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Quantum cryptography without conjugate coding
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We extend the quantum key distribution method of Bennett and Brassard [IBM Tech. Disci. Bull. 2S,
3153 (19851] by exploiting a nonconjugate coding scheme. Using this scheme we are able to show that
the original method of Bennett and Brassard gives optimal security.
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I. INTRODUCTION

One of the most intriguing and exciting recent develop-
ments in quantum mechanics has been the prediction and
demonstration of a cryptographic key distribution
scheme, the security of which is guaranteed by the laws
of physics, or, rather, the laws of quantum mechanics
[1—3]. The security of these schemes is dependent on the
uncertainty principle at a single-particle level. In an in-
genious extension to these ideas, Ekert has shown how a
quantum-correlated communication channel can be ex-
ploited to provide both secure key distribution and secure
key storage [4]. The degree of security for the key distri-
bution has been shown to be equivalent for both the
Bennett-Brassard and Ekert schemes [5]. What has not,
to my knowledge, been demonstrated is that the use of
the conjugate coding technique of Wiesner [6] affords op-
timal security for the distribution of the key. One of the
aims of the present work is to show that this is indeed the
case.

We shall begin by defining the basic notions of quan-
tum alphabets and channels. We shall introduce a mea-
sure of conjugacy for alphabets based on the information
rate of a quantum channel [7] and relate this to the abili-
ty to distribute the key in a secure fashion. By consider-
ing an appropriate generalization of the Bennett-Brassard
scheme [1,3] to nonconjugate coding we shall show that
conjugate coding does indeed provide optimal security.
We shall consider only those schemes for which the al-
phabet symbols are orthogonal although the alphabets
are not mutually conjugate. A cryptography scheme can
be developed [8] for which the alphabet symbols are not
orthogonal, but the alphabets themselves are conjugate.
This latter scheme is related to the recent work of Ben-
nett [9]. We shall also discuss briefly ways in which the
effectiveness of the Breidbart basis for eavesdropping [1]
can be reduced.

II. QUANTUM ALPHABETS

A quantum communication channel is one for which
the channel transition probabilities are, in the absence of
noise, solely governed by the rules of quantum mechan-
ics. The channel is represented by a set of Hermitian
operators which describe the physical properties of the
channel. Simple examples of quantum channels are the

free-space transmission of single particles such as elec-
trons or photons. What makes these channels truly quan-
tum mechanical is the possibility that the transmission
and reception may occur using different alphabets and
that the transition probabilities for these alphabets are
entirely determined by the laws of quantum mechanics. It
is the features that quantum mechanics introduces which
make such channels particularly interesting. We can
think of the Hermitian operators which describe the
channel as being the generators of a set of eigenstates
which can be used as the symbols of an alphabet. The al-
phabets need not necessarily contain all the eigenstates of
a particular operator as its symbols, nor, indeed, do they
need to contain symbols generated by only one operator.
However, as we shall see, the effectiveness of the alphabet
is reduced unless all the symbols associated with a unique
operator are employed.

In order to make some of these notions more precise,
we shall concentrate on a communication channel be-
tween two legitimate users who we shall call "Alice" and
"Bob." Alice will transmit messages to Bob using a par-
ticular alphabet and Bob will attempt to read the message
in his own alphabet. The mutual dependence of the
transmitted and received alphabets determines the infor-
mation transmission rate of the channel. Initially we
shall suppose that both Alice and Bob are using alphabets
generated from a complete set of eigenstates of the Her-
mitian operators A and B, respectively. The eigenvalue
relations for these operators are

(2.1)

so that we adopt the terminology that Alice uses the al-
phabet [ ~a) ] sourced by the operator A with a similar
terminology employed for Bob. We shall make the sim-
plifying, but not restrictive, assumption that the alpha-
bets used by Alice and Bob each have N symbols. This
situation is shown schematically in Fig. 1. In general, A
and B are different operators so that Alice and Bob
transmit and receive in different alphabets. The channel
transition probabilities, in the absence of noise, are deter-
mined by the expansion coefficients of the symbols of one
alphabet in terms of the other. Thus for the channel that
we have just described we find that the probability that
Bob receives the symbol ~pk ) giuen that Alice transmit-
ted the symbol ~a ) is just
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sion and reception alphabets are employed. For the sim-
ple example we have discussed above, this average lost in-
formation is given by

N N

»& —J(A, B)=——& g l&~jlpk&l'»l&~)lpk&l'.
j=1 k=I

(2.6)

4

I zN +

FIG. 1. Schematic illustration of a quantum comfnunication
channel in which Alice transmits data using a quantum alphabet

I [a] ) and Bob receives using the quantum alphabet I [p] ). Al-
ice and Bob's alphabets need not necessarily be the same.

(2.2)

where we have employed an obvious, albeit not strictly
rigorous, notation. If we now assume that Alice chooses
the symbols of her alphabet with equal a priori probabili-
ties so that

1P(a )=—,
N ' (2.3)

This quantity is just the mutual information per transmit-
ted and received symbol averaged over both the input
and output alphabets. Maximizing J(A, B) over the in-
put alphabet gives the channel capacity, which in this
case is just lnN. It should be noted that this is also the
channel capacity for a perfect classical channel with finite
input and output alphabets of equal size.

We now introduce an information-theoretic definition
of operator conjugacy. Two operators 3 and 8 are said
to be conjugate if their system mutual information is pre-
cisely zero. From (2.4) this implies that each input sym-
bol is equally likely to cause any output symbol and we
have

(2.5)

We have arrived at Wiesner s definition of conjugate vari-
ables [6] from the perspective of information theory.
This tells us that Alice and Bob can exchange no infor-
mation on their channel if the alphabets they use are
sourced by conjugate operators. In such cases we shall
simply describe the alphabets as being conjugate to one
another. The difference between the mutual information
when both Alice and Bob use the same alphabets and the
mutual information when different alphabets are used is
the amount of information lost when different transmis-

then the system mutual information, denoted by J( A, B),
is just given by [7]

N N

J(A,B)=»~+ yy I&—~, lpk &I'»I&~, lpk &I'.
N j= 1 k=1

(2.4)

J(A,B) J(A, B)
J( A, A ) J(B,B )

(2.7)

Q varies between 0 and 1 and is zero only when the same
alphabets are measured at the input and output, that is,
no information is lost. If the input and output alphabets
are conjugate, then Q= 1 and all of the information is
lost. We can express this in another way. Let us suppose
that Alice transmits the symbol laj ) and that Bob mea-
sures the conjugate operator B. After the measurement,
Bob cannot reconstruct the information about 3 con-
tained in the original state. It is this irreversible loss of
information about the conjugate variable upon measure-
ment which enables the quantum key distribution scheme
to work.

Suppose now that Alice and Bob are to try and use
their conjugate alphabets to distribute a key for use in a
cryptographic application. The protocol can be summa-
rized as follows. Alice and Bob decide to use alphabets
sourced by the operators 3 and B. Alice and Bob are
free to choose which of these alphabets to use. They map
each of the conjugate alphabets onto a new alphabet of X
symbols 1,2, . . . , N so that if Alice transmits laj ) and
Bob measures A then Bob reads the symbol "j";if Alice
transmits Ip. ), which is also equivalent to the symbol j,
then Bob has to measure B in order to be certain of read-
ing the symbol j from Alice's transmission. Alice and
Bob transmit and receive, respectively, by randomly
choosing between the two alphabets. Alice and Bob will
now have a string of symbols such as
1,3, 16,N —4, 25, 7,N —12, . . . , which will almost cer-
tainly disagree. Alice chooses a small subset of these data
and asks Bob to discard all of those symbols for which a
different choice of alphabet was made. Alice and Bob
should now have a set of symbols which are in perfect
agreement (in the absence of noise). Any attempt at
eavesdropping will disturb this perfect agreement. This
comes about because an eavesdropper, Eve, also needs to
make a choice between the alphabets. There will be some
symbols for which Alice and Eve have used conjugate al-
phabets, but for which Alice and Bob have used the same
alphabet. Eve s intervention will randomize the informa-
tion encoded in the correct alphabet and so lead to the
possibility that Alice and Bob will obtain a different re-
sult even though they have used the same alphabet. Alice
and Bob will be able to determine whether or not an at-
tempt at interception has been made.

Thus X bits of information (in suitable units) are lost if
the communication channel is sourced at input and out-
put by conjugate operators. We can define a dimension-
less quantity Q which gives the fraction of information
lost by measurement of different alphabets at the input
and output of the channel by writing
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Let us formalize the above discussion. Suppose that
Alice transmits the symbol j as the state ~a, ). In the ab-
sence of any interception, Alice and Bob will only agree
to use this information if and only if both Alice and Bob
use the same alphabets. In this case, for example, Bob
will have chosen to orient his detection apparatus to mea-
sure the operator A and will, with unit probability, have
measured the symbol j. The situation is different in the
presence of an eavesdropper. Suppose that the eaves-
dropper, Eve, chooses to measure A. In this case Eve
will read the symbol j with unit probability. Shen then
transmits the state ~a ) to Bob who can decide to mea-
sure either of the conjugate alphabets. It is important to
keep in mind the fact that Alice and Bob will simply dis-
card those results for which different choices of input and
output alphabets were used. If Eve chooses to measure 8
then she will read the symbol j with probability 1/X.
Eve has no sensible option other than to retransmit faith-
fully to Bob the state she thinks she has observed. This is
because Eve has no way of knowing whether her choice
of measurement was, in fact, correct. Eve then, after
measurement of B, will retransmit some state ~Pk ) .
Upon reception of this state, Bob, choosing to make a
measurement of 3, will read the symbol j with probabili-
ty 1/N. Alice and Bob upon subsequent communication
will find, with probability (N 1)/N, th—at they do not
agree about this result. Clearly, for a perfect channel in
the absence of eavesdropping Alice and Bob must agree
about every result for which they make the same choice
of alphabets. Overall then, per transmission, the proba-
bility that Eve will escape detection is given by

1 1I' =—1+—
CSC

If Alice and Bob compare M results then the probability
that Eve will escape detection is just (P„,) . If N, the al-

phabet size, is quite large then Eve's chances of escaping
detection are approximately 2™,which rapidly becomes
negligible as M is increased. Current experimental and
theoretical key distribution schemes use an alphabet size
of N=2 [1,4, 10]. In the next sections we shall restrict
ourselves to this dimensionality, noting, however, that
the dimensionality of the alphabet space can be increased.

III. KEY DISTRIBUTION
WITHOUT CONJUGATE CODING

The essential ingredient of a conjugate coding scheme
is that measurement of the incorrect variable will give
precisely no information about its conjugate. However,
one can envisage situations in which a measurement of
the incorrect variable will give partia1 information about
the other, correct, variable. We show in this section that
a secure key distribution scheme can still be implemented
in this case although a longer subset of data is needed to
achieve a given degree of security. We shall consider an
alphabet size of 2 and shall consider the standard spin
variables as the operators which generate our alphabets.
We shall consider a spin variable aligned along the z
direction and a spin variable aligned at angles 8 and P to

a(e, y)

X

FIG. 2. Geometric representation of the spin variables which
are characterized by the angles 8 and P.

~

—) g p= —sin(8/2)( —iP/2) ~+ ),
+cos(8/2)exp(ig/2) —), , (3.1)

and the complementary expansions

~+ ),=exp(iP/2)[cos(8/2) ~+ ) & &

—sin(8/2)
~

—) s &],

~

—), =exp( —iP/2)[sin(8/2) ~+ ) s &

+cos(8/2) —)s &] .

(3.2)

Although it is not necessary to do so at this stage we have
retained the phase factors in these expressions as these
are important when we consider an attack using the
Breidbart basis [1].

Let us suppose that Alice and Bob wish to set up a
secure key distribution scheme using the two alphabets
generated by these spin operators. The alphabets consist
of the z states [ ~+ ), j and the 8-states I ~+ ) s &]. Alice
sends to Bob a random sequence of the symbols "1"and
"0"by randomly choosing between the states of these al-
phabets. Alice and Bob will have previously agreed to
read a spin-up result as a logical 1 and a spin-down result
as a logical 0. In the absence of interception, the proba-
bility that Bob will read the symbol that Alice actually
sent is just

P(Bob correct: no interception) =1—
—,'sin2(8/2) .

(3.3)

this. This is shown schematically in Fig. 2. We label the
spin operators in these directions by o, and &(8,$). The
non-Hermitian spin-Hip operators associated with the z
direction of spin are labeled by &+. The eigenstates of
the spin-z operator can be expanded in terms of the eigen-
states of o (8,$) and vice versa so that we have the expan-
sions

~+ ) s &=cos(8/2)exp( i//2—) ~+ ),
+sin(8/2)exp(ig/2)

~

—), ,
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=1—
—,'sin 0 . (3.4)

This is also clearly equal to the probability, per bit, that
Eve escapes detection after an attempt at interception of
the key. The key distribution schemes currently in the
literature [1,3,4] all employ conjugate coding which for
the spin operators discussed above are equivalent to the
choice 0=~/2. In this case we have that the probability
that Eve escapes detection per bit is —,'. Suppose now that
Alice and Bob need to compare E bits of data for a conju-
gate coding scheme in order to achieve a given degree of
certainty that an interception has not taken place. Let M
be the number of bits that Alice and Bob have to com-
pare in a nonconjugate coding scheme, such as that dis-
cussed above, in order to achieve the same degree of cer-
tainty as for the conjugate scheme. The ratio of the num-
ber of bits M/X is then given by

ln( —,
'

)

in[1 —
—,'sin 8]

(3.5)

This ratio is plotted in Fig. 3. It should be noted that the
penalty for using a nonconjugate scheme does not become
prohibitively severe until the angle between the spin
operators is about m/3. The graph demonstrates that
secure key distribution is possible for a nonconjugate cod-
ing scheme, however the number of bits of data which
Alice and Bob need to compare to achieve a given degree
of security increases as the degree of conjugacy decreases.
The ratio M/E is also equal to the ratio of the informa-
tion gains per received bit about the eavesdropping at-
tempt for the conjugate and nonconjugate coding
schemes.

It is clear from the figure that conjugate alphabets
(8=m. /2) give the greatest degree of protection against
interception for this particular key distribution and this
particular eavesdropping attempt. However, there are al-
ternative distribution schemes and different methods of
interception. Alice could, for example, use biased statis-
tics in her choice of alphabets, as could Bob. Equally,
Eve could use the Breidbart basis which increases her
chances of reading the correct bit without compromising
her chances of escaping detection [3]. In the following
sections we examine these various options open to both
the legitimate and illegitimate users of the channel.

After Alice and Bob have discarded those bits for which
they used different alphabets this probability rises to uni-
ty. Physically there can be no difference between an
eavesdropper and the legitimate receiver. Consequently
the above probability (3.3) is also the probability that Eve
will read the correct symbol. However, after interception
Eve and Bob are no longer indistinguishable as far as the
channel is concerned. This is because Eve has disturbed
the information encoded in some of the spins sent by Al-
ice. Eve must retransmit the spin in order to try and fool
Alice and Bob and, in this case, the probability per bit
that Bob and Alice agree, after discarding the appropri-
ate bits, is no longer unity but is given by

P(Bob correct: after Eve's retransmission)
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FIG. 3. The ratio of the lengths, in bits, of the data sets for
conjugate and nonconjugate coding needed to achieve the same

degree of channel security as a function of 0.

IV. THE BREIDBART BASIS
AND RANDOM STATISTICS

Eve is clearly not restricted from choosing any particu-
lar direction in which to orient her measuring apparatus.
It has been shown [3] for the case of unbiased transmis-
sion statistics and conjugate alphabets that Eve's op-
timum strategy is to align her apparatus to measure spin
at m /4 and to retransmit in this basis. Her chances of es-

caping detection remain at 75% per bit but her chances
of reading the bit correctly increase to nearly 85% [3].
This basis is known as the Breidbart basis. We shall con-
tinue to use this terminology for the basis which
"bisects" the alphabets, even though this may not prove
to be the optimum strategy for Eve. What should Eve do
to optimize her chances if nonconjugate coding is em-
ployed and one of the alphabets is, for example, only
chosen 40% of the time, on average? Let us first examine
Eve's measurement basis or alphabet. We shall assume
that Eve aligns her apparatus at the angles 8' and P' with
respect to the z direction of spin (refer to Fig. 2). We
shall write g=P —P' to denote the phase difference be-
tween Eve's alphabet and the 0 alphabet used by Alice
and Bob. We should note that Eve merely orients her ap-
paratus to measure the Breidbart alphabet and does not
have to make a choice between alphabets. This is slightly
different to her strategy if she uses the legitimate alpha-
bets. The expansion equivalent to (3.1) and (3.2) are
achieved for Eve's basis by the simple expedient of re-
placing unprimed quantities with the respective primed
versions. The expansions of the 8 alphabet in terms of
Eve's alphabet, and vice versa, are easy to obtain by a
simple substitution procedure and we find, for example,
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that the spin-up state in the 0 alphabet has an expansion in terms of Eve's alphabet given by

~
+ ) s &

= [cos(0/2)cos(0'/2)exp( —i//2)+ sin(0/2)sin(0'/2)exp(if/2) ] ~
+ )z

+ [sin(0/2)cos(0'/2)exp(ig/2) —cos(0/2)sin(0'/2)exp( —i 1/i/2)]
~

—)z, (4.1)

P(Eve correct) =
—,'+ —,'(1+cos0)cos0'

+ —,
' sin0 sin0'cosg . (4.2)

with similar expressions for the other expansions. We
have used the subscript E to denote the eigenstates which
form Eve's alphabet.

We shall assume, for the moment, that Alice makes a
completely random choice between her available alpha-
bets so that each alphabet is chosen with a probability of

Let us further assume that Alice transmits the state
~+ ) s &. Eve reads the symbol 1 with a probability given
by

~

cos( 0/2 )cos( 0'/2 )exp( i P/—2 )

+sin(0/2)sin(0'/2)exp(ig/2)
~

and retransmits the state
~
+ )z to Bob. If Bob aligns his

apparatus to measure in the 0 direction then he reads 1

with this probability also. There are two important prob-
abilities to determine. The first is the probability that
Eve reads the correct bit and the second is the probability
that Eve escapes detection. The probability that Eve
reads the correct bit is determined from the expansion
coefficients such as those in (4.1) and, after some tri-
gonornetric manipulation, we find that

It is an easy task now to determine which angle Eve
should measure to maximize her chances of reading the
correct bit. we find that Eve should choose the angle
given by

sinO

1+cos0 (4.3)

This shows that, when Alice uses unbiased statistics to
choose between the alphabets, the Breidbart basis is the
basis which gives the maximum chance for the eaves-
dropper to determine the correct bit. However, this po-
tential advantage is of no use to an eavesdropper if the
use of such a basis increases the chances for the legiti-
mate users of the channel to detect her presence. Guided
by previous work [I] which examines the situation
0=~/2, we should expect that the use of this basis does
not confer any disadvantage on the eavesdropper as far as
her chances of escaping detection. The probability that
Eve escapes detection is the same as the probability that
Alice and Bob agree after having rejected those results
which were taken for different alphabets. This can also
be determined from the eigenstate expansions such as
(4.1) and we find that, for unbiased choice of alphabets,
the probability that Eve escapes detection is

P(Eve escapes detection) =—,'(1—
—,'sin 0')(2 —

—,'sin 0)+—,'[2cos it+1]sin 0 sin 0'+ —,'cos0cos0'sin0sin0'cosp . (4.4)

This, of course, reduces to the expected value of —,
' when

0=0'=sr/2, but, more significantly, it reduces to the
value 1 —

—,'sin 0 when 0=0', which is our previous result.
The question to be answered is whether Eve benefits from
use of the Breidbart basis as far as her chances of escap-
ing detection are concerned. For the Breidbart basis we
have Eve's choice 0'=0/2 and (4.4) reduces to

P(Eve escapes detection: Breidbart) = 1 —
—,'sin (0/2) .

(4.5)

These results are plotted in Figs. 4(a) and 4(b) in which
we plot the graphs of the relevant probabilities for Eve in
the cases when she does and does not use the Breidbart
basis. It is clear from these graphs that Eve's chances of
escaping detection increase if she uses the Breidbart basis
when Alice and Bob employ a nonconjugate coding
scheme. In fact, differentiation of (4.4) with respect to 0'
shows that this quantity is maximized at 0'=0/2. The
Breidbart basis is clearly optimal for Eve. For the special
case of conjugate coding, 0=~/2, Eve's chances of escap-
ing detection remain unchanged.

So far in this section we have considered only an equal

=P, +Pecos (0/2) . (4.6)

Working out these probabilities for all possible transmit-
ted states and combining them gives the probability that
Eve reads the correct bit for any transmitted state as

P(Eve correct)

=1—[Ps +Ps 2PsPs ]sin (0/2) . —(4.7)

A similar exercise in probability calculus gives the proba-

random choice between the alphabets. Let us suppose
now that Alice chooses to send the z alphabet with a
probability P, and the 0 alphabet with probability P&
such that P,"+P& =1. Let us also suppose that Eve is
not using the Breidbart basis, for the moment. Eve is also
free to choose between alphabets and we use the super-
script "E"to denote the relative probabilities with which
Eve chooses these alphabets. Let us suppose that Alice
sends the state ~+ ), the probability that Eve reads the
correct bit 1 given that Alice transmitted this state is
given by

P(Eve correct~ Alice sends~+ ), )
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bility that Eve escapes detection as

P(Eve escapes detection)

[P 2 +PE 2P"PE )sjn28
2

(4.8)

Both of these expressions reduce to 4 for conjugate al-

phabets and equal a priori choice of alphabets. It should
be noted that the term in square brackets is common to
both expressions and clearly Eve must minimize this
quantity to optimize her chances of successful intercep-
tion using these alphabets. However, the only parameter
which is under the direct control of Eve is the relative
probability Pe with which she chooses to measure the al-
phabets. From (4.7) and (4.8) we see that if Alice, in fact,
makes an equal a priori choice of alphabets so that
P& =

—,', then Eve's choice of alphabet is irrelevant and
she could align her apparatus along a single direction. If,
on the other hand, Alice chooses P& )—,', then Eve mini-

mizes the quantity in square brackets by choosing Po = 1.
Conversely, if Alice chooses to transmit more frequently

in the z alphabet, then Eve must orient her apparatus to
measure along this direction to optimize her chances.
Eve's strategy is based on an all or nothing choice, rather
than a precise reAection of Alice's transmission statistics
as we might have expected at the outset. Alice's best
strategy is to remove any control Eve may have over the
channel and the only way she can do this is by resorting
to an equal a priori choice of alphabets so that Pz =

—,'.
As a final illustration of the kind of complexities that

can occur, let us now suppose that Alice uses biased
transmission statistics and that Eve chooses to measure in
a single alphabet characterized, as before, by the angles 0'
and P'. We shall, for the moment, set the relative phase
/=0. The probability that Eve reads the correct bit is
now given by

P(Eve correct) =
—,'( I+cos8')

PA
+ (sin8 sin8'+ cos8'[cos8 —I ] ) .

2
(4.9)
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FICx. 4. (a) The probability that Eve reads the correct bit upon interception is plotted as a function of 0. The solid line is for an in-

terception scheme based on the legitimate alphabets, and the dashed line is for an interception using the Breidbart basis. The lower
graph gives the difference between these curves as a function of 0. (b) The probability that Eve escapes detection, per bit, as a func-
tion of 0. The solid line is for an interception scheme based on the legitimate alphabets, and the dashed line is for an interception us-

ing the Breidbart basis. The lower graph gives the difference between these curves as a function of 0.
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Maximizing this quantity with respect to 0' shows that
the angle Eve must choose is given by

e'=tan ' P& sinO

1 P—s +Pe cosO
(4.10)

(4. 1 1)

which is clearly not equal to the angle (4.10) which op-
timizes Eve's chances of reading the correct bit. These
angles coincide, of course, when Alice chooses each al-
phabet with equal likelihood.

V. DISCUSSION AND CONCLUSIONS

It is easy to see from an information-theoretic
viewpoint exactly why a conjugate coding scheme has to
be optimal. It is not so easy to see whether a nonconju-
gate coding scheme can work when the loss of informa-
tion on measuring the incorrect basis is only partial. We
have demonstrated in this article that a nonconjugate
coding scheme can, in fact, give a secure key distribution.
In doing so we have established the limits of the tech-
nique and have explicitly shown that conjugate coding [1]
is indeed the optimal strategy for the legitimate users of
the channel. Our analysis has been based on the protocol
that Alice and Bob will reject any measurement for which
they used different alphabets. This is, in fact, unneces-
sarily restrictive and Alice and Bob can gain statistical
information about the eavesdropper if they are prepared
to consider some of their rejected data [11]. This reduces

Only if Alice makes an equal a priori choice of alphabet
does this angle exactly bisect the alphabets. The effect of
Alice's biased transmission statistics is to shift Eve's op-
timal angle away from the Breidbart angle which bisects
the two alphabets. However, the angle given in (4.10)
merely maximizes Eve's chances of reading the correct
bit if Eve uses some intermediate basis. We also need to
determine the probability that Eve remains undetected.
This can again be worked out quite simply by following
through all the relevant probabilities and for /=0 we
find that the angle Eve must choose to minimize the
chance that she will be detected is given by

P& sin20
0' = —,

' tan
1 —P0 +P& cos20

the length of data that Alice and Bob will need to collect
in order to perform a reasonable statistical test on their
results to check for eavesdropping. The lower bound is
given by a conjugate coding scheme and the upper bound
is given by the protocol described in this paper.

We have examined the use of the Breidbart basis for
the eavesdropper and have shown that it is more effective
if used when a nonconjugate coding scheme is being em-

ployed. Thus not only are the legitimate users handi-
capped by having to collect more data they are also more
vulnerable to attack by an eavesdropper employing the
Breidbart basis. There is a way, however, to reduce the
effectiveness of the Breidbart basis which will reduce
Eve's chances of reading the correct bit at the expense of
having to collect more data. The essential thing to notice
is that there are three mutually conjugate alphabets for a
two-dimensional Hilbert space [6]. Alice and Bob can
reduce the effectiveness of the Breidbart basis if Alice
uses all three alphabets to transmit data. Eve is at a
disadvantage in adopting the Breidbart basis as we can
see from (4.2) and (4.4). The important thing to note is

that the read and detection probabilities for Eve are
influenced by the relative phase g. Eve cannot but help
in disturbing the measurement statistics when using the
Breidbart basis when lij= m l2. Unfortunately the use of a
third alphabet which is essentially performing no useful
function other than to give statistical information about
an eavesdropper requires the collection of more data by
Alice and Bob and the use of a slightly different protocol
[12]. The benefit accrued is small compared to the extra
complexity. It should also be noted that even though the
use of the Breidbart basis for a conjugate coding scheme
can give about 85% chance per bit for an eavesdropper to
determine the correct key this statistical information can
be reduced by a privacy amplification technique [13].
Furthermore, with a 75% per bit of remaining undetect-
ed Eve's chances of escaping detection for a reasonable
data set are effectively negligible.
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