
the unperturbed energy levels of the atom (the Lamb
shift) and also to cause the atom to decay to its ground



EDWARD G. HARRIS 48

state. In the absence of the interaction, the 2s and 2p
states of the atom are degenerate. Consider a linear
combination of the states with quantum numbers
n, l, m =2, 0,0 and 2, 1,0. A linear combination
a2, %'zpp+a2~%'2» with suitably chosen coefficients would
have a probability density that is large along the +z axis
and small along the —z axis. In the absence of interac-
tion this is a stationary state; there is no "tunneling"
from the +z axis to the —z axis. When the interaction is
turned on, the degeneracy is removed and the expectation
value (z(t)) oscillates with a frequency of about 1057
MHz. Also the atom makes a transition to the ground
state with the emission of a photon.

B. c —b »a and a »c exp( —G)

For the purposes of this paragraph we neglect the in-
teraction of the particle with the environment. For
orientation let us assume that Vi ))E for all energies of
interest. Then the energies can be divided into two
groups: those with energies E, =n A m. /a for
n =1,2, 3, . . . and those with energies E =m A ~ /
(c b) for—m = 1,2, 3, . . . . The spacing between
members of the second group will be much smaller than
that between members of the first group since c —b ))a.
For exp( —G) ((1, members of the first group have
f+(k) =0; their wave functions oscillate in the region
0&qp &a, fall off exponentially in the region a &qp &b,
and then oscillate in the region b & qp & c with an ampli-
tude reduced by a factor exp( —G). The probability of
finding the particle in a state belonging to the first group
in the region 0 (qo (a is approximately

~
A

~
a /2, and

the probability of finding it in the region b & qp & c is ap-
proximately

~
A

~
(c/2)exp( —G). If a ))c exp( —G) as

assumed, we may say that the particle is approximately
confined in the region 0& qp & a. Similar considerations
show that when the particle is in a state belonging to the
second group it is approximately confined in the region
b & qp & c. In anticipation of the work of the next subsec-
tion, we shall say that members of the first and second
groups are "approximately confined states" and "approx-
imately unconfined states, " respectively. These qualita-
tive arguments have been verified by calculation. For in-
stance, we have made calculations for the case b=a,
c=8a, and 2a V&/A =100. The two lowest approxi-
mately confined states had k =2. 852 34/a and
k =5.67921/a. The probabilities for finding the particle
in the region 0&qp &a were 0.9913 and 0.9650, respec-
tively. There were five approximately unconfined states
below the lowest approximately confined state.

Now we ask how these results are changed when the
interaction with the environment is turned on. Suppose
we were sufficiently clever to find exact energy eigenval-
ues and eigenfunctions of the Caldeira-Leggett Hamil-
tonian for this potential as we did for the harmonic-
oscillator potential. These are stationary states so the ex-
pectation value of the particle's energy does not change
with time, indicating no net transfer of energy between
particle and environment. We expect that in some of
these states the particle is approximately confined. Since
these are stationary states it will remain approximately

confined; there is no tunneling from the region 0 & qp & a
to the region b & qp & c. As we have argued before, these
stationary states are unphysical. To prepare the system
in one of these stationary states requires an unattainable
control over the initial state of the environment.

A very different result emerges if the initial state of the
system is one in which the particle is approximately
confined and each of the field oscillators is in its ground
state. This is not a stationary state, so it evolves with
time. Experience leads us to expect that the system
evolves toward a final state in which the particle is in its
ground state and its initial energy is dispersed among the
many degrees of freedom of the environment. (This is
what we found in the exactly solvable damped harmonic-
oscillator problem. ) Since the ground state is an approxi-
mately unconfined state, the particle escapes confinement.
Dissipation has not impeded escape, but has made it pos-
sible when it would not otherwise occur.

Suppose the particle was in one of the higher-lying ap-
proximately confined states. Perturbation theory would
lead us to expect it to preferentially jurnp to a lower-lying
approximately confined state, since the matrix element of
qp between approximately confined and approximately
unconfined states is reduced by a factor of about
exp( —G). Once it has reached the lowest-lying approxi-
mately confined state, the only option is for a jump to an
approximately unconfined state of lower energy. These
expectations have been verified by our calculations.
The transition probability per unit time for the tran-
sition from the approximately confined state with
k =5.679 21/a to the lowest approximately confined state
with k =2.852 34/a was 12.284y, while for the transition
to the nearest unconfined state with k=5. 65923/a was
0.00738@. The transition probability per unit time for
the transition from the state with k =2. 852 34/a
to the nearest approximately unconfined state with k
=2.57459/a was 0.62940@. This is higher than the
transition rate to any of the other four lower-lying states.

C. c —+~

We now let the potential barrier at qp=c recede to
infinity. The previously discrete eigenvalues of the parti-
cle Hamiltonian move closer together until they form a
continuum. The formerly approximately confined states
are replaced by bands of states whose eigenfunctions are
large in the region 0&qp &a and small in the region
b & q & ~. The designation "approximately confined" is
now inappropriate since the probability of finding the
particle in the region 0 & qp & a is essentially zero since
c= ~. All stationary states represent unconfined parti-
cles.

If Vi is sufFiciently large or b —a is su%ciently large,
then AE, the width of a band of states whose eigenfunc-
tions are large in the region 0& qp & a, will be very small.
One can construct a particle wave function Vo(qo) by su-
perposition of wave functions %(E,qo) with E lying in
one of these bands in such a way that there is construc-
tive interference in the region 0&qp &a and destructive
interference elsewhere. Such a wave function can be
written as
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'po(qo) =f dE p(E, qo)(%'(E) ~40)
0

where

&e(E)leo& =f"dqo% (E qo)%o(qo) .
0

(33a)

(33b)

(35b)

where AI „ is the width of the peak. Assuming the peak
to be very narrow, we can extend the lower limit of the
integral to —~ and evaluate the integral by the residue
theorem to obtain

K(t)=exp( iE„t/fi I „t)—. — (35c)

The probability of finding the system in the same state
(the nth virtual state) at time t that it was in initially is
~K(t)~ =exp( —2I „t). The lifetime of the state 1/2I „ is
inversely proportional to the width of the band. It is as if
the virtual state had an energy E„—i%I „,but, of course,
this is not the eigenvalue of any Hermitian operator. We
shall refer to this mechanism of decay as phase mixing.
[We shall parenthetically remark that approximating the
peak by a Lorentzian function is not always a good ap-
proximation. For large times exp( iEt /A') oscil—lates
rapidly with E, and the results are sensitive to the shape
of the peak. Nonexponential decays for large times are
well known. In our work we restrict ourselves to times
for which exponential decay is a good approximation. ]

We have calculated I „ for the potential of Eq. (30)
with the result

This constitutes a metastable state or virtual bound state.
It is not an eigenstate of p /2+ V(qo) but rather a super-
position of such states. Even in the absence of dissipation
the metastable state decays by phase mixing. We shall
first discuss the decay in the absence of interaction with
the environment.

We solve the time-dependent Schrodinger equation
subject to the initial condition %(qo, t =0)=+0(qo) and
obtain

%(qo, t)= J dE %(E,qo)(%(E) %0)exp( —iEt/fi) .
0

(34)

The probability amplitude that the system is still in its in-
itial state at time t is

K(t) = ( 4 ~%'(t) )

=j dE~(%(E)~%' )0~ exp( iEtlh—') . (35a)

To represent a virtual bound state, %0(qo) must be large
in the region 0 & qo & a and small elsewhere. Then
~(%'(E)~%'0)

~
will be strongly peaked about a value E„

near the center of one or another of the bands where
%(E,qo) is large in this region. We shall approximate
this sharply peaked function by the Lorentzian function

where ~„=2( V, E—„)/A' and 6„=~„(b —a ). The
derivation is given in the Appendix. This has a
simple interpretation. The frequency with which the
particle bounces back and forth is approximately
(2E„)' /(a+ I/a„). The remaining factor is (to within
a numerical factor) the transmission factor for a rec-
tangular barrier [21]. For a potential of different shape,
I „must have the form

I „=A (E„)exp( —2G„) (37a)

where A(E„) will depend on the shape of the potential
and G„ for the rectangular barrier should be replaced by

G„= dqo 2 V qo
—E„ (37b)

where the limits of the integral are the classical turning
points.

We believe that this way of calculating the rate of de-
cay in the absence of dissipation is well known. It is
presented here as a prelude to the dissipative case to
which we now turn.

We write the Caldeira-Leggett Hamiltonian of Eq. (4)
as H=H0+H; where Ho is the sum of the particle and
field Hamiltonians and H; is the interaction Hamiltonian.
Let HD~E) =E~E). The eigenvectors E) are given by

IE&= e& g /&„&=/e&/N)
n=1

(3g)

=&Nl&+O~exp( iHt/A)I+0) —IN) . (39)

We shall abbreviate this as K (t).
Denoting the eigenvectors of Ho as ~E') = ~e') ~N') we

can write the unit operator as

I=+ IE')(E'I
E'

(40a)

where

where ~e) is an eigenvector of po/2+ V(qo) with eigen-
value e, and ~N„) is an eigenvector of (p„+co„q„)/2 with
eigenvalue A'co„(X„+—,'). [Note the change in notation
between Eq. (13b) and Eq. (38).]

If the state of the system of particle and field at time
t =0 is i ), then its state at time t is exp( iHt/A)~i ).—
The probability amplitude for finding it in state ~f ) at
time t is K(f;i;t)= (f ~exp( —iHt/A')~i). In calculating
rates of decay we shall be interested in K(i;i; t ), the prob-
ability amplitude that the system is in the same state at
time t that it was in initially.

To investigate the decay of a virtual state we shall take
the initial state to be one in which the particle is in
the virtual state ~%0) and the nth field oscillators is in
a state ~N„). That is, ~i ) = ~%'0) ~N). We choose
%0(wo)= (qo~+o) to be given by Eq. (33a), but with our
change in notation E is replaced by e. The probability
amplitude that the system has not decayed at time t is

K(i;i; t ) =K(%'0, N; 40, N; t )

4(2E„)'~ (E„/V, )(1 E„/V, )exp(——2G„)
a + 1/sc

(36) (40b)
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x &e"lq, ) (41)

where we have used & NlE') =0 unless N=N'. We shall
write

For the present we are keeping c finite so that the eigen-
values e' are discrete. At the appropriate point in the
calculation we shall let c~ ~ and replace the sum over
e' by an integral.

The unit operator is inserted on each side of the ex-
ponential in Eq. (39) to obtain

K(t) =g g & Nl & 'I'olE' & &E'lexp( iHt—/&) lE" &

Et Ell

x&E"lN& e, )

=g g& Vole') &Nl & e'lexp( iHt/—fi)le" ) lN)
e' e"

We have dropped the prime on e'. In the following we
shall also discard the phase factor exp[ —iE(N)t /fi] as it
plays no role in the tunneling rate. What remains may be
compared to Eq. (35a). Aside from differences in nota-
tion, they differ by the factor F(e, e, N, t ) in the integrand
of Eq. (44). This factor is the probability amplitude that
the system will be in the state le ) lN) at time t if it is
known to be in that state initially. The modulus of
F(e,e, N, t) cannot exceed unity since it is the expecta-
tion value of a unitary operator. We expect the modulus
to decrease with increasing time since 0; operating on
le ) lN) converts it into a linear combination of states,
most of which are orthogonal to le)lN). We shall as-
sume an exponential decay for the state le ) lN ) with de-
cay constant I (e, N) and a phase shift of b,e(e, N) and
write

exp( —iHt /A') =exp( iHO t /—fi)

X T exp ( i /iii—)f dt'H; (t')
0

(42a)

F( e, e, N, t ) =exp [ i b e—( e, N ) t /A —I ( e, N ) t ] .

Using this in Eq. (44) gives

K(t)= f del&qI e)l

(45)

where

T exp ( i /h'—)f dt'H;(t')
0

= g (1/n!)( —i/vari)"
n=0

x f dt, . f dt„TIH, (T, ) .H, (t„)j,
0 0

(42b)

H;(t) =exp(iHot/iii)H;exp( iH, t/A')—, (42c)

and T is the chronological operator. We now examine
the central bracket in Eq. (41). That is

& Nl & e'I exp( —iHt /m)
I

e"
& lN &

=exp( ie't /iii)exp [ —iE(N )t /fi]F—(e', e",N, t )

X exp [ i et /A —i he ( e—, N )t /fi I ( e, N—)t ] .

(46)

Equation (46) should be compared with Eq. (35). The
physical interpretation of the difference of these two re-
sults is quite clear. In the absence of interaction with the
environment, %(qo, t ) is a superposition of stationary
states. The modulus of K(t) decays by phase mixing
since each of these states oscillates with a different fre-
quency. When the particle interacts with its environ-
ment, there is an additional factor of F(e,e, N, t ) in the
integrand. The interaction causes the probability for the
system to remain in its initial state to decrease with time
as energy is interchanged between particle and field. The
interaction also shifts the energy of the particle from e to
e+he(e, N). We may define a new energy variable
E =e+b,e(e, N) and rewrite Eq. (46) as

where

F(e', e "N, t)

(43a) K(t)= f dE l&+olE)l exp[ iEt/A' —I'(E, N—)t] .
0 dE

(47a)

=&Nl&e'lT exp i/I f—dt'H;(t') le")lN) .
0

(43b)

For t =0, this is 5(e', e"). Also for large times this must
vanish for e'Ae" because of the conservation of energy.
Only for short times when the energy uncertainty relation
b, eb, t xiii/4 is important will it be nonzero for e'Ae".
We shall only consider times longer than this and write
F(e', e",N, t)=5(e', e")F(e',e', N, t). We use this in Eq.
(41); let c~ ~ so that the sum over e' is replaced by an
integral and obtain

K(t) =exp[ —iE(N)t/R]

X f del&%'ale)l exp( iet/A)F(e, e, N, t) .—
0

(44)

We now assume that (de/dE)l&'Po E)l is a sharply
peaked Lorentzian function about E„with width fiI „
and assume that I (E,N) is slowly varying functions of E,
we may carry out the integral in Eq. (46) and obtain

K(t) =exp I iE„t /A' —[I „—+(1E,N)]t ] . (47b)

There are two effects of the interaction on K(t). First,
the interaction has shifted the energy of each of the states
that constitute lVo). This may make

l &VolE) l more or
less sharply peaked than

l & Vole ) l
. The change in the

width of the peak changes I „. The second effect is the
decay toward the ground state which is accounted by
I (E,N). It is this second effect that may properly be
called an effect of dissipation.

It should be clear from the derivation that the qualita-
tive conclusion that dissipation enhances decay is not
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I (e„O)=(yT /b2)I, l (ne/fail, ) (48)

where Tb =2(a+ I/~, )/(2e, )'~ is the bounce time, that
is, the time for the particle to bounce back and forth over
a distance (a + I /x i ) with the velocity (2e

&
)
'~ . The

derivation is given in the Appendix. We have not taken
into account the shift of the energy levels from e to E in
this calculation. The effect of the decay of the particles
energy toward its ground state is to replace I, by
I,[1+(2yTbl2)ln(e&/A'I &)].

VI. SUMMARY AND DISCUSSION

In Sec. II we showed that the Unruh-Zurek and
Caldeira-Leggett Hamiltonians were related by a canoni-
cal transformation. We also showed that Hamilton's
equation of motion exhibited not only damping but nega-
tive damping as well. Indeed, with an appropriate choice
of the initial conditions of the environment, almost any
motion can be obtained. This is not surprising since the
system has an infinite number of degrees of freedom. In
most real physical systems one has little control over the
preparation of the environment and only damped motion
is observed.

The Caldeira-Leggett Hamiltonian is sufficiently simple
that exact solutions can be obtained for the harmonic-
oscillator potential V=moqo/2 or the parabolic barrier
V= —cooqz/2. Either the classical equations of motion
for qo and po or the Heisenberg equations for the corre-
sponding operators can be solved exactly. This was done
in a previous publication [13] with the assumption that
the environment was in thermal equilibrium, and it was
fond that the particle came into thermal equilibrium with
its environment. If the temperature was zero, the parti-

dependent on the use of perturbation theory or on the
form assumed in Eq. (45). We emphasize this point be-
cause an earlier, unpublished version of this work that
reached the same conclusion was criticized for the use of
perturbation theory.

It should be noted that this qualitative conclusion is in-
dependent of ~N), the initial state of the environment.
Any interaction that removes the particles energy from
the energy band that constitutes the virtual state, wheth-
er it is emission of quanta into the environment or ab-
sorption of quanta from the environment, will contribute
to the decay of the virtual state. Of course, I (e,N) de-
pends on ~N). Generally, the state ~i ) = ~'Po) ~N) is not
a physically reasonable initial state. It implies that each
field oscillator is in one of its energy eigenstates, which is
beyond experimental control. A physically reasonable in-
itial state is one in which the environment is in thermal
equilibrium. If the temperature is zero, then each oscilla-
tor is in its ground state. We consider the state ~%'0) ~0)
to be a physically reasonable initial state.

If the interaction is sufficiently weak, perturbation
theory should be applicable. We have assumed that the
initial state of the environment is ~0) (that is, N„=O for
all n) and used first-order perturbation theory to calcu-
late I'(e„O) where e, is the lowest energy of a virtual
state. We find

cles energy decayed to the ground-state energy. In Sec.
II we transformed the Caldeira-Leggett Hamiltonian to a
sum of harmonic-oscillator Hamiltonians by a normal
coordinate transformation. In a normal mode of the sys-
tem there is no net damping of the particles motion. En-
ergy is alternately transferred from the particle to the en-
vironment and from the environment to the particle. Ex-
act eigenvalues and eigenstates of the transformed Hamil-
tonian are easily obtained. In an exact eigenstate, the ex-
pectation value of the particle s energy is constant, indi-
cating no net damping. We point out that to prepare the
system in such an eigenstate would require a precise ad-
justment of the initial values of the coordinates and mo-
menta of the field oscillators. We argue that such control
over the environment is not attainable. A more reason-
able assumption is that environment is in thermal equilib-
rium; this leads to damping.

In Sec. IV we discuss tunneling through a parabolic
barrier. We make a normal coordinate transformation as
in the preceding section. Using the Widom-Clark Hamil-
tonian we obtain results in agreement with Widom and
Clark [3]; tunneling probability is enhanced by the in-
teraction with the environment. Using the Caldeira-
Leggett Hamiltonian we find that the tunneling probabili-
ty is decreased. We think this resolves the disagreement
that led to an exchange of comments [4,5]. However,
these solutions are very unphysical. There is no net
damping. A classical particle that approaches the barrier
has a negatively infinite energy when it is at an infinite
distance from the origin. It gains energy from the envi-
ronment until the classical turning point is reached, and
then returns the energy to the environment as it recedes.
The quantum-mechanical expectation of the particles en-

ergy is negatively infinite and that of the environment
and interaction is positively infinite.

Tunneling through a barrier was also discussed by
Bruinsma and Bak [6]. Their barrier was of arbitrary
shape. The problem of the exchange of energy between
particle and environment as the particle approached and
receded was avoided by assuming the coupling was
switched off when the particle was not inside the barrier.
The environment was assumed to be in thermal equilibri-
um. We consider this a physically reasonable treatment
of the problem.

We begin Sec. V with a discussion of a particle in a
symmetric double-well potential. In the absence of in-
teraction with the environment, a particle that was ini-
tially in one of the wells would tunnel back and forth be-
tween them with a frequency proportional to the energy
differences between closely spaced symmetric and an-
tisymmetric states. We argue that if exact eigenstates of
the system could be found and the system was initially in
a superposition of exact eigenstates, the same thing would
happen, but with the frequency modified by a shift in the
energy levels due to the interaction. We think it is more
reasonable to assume that initially the environment was
in thermal equilibrium at zero temperature. Then the
system would evolve toward its lowest energy state. In
this lowest state the particle would have equal probabili-
ties of being in either well. This problem was treated by
Razavy [9] using the Caldeira-Leggett Hamiltonian
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without the renormalization term. Razavy found a criti-
cal damping strength such that for damping in excess
critical, tunneling could not occur. Nothing of this sort
emerges from our work. It seems to imply that above the
critical damping strength, the symmetric and antisym-
metric states are degenerate, so that the tunneling fre-
quency is zero. We note that Razavy assumed that ini-
tially the field oscillators were all in their ground states,
so that (q„(0)) = (p„(0)) =0 for n =1,2, 3, . . . . Howev-
er, expectation values of higher powers of these operators
played no role in his calculations. He was led to an
effective Hamiltonian that contained no field operators.
The coordinate and momentum operators in this Hamil-
tonian did not obey the usual commutation relations. He
remarked that there is no simple way of obtaining a wave
equation from this Hamiltonian. It is not clear to the
present writer that this is a valid approach to a problem
in quantum mechanics.

Next we discussed tunneling in an asymmetric well
with the parameters chosen so that in a stationary state
the particle would have a large probability of being in one
well and a small probability of being in the other. This
should be the case whether the stationary states were
eigenstates of the Hamiltonian of the entire system or the
particle's Harniltonian alone. If the state is an eigenstate
of the Harniltonian of the entire system, the expectation
value of the particles energy is constant, indicating no net
transfer of energy between particle and field. If the envi-
ronment is initially in thermal equilibrium at zero tem-
perature, the particle could tunnel from the small well to
the large well with emission of energy into the environ-
ment. This provides a mechanism of tunneling that could
not occur in the absence of dissipation.

Finally, we consider the tunneling of a particle from a
metastable state. We assume that initially each of the
field oscillators is in one of its energy eigenstates and the
particle is in a superposition of states that interfere con-
structively in the region of confinement and destructively
outside of this region. The energies of the particle states
that constitute this superposition lie in a narrow band. In
the absence of coupling of the particle to the environ-
ment, the metastable state would decay by phase mixing.
Each state of the superposition has a different energy, so
as time increases constructive interference is replaced by
destructive interference. The rate of decay is inversely
proportional to the width of the energy band. Interaction
with the environment has two effects. First, the energy
levels are shifted, so the width of the band may be
changed. Second, the initial state was not a stationary
state, so the state evolves toward thermal equilibrium at
zero temperature. The particle's energy evolves toward
its lowest-energy level, and this state of lowest energy is
an unconfined state. Thus there are two mechanisms of
tunneling out of the metastable state, phase mixing, and
energy decay. It is only the second of these that can
properly be called dissipative tunneling. We have used
perturbation theory to calculate the second of these for
the confining potential of Eq. (30) and found the result of
Eq. (48). It was assumed that the temperature of the en-
vironment was zero.

We believe that the reason our results differ from those
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APPENDIX

The solutions of the Schrodinger equation for the po-
tential of Eq. (30) may be written as

~I'i(E qo) for 0&qo &a

Ip(E qo)= 'P2(E, qo) for a &qo &b

%'3(E qo) for b &qo &c

(A 1)

where

'0, = A sinkqo,

%i= A [f+ exp [x(qo —a ) ]+f exp[ —~(qo —a ) ]],
(A2a)

(A2b)

%'3= A [S+cosk(qo b)+S sin[k—(qo b)]], —(A2c)

where k =2E/fi, a =2( Vi E)/fi, and A (E)—is a nor-
malization constant. These wave functions apply when
E & V, . By requiring that %(qo) and its first derivative
be continuous at qo =a and b, and 4=0 at qo =c we find

f+ (k) =
—,
' [sinka+(k /~)coska ], (A3a)

of Caldeira and Leggett [1,2] and Schmid [11] is because
of our different choices of initial conditions for the envi-
ronment. It seems clear from Eq. (4.9) of Ref. [2] that the
states in the equation are energy eigenstates of the total
Hamiltonian Ho+H, . These are stationary states, so the
expectation value of the particle's energy in any one of
these states is constant indicating no net energy exchange
between particle and environment. Our initial state was
%o) ~N), an eigenstate of Ho. This is not a stationary

state. If ~N) = ~0), then the environment is initially at
zero temperature. As a result, only one of the effects of
the interaction is taken into account in the calculation of
Caldeira and Leggett, namely, the change in the decay
rate due to the shift of energy levels. The evolution to-
ward lower energies as the particle loses energy as the en-
vironment is omitted. It is this latter mode of decay that
we would call dissipative tunneling. Although it might
seem that a superposition of eigenstates of Ho+H, is
preferable to a superposition of eigenstates of Ho, we be-
lieve that this is not the case. In the case of the harmonic
oscillator and the parabolic barrier, exact eigenstates of
Ho+H; can be found, and their unphysical nature is ap-
parent.

It is not surprising that the quasiclassical calculation of
Schmid [11]and the instanton calculation of Caldeira and
Leggett [1,2] agree. It indicates that the calculations
were done correctly in both cases. Schmid also used sta-
tionary states in his calculation. We do not question the
accuracy of the calculations but the choice of initial con-
ditions.
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f (k) =
—,
' [sinka —(k /1~)coska ],

S+ (k) =f+ exp(+ G )+f exp( —6 ),
(A3b) obtain

(A3c) F(E ) =F(E„)+F'(E„)(E E—„)+ ,'F"—(E„)(E E—„)
S (k)=(~/k)[f+ exp(+G) f —exp( —G)], (A3d) ,'F"—(E„)[(EE„——6„) +fi I „j (A6c)

tan[k(c —b)]= —(S+ lS ), (A3e) where

where G=a(b —a). The energy eigenvalues are found
from the solution of Eq. (A3e).

The derivation of Eq. (32) proceeds as follows. For
the symmetric wave function we must have %2(E,a )
=%2(E„b). If follows from Eq. (A2b) that f (k, )
=f+ (k, )expG, . Then from Eqs. (A3a) we find

k, [1+exp( —G, )]
tank, a =—

Ir, [1—exp( —G, )]
(A4a)

For the antisymmetric wave function we must have
'P2(E„a ) = —4 (2E„b ) from which it follows that
f (k, ) = f+ (k, )ex—pG, and

k, [1—exp( —G, )]
tank, a =—

~, [1+exp( —G, ) ]
(A4b)

We write k, =k —g, k, +g, and assume g«k. We take
the difference of Eqs. (A4a) and (A4b), expand all quanti-
ties in g/k neglecting powers higher than the first; also
we neglect powers of exp( —G) higher than the first.
Solving for g gives

4(E/V, )'~ (1 E /V, )—' exp( —6)
(A4c)

Then from co„=A'(k, —k, ) =2k'kg, Eq. (32) follows.
The derivation of Eq. (36) proceeds as follows. We

choose 'Po(qo) to be

Csin(k„qo) for 0&a

q'o(qo)= .

C sin(k„a )exp[ —i~„(qo —a ) ] for a & qo

(A5a)

where the normalization constant is C = [2/(a + 1/
~„)]'~ . Requiring continuity of the derivative of %o at
qo=a gives

F'(—E„)/F" (E~),
A' I „=2F(E„)/F"(E„) F(E—„)/F" (E„) .

(A6d)

(A6e)

In doing the expansions only the highest powers of
exp( —6„)are retained. After a straightforward but tedi-
ous calculation, Eq. (A6e) yields Eq. (36).

The derivation of Eq. (48) proceeds as follows. Ac-
cording to Eq. (17), the transition probability per unit
time for a transition from an initial state of energy e; to a
final state of energy e& is given by

'1(e; ~e/) ={4y /A') I & e/lqo le; ) l'(e; —e/) . (A7a)

I (e„0)= g T(%', +e)—
e=0

8l
~(c/M) J de T('0, +e)/(2e)'~ —. (A7c)

In the last step we have taken the limit c —+ ~ and re-
placed the sum by an integral.

It is now useful to extract the normalization factors
from the wave functions and write %',(qo)=CC, (qo) and
'P(e, qo ) = A (e)@(e,qo). Equation (7c) becomes

I (ei, 0)= [16y/vugh (a+ 1/vi)]

The virtual state of lowest energy l%', ) is a coherent su-

perposition of energy states le). In the calculation of
transition probabilities one must first sum probability am-
plitudes before squaring. The effect is to replace the ma-
trix element of qo by (%, lqole&). Then the transition
rate from leo) to le) is

T(+o~e)=(4yhri )l(qI&lqole)l (e, —e) . (A7b)

To calculate I (e„O), the transition rate out of the lowest
virtual state, we must sum over all lower energy states,
that is

tank„a = —k„ /x„. (A5b)

This is equivalent to f+(k„)=0 where f+(k) is given by
Eq. (A3a).

The normalization factor A (E) in Eq. (A2) in the
c~~ limit is where

F (e„e)(e,—e)
X de

(2e)'~ [S+(e)+S (e)j
(A8a)

1/2

A(E) =
c[S+(E)+S (E) j

(A6a) F{e„e)=I dqoqo@, (qo)@(e,qo) . (A8b)

From inspection of S+ and S it is apparent that A (E)
is strongly peaked about E„=A k„ /2. To a good approx-
imation

(%(E)l+ ) =[A(E)/C](% lV )

We recall that [S+(e)+S (e)] '~ is sharply peaked
about e, . We use Eq. (A6c), absorb b, , into e„and ob-
tain

I (e„O)= [32y/vrh (a+ I/I~&)F" (e& )]
= A(E)Q(a+1/~„)/2 . (A6b)

We shall expand S+(E)+S (E)=F(E) about E„ to f F (e&, e)(e& —e)
X de

o (2e)'~ [(ei —e) +iri I i]
(A8c)
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The function (e, —e)/[(e, —e) +A I, ] is sharply
peaked about the value e

&

—AI
&

——e &. The function
F (e„e) is a function of e that varies slowly between its
values of zero at e =0 and —'(a+ I/lc&) at e=e&. We
may replace e by e& in F and (2e)' and remove them
from the integral. The remaining integral can be done to
yield

F (e„e, )
I (e„0)=(16y/vrfi ) F"(e, )(2e )'

Xln[(e f +trt I, )/A' I ~] . (A8d)

After some algebra and with the assumption that
ttiI, &&e, and k&(a+ I/Ic&) =m, Eq. (48) is obtained.
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