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A general technique is outlined for investigating supersymmetry properties of a charged spin- —quan-

tum particle in time-varying electromagnetic fields. The case of a time-varying uniform magnetic induc-
tion is examined and shown to provide a physical realization of a supersymmetric quantum-mechanical
system. Group-theoretic methods are used to factorize the relevant Schrodinger equations and obtain
eigensolutions. The supercoherent states for this system are constructed.
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I. INTRODUCTION

The quantum behavior of a nonrelativistic charged
spin- —,

' particle in the presence of a constant and uniform
magnetic induction is of importance in many physical
contexts. The wave functions for this system are solu-
tions of the Pauli equation, which has two components
corresponding to the two possible orientations of the
spin. Each component has an energy spectrum consisting
of a tower of equally spaced levels called Landau levels
[1]. The two sets of Landau levels are degenerate, except
for the ground state. This system is known to provide a
physical realization of supersymmetric quantum mechan-
ics [2,3]. The supersymmetry generators act to reverse
the particle spin, thereby mapping one tower of Landau
levels into the other.

The classical motion of a point charge in a constant
and uniform magnetic induction is rotation about a circle
in the plane perpendicular to the magnetic field. This
motion is most closely reproduced in the quantum system
by coherent states [4—6], for which the expectation values
of the charge's coordinates follow the classical cyclotron
motion. Coherent states can also be introduced for the
spin- —,

' Landau system. The presence of the supersym-
metry makes possible an extension of these states, result-
ing in supercoherent states [7].

It is natural to ask whether the notions of supersym-
metry and of supercoherent states can be introduced in
the context of the motion of a charged spin- —,

' particle in
more general electromagnetic fields. As the construction
presented in Ref. [7] relies on the factorization of the
Hamiltonian, it is not apparent a priori how to handle
more complicated situations. The present paper ad-
dresses this issue. We demonstrate that a group-theoretic

analysis can provide the key to a supersymmetric factori-
zation. Here, we focus primarily on the case of a uniform
but time-dependent magnetic induction as an explicit ex-
ample. However, the formulation of the problem and the
methods used are applicable in a broader context.

We also use the results to obtain supercoherent states.
Our construction extends the previously developed
coherent states for a spinless charge in time-dependent
magnetic (and electric) fields [8—10]. This earlier ap-
proach used time-dependent integrals of the motion satis-
fying an oscillator algebra and the standard
displacement-operator method [11—13].

In Sec. II, we establish our notation and perform a first
separation of variables, using the invariance of the
Schrodinger operator under translations along the direc-
tion of the magnetic induction. A rotated variable set is
introduced that simplifies much of the subsequent
analysis. The group-theoretic analysis of the resulting
equations is presented in Sec. III. We seek symmetries of
the problem using the methods detailed in Ref. [14] and
applied in Refs. [15—17]. The complexified symmetry
algebra is constructed in Sec. III B. This generalizes the
dynamical symmetry group for the constant-induction
case, presented in Ref. [18].

We use these results to develop several factorization
schemes, which are given in Sec. IV. The solution to the
relevant Schrodinger equation is obtained in Sec. V, using
group-theoretic techniques and some representation
theory taken from Ref. [19]. In Sec. VI, we extend these
expressions to solutions of the Pauli equation, and in Sec.
VII the supersymmetry is explicitly identified. Finally,
we construct the relevant supercoherent states in Sec.
VIII, thereby completing the generalization of the prob-
lem treated in Ref. [7]. The coherent states for a single
tower of levels, allowing for the time variation, are con-
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tained as a limit of these supercoherent states and are
closely related to those constructed from integrals of
motion in Ref. [20]. The Appendix demonstrates the
reduction of all these results to the time-independent
case.

II. TIME-DEPENDENT LANDAU PROBLEM

S2+++=0, (10)

Sz+ =B „+B +iwL, +2iB,—2hz(x +y ) —2ho

where the Schrodinger operators S2+ in two space dimen-
sions are

Consider a nonrelativistic spin- —, particle of mass M
and charge e moving with momentum p in a time-
dependent electromagnetic field with four-vector poten-
tial (P, A). The Pauli equation for this system is

with 2ho+=+w+a. + and 2h2=w /4. These new equa-
tions depend only on the variables x, y, and ~. The quan-
tities sc+ are the constants of separation.

It is convenient for our analysis to eliminate the iwL,
term from (11). Introduce the operator

{o [p —e A(r, t)]J +eP(r, t) %,(r, t) R =exp[q(r)L, ], (12)

=i r), 'P3(r, t),
where %'3 is a two-component wave function in three
space dimensions and the quantity cr = (o,o,o, ) is a
vector consisting of the thrt. e Pauli matrices.

In this paper, we shall assume that the scalar potential
P(r, t) is zero and that the vector potential A(r, t) de-
scribes a uniform, time-dependent magnetic induction B.
For convenience, we work in vacuo where the magnetic
induction 8 is related to the magnetic field H by 8=poH,
and we choose the cylindrical gauge

%~=R '8+ .

The rotated Schrodinger operators S2+ are given by

4', +=RS,+R '=exp[gL, ]S,+ exp[ riL, ]-
+8 +iw(r)L, +2id, 2iqL,—

—2h2(x +y ) —2ho+ .

(13)

(14)

where g(r) is to be chosen below to eliminate iw(r)L,
from the expressions for Sz+. Define rotated solutions
e+ by

= —
—,'By, A =-,'Bx . Setting

Writing the upper and lower components of %'3 as %3+
and 43, the Pauli equation reduces to the two equations

ri(r)= ,' f w—(p)dp

simplifies the expressions to
(7'2+ T2+'r, +2Meg+ eB 2iMB, )q—',+ =0, (3) =8 +B +2iB,—2h (x +y )

—2h (16)
where

T„=p„+eBy/2, T =p eBx/2, —T, =p, . (4)

These operators are the Schrodinger operators for time-
dependent isotropic harmonic oscillators. In the rotated
frame, Eq. (10) becomes

Substituting for p„, p~, and p, the usual operator forms,
these equations can be rewritten as 4~+8+=0 . (17)

S3++3+=0,
where

(5)

S, =a„„+a,„+a„+iwL, ,'w (x +y —)+—w+2iB,

(6)

are called the Schrodinger operators in three space di-
mensions and where we have set

with the usual plane-wave solutions. This procedure
reduces Eq. (5) to

A'= I, r=t/M, eB( )=rw( ),rL, =yB„—xB . (7)

The operators S3+ commute with the z-translation
operator 8, . This implies [14] that we can separate Eq.
(5) with respect to z. Set

3+(r, r)=%+(x,y, r)Z +(z)

The functions Z +(z) satisfy the eigenvalue problems

l~ Z+ —/c Z+

Throughout the remainder of this paper, we use the
usual italic letters to represent operators in the original
space of the problem (10), and script letters to represent
operators associated with the rotated equations (17).

III. LIK SYMMETRIES

If w =eB is time independent, the solution of Eq. (17)
is possible by a direct treatment. In Sec. IV of [7], the
separation of variables was performed by setting p, =O—iE+ ~
and 4+(x,y, r) =g+(x,y)e +—

, and the resulting
differential equation was factored into raising and lower-
ing operators. However, when w varies with time it is no
longer immediately apparent how to separate variables or
how to identify appropriate raising and lowering opera-
tors into which the differential equation (10) can be fac-
tored. Instead, we proceed with a systematic approach
that makes use of symmetries of the Schrodinger opera-
tors $2+ in Eq. (16).

To simplify the expressions in this section and in Secs.
IV and V, we write equations only for the case associated
with the Schrodinger operator S'2+, rather than both 4'2+
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at once. We also denote Sz+ by Sz, and ho+ by ho.
Analogous expressions for the problem with Sz can be
found by replacing all occurrences of hp=hp+. by hp
This means that all the results obtained here and in the
subsequent two sections have duplicate forms. We dis-
cuss the role and significance of this duality beginning in
Sec. VI.

A =A(r), A=A,
%' =—,'Ax +Pzy +e'(r),
2P= —Pzx+ —,'A +e (r),

C = — A—(x +y ) ie—'x i—~ y+e(r),
4

(24)

A. Symmetry operators

The symmetries we seek for the Schrodinger operator
Sz have the form [14,15]

X=A(x,y, r)B,+%'( xy, r)B„+IF( x, yr)B +C(x,y, r) .

(25)

e '+2h2e'=0,
6' +2h~E' =0,

(26)

(27)

where the r-dependent coefficients A, e', e, and E satisfy

A+8hzA+4hzA =0,

(18)
iE —A— +koA+hoA =0 . (28)

[Sz,X.]=A( xy, r)Sz, (19)

where A( xy, r) is some function of the space-time vari-
ables. In the unrotated space of Eq. (10), this equation
takes the form

These operators generate space-time transformations. For
these space-time transforrnations to be syrnrnetries of
(16), they must satisfy the commutator relation [14,15]

~(X»)=X i' —i X =1 (29)

Since Eqs. (26) and (27) have the same form, they are
satisfied by particular solutions y&(r) and»(r) that also
have the same form. The coefficient of E, is zero in (26),
so the Wronskian W(y„») must be constant [15]. We
choose to scale the two solutions so that

[Sz,L ]=A(x,y, r)Sz,
where we have defined

L =R 'LR =A(x,y, r)B,+B'( ,x,y)rB„

+B (x,y, r)By+C(x, y, r)

and

(21)

The general solutions then have the form

~'(r ) =p"y,(r ) +p "yz(r ),
&'( )r=p 'y)(r)+p yz(r) .

(30)

It is known [15] that if y, and yz are solutions of (26),
then

A,(x,y, r)=R 'A(x, y, r)R . (22) f 1(r) (+1) fz(r) (») 0 3(r) 2xlxz (31)

We next proceed to establish and solve a set of
differential equations that determine the explicit form of
Eq. (18).

Substituting (16) for Sz and (18) for X in Eq. (19), we
obtain a system of partial differential equations for the
coefficients A, g', %, and C:

A =Ay=0, 2X„'=2% =A %'+X =0

A(r) =P'{0i(r) j+P {Vz(r) j+P {q3(r)j, (32)

where P', P, and P are real constants.
At this state, Eq. (28) can be integrated to yield

are particular solutions of (25). The general solution is
the linear combination

A „+A +2iA, =2iA,
+%' +2iX,'+2C =0,

Xz +S' +2iSz+2Cy =0 .

We solve (23) in the usual manner [15] to obtain

(23) 6(r) =P {

zan)&+tkpp~

j +P { & f'z+tkopz j

+P {z4'3+ikon'3j+P {ij . (33)

The remaining coefficients in the Lie derivative are then
found to be

&'=p'{ l~ix j+p'{ l~zx j+p'{ ,'i3x j+pz{y j+p-"{Xij+p"{Xzj
+'= —pz'{x j+p'{ l~a j+p'{ l~e j+p'{l~e j+p"{»j+p"{»j

C =P'. ——ij,(x +y )+—,'jo, +ihoP, +P ~ — jbz(x +y )+—,'joz+ihoq&z . —

T

+P' — ip, (xz+yz)+ —,'jo, +ihoq, +P—"{ ixy, j+P' { i' zj——

+p" {
—iyii j+p"{—iy»j+p'{I j (34)
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Finally, the generators of the symmetry group of the
Schrodinger operators 42 can be obtained by direct sub-
stitution. Three of them have the form

E (1)=p [fj+p Igj, E (r)=p {gj+p [gj . (42)

The Wronskian of these solutions is

Z, =~,a,+ ,'&, -(xa„+ya, ) —j—(x +y )
4 J

+
2 g~ + EA op~ (35)

~(k k)=G —8=—i~(Xi,X2)= —
1 . (43)

Complex solutions to the differential equation (25) can
be written in analogy to the real solutions (31). We have

for j =1,2, 3. These operators satisfy the commutation
relations of an sl(2, E) Lie algebra [15]:

[+3 +1 1 ~1 I+3 +2] ~2 I+1 +2] +3

(36)

(44)

Then, in terms of these complex solutions, three of the
generators are

Xj=yJB,+ —,'jt (xB +yB ) ——
jb (x2+y2)

Another generator is L„which spans an o(2) algebra and
commutes with the X.: +—'~ +who (45)

[L„X ]=0, j =. 1,2, 3 . (37)

The remaining five generators span a Heisenberg-Weyl
algebra w2 in two-dimensional space [15]. These opera-
tors have the forms

where j = 1,2, 3. We can express these operators as linear
combinations of the original operators (35), which form
the basis of the sl(2, E) subalgebra in the following way:

,'(X,—X2—+i%3), X2= —,'(X, X2—iX—3),E=i,
y, =x,a. — x, , y, =x,a. — x, ,

~ 1 Xl~y iyXl ~2 X2~y iyX2

Their nonzero commutation relations are

[d"„82]= —8, [%„A2]= —8 .

(38)

(39)

X3=Z, +22 .

It is more convenient to define the operators

JN, 3
=i%3, At+ =%2,

These operators satisfy the commutation relations

(46)

(47)

The full symmetry algebra is the Schrodinger algebra
in two space dimensions, [sl(2, E)eo(2)](+w2. The
remaining commutation relations are

[&3,+1]= —+, ,

(48)

I&„+2]=~2,
[X„A,) =0, [X„E,]= —A'2,

[L3,%', ]=—A', , [L„Ã2]=%, ,

[X2,%2]=0, [X3 %2]=%'2,

[L„I]=A, [L„%' J=cf, a=1,2 .

B. Complexification of the symmetry algebra

(40)

=gB ix g, 8+ = ——gB +ix g,
=/By iyg, %'—+ = —gB„+iyg,

I=1 .

(49)

These operators satisfy the nonzero commutation rela-
tions

The operators (47) form a basis for an su(1, 1) algebra.
The generator L, spans an o(2) algebra, as before.
Finally, there are the five generators of a Heisenberg-

Weyl algebra m2..

To work with Hermitian or Hermitian-conjugate
operators, we need to complexify the symmetry algebra
[16]. We begin by looking at the solutions of the
differential equations (26) and (27). The real solutions to
these equations were denoted by X,(r) and X2(r). We can
obtain complex solutions from these by defining

[o,8+]=I, P(,% ]+=I . (50)

The operators 8+ and &+ can also be expressed in terms
of the operators 8 and A, a = 1,2, as follows:

0r) I Xl(r) + ix2(r) ]
1

2

—(8,+i/2), 4+ = —( —8,+is(2),
(51)

1Pr) = —[Xi(r)—iX2(r)] .
2

(41) —(%,+i%'2), %'+ = —( —A, +i%'2) .1 2 + ~ 1

In this case, the general solutions to Eqs. (26) and (27)
can be written

The remaining commutation relations of the full
Schrodinger algebra are
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[At,A' ]=0, [At ~,% ) = i—%'~,

[At3,% ]= —%', [At,&~ ] = i%-'

[At~,&~]=0, [At„%'~]=A~ .

It is also useful to have the expressions for the opera-
tors and equations in the original, unrotated frame. The
operators of the Schrodinger algebra for (10) can be ob-
tained from (21) and are given by

j =R '4 R =cF cos(3)) —& sin(ri),

j+ =R '8+R =8+ cos(g) —A+ sin(g),

k =R %' R =%' cos(g)+8 sin(ri),

k+ =R %+R =W+ cos(ri)+8+ sin(g),

(53)

l
m3 =R 'At3R =At 3+ p3wL, —

=i y3(a + —,
' wL, ) + —,'jp3(x a„+ya )

l j»(x'+—y')+ ,'j 3+ihoy—3

m ~ =R 'At ~R =At ~+ ,'q)3wL, —

=y~(a, + ,'wL, )+—,'joe(x—a +ya ) — ip~(x +y—)4 2

+ pV 2+EAP P2

m =R 'At R =At —
—,'p&wL,

= —y, (a,+—,'wL, )
—

—,'jo, (xa +ya~)

[L„At3]= [L„M~ )
= [L„M ]=0,

[L„8 ]=R, [L„8~]=R~,
[LA ]=—8, [LA~]=—8~, [At, 4 ]=0,
[At ~,8 ]= icI—~, [At„P ]=—8

(52)
[At, 8~ ]= i cf—, [At ~, 4~ ]=0, [At„d~ ]= cP~,

lated to the raising and lowering operators a, a, c, and c~
introduced in Ref. [7].The Appendix contains an explicit
demonstration of the connection between the two sets of
operators for the specific case of a charged particle mov-
ing in a constant magnetic induction.

The no nzero commutation relations for the
complexified Schrodinger algebra in this new basis are

[m~, m ]=—m3, [m3, m~]=2m~,

[m3, m ]= —2m

[a,a+ ]=I, [c,c+ ]=I,
[m3, a~ ]=+a+, [m3, c+ ]=+c+,

(56)

(57)

(58)

[m, a+ ]= ic—[m, c+ ]= ia—
(59)

[m+, a ]= ic+—, [m+, c ]= ia+—,

[Z„a~ ]= +a~, [X„c~]=+c~ . (60)

IV. FACTORIZATION OF THE SCHRODINGER
EQUATION

—i (ya. —xa, )+jj(x'+y')+ —'~, —1

In this section, we continue to work with the
Schrodinger operator $2=$2+ as noted at the beginning
of the previous section. Our next goal is to establish can-
didate factorizations for this operator.

It suffices to work with the subalgebra
0= {m 3,a+, c+,I ) C+ {X, ) of the Schrodinger algebra. If
we denote the oscillator subalgebra generated by
{m 3,a +,c+,I ) as os(2), then Q =os(2) C+o(2), where
X,=iL, is the generator of o(2). The span of the oscilla-
tor subalgebra satisfies the nonzero commutation rela-
tions (57), (58), and (60).

The first step is to calculate the operators a+a and
c+c . We find

a+a =
—,
' —

—,'q3(a „+a„)+—'g3(xa +ya, )
2

+ 4'i(x +y ) —ii 'hoV'i (54)

The commutation relations (47), (50), and (52) are
preserved by the transformations (53) and (54).

A more convenient choice for a basis for w2 can be
made. Define the operators

e I'g

a = —(j +ik )= —(8 +i%' )
2 2

and

=
—,
' [ ,'P3S, +At3 J,——1]——

=
—,
' [ —

—,'p3S3+m3 —X, —1]

+i(ya —xa )+g(x +y )+—p3
—1

c c =-,' —,'q, (a.„+a„)+—'q, (xa. +ya, )
2

(61)

l 77

[g(a +ia ) i (x+iy)g]—,
2

1 . . ec = —(j ik )= — (8 —iA )—
2 2

I 'g

[g(a. —ia, ) —i(x —iy)j], (55)

=
—,
' [ ,'y3S~+At3+—X—,—1]

=
—,
'

[ ——,'@3S3+m3+X,—1] . (62)

Rearranging Eqs. (61) and (62), we obtain

Ip3cV3 2a+ a —At3+X, + 1 =2c+ c Af 3 X + 1

and their conjugates a+ and c+. These operators are re- (63)
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~lp3S2 2a+a —m3+L, + 1 =2c+c —m3 —X,+ 1

(64)

where

In Eq. (67), substitute the operator (65), where p3 is
given by (44). The resulting equation is a first-order par-
tial differential equation for e„I, which can be solved by
the method of characteristics. The general solution has
the form

JR3 l Ip38, + —,
' Ip3(x 8„+y8 ) ——$3(x +y )

+
2 f3+i&Of 3 (65)

6„i=exp ' '

g„ 1(g„g2)T„(p,),I iA(g), $2,P) I

where the separable coordinates are

Pl ]/2 ~ 02 $/2 & P
0'3

(70)

(71)

and m 3 is given by (54). Equation (63) provides two
different factorization schemes for the Schrodinger opera-
tor for the two-dimensional time-dependent harmonic os-
cillator, while Eq. (64) represents two factorization
schemes for the Schrodinger operator for an electron in a
time-dependent uniform magnetic induction. The equa-
tions are related to one another by the rotation R of (12).

We remind the reader again that similar factorizations
can be obtained for the Schrodinger operators S2 and

Note also that the operators a+, c+, and L, are
unaffected by the replacement of ho+ by ho

V. SOLUTION OF THE TIME-DEPENDENT
SCHRODINGER EQUATION

In this section, we present solutions of the two-
dimensional Schrodinger equations obtained in Sec. II.
The results are found by group-theoretic techniques, and
as such can be extended to more general situations than
the one considered here. Once again, we remind the
reader that to minimize notational confusion, results are
presented only for the operator $2=$z+, the wave func-
tion 4'=4+, and rotated forms. The analogous expres-
sion for $2 and 4 can be found by replacing ho=ho+
with ho

A. Further separation

Denote the solution space of the Schrodinger equation
$2+=0 by Q& . The generators of space-time transfor-

mations for the Schrodinger equation, say L of (21), must
satisfy Eq. (20). Then, for 4 H Q&, we see that2'

and where
Q/2

exp( iK—O),

f dsh =K (72)

For details of the integration, see the Appendix in Ref.
[16]. Note that the function A cannot be written as a
sum %,(g&)+%2(gz)+%~(p) of arbitrary functions. The
solutions 6„1are called R-separable solutions [14] of the
equation $28„ I

=0.
Similarly, the functions +„& that solve the first eigen-

value problem in (67) also solve the Schrodinger equation—gLS2%'=0. Since e ' commutes with e', we obtain the
solution to (10):

which is the eigenvalue problem for a two-dimensional
harmonic oscillator.

A further separation of variables can now be made. We
solve the eigenvalue equation (69), where X, is given by

X, =i(yB —xBy)=i($2Bg —g, Bc ), (75)

and 6„& by (70). Since X, commutes with %, we obtain
the eigenvalue problem

(73)

where % and T„are given by (72). Substituting for 4„& in
(10) and suppressing the u and l labels, we obtain

(74)

[@„L]+=u', e'=0 . (66)
(76)

m3+„l=u+„1, X,V„(=i%„(. (67)
—gL

Recall from (13) that '0„&=e '6„~. Hence, we have

This means the generators are constants of the motion
[21]. In particular, the generators X, and m3 are two
commuting constants of the motion. Therefore, we can
find a set of common eigenfunctions O'„ I labeled by the
eigenvalues u and l of m3 and X„respectively:

ay aq
0z

&~
(77)

Solving this equation by the method of characteristics, we
get the solution

which yields directly the first-order partial differential
equation

gL —qL

Similarly, we obtain

(68)
(78)

where the variables of separation p and 0 form a polar
coordinate system with

X,6„1=16„(
for the second eigenvalue equation.

(69)
p =g, +$2, 0=tan 0z

(79)
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and

g, =p cos8, $2=p sin8 .

The eigenfunction e„& has the form

B„i(p,8,p)=e' Y(p)e" T„(p),
where T„(p) is given by (72) and

The wave function 4» E Q& has the form

(81)

(82)

and
1/2

e 'e '+c e'+e '= —' e' 8 +p ——c}&
r]L —qL P;0 l

p

=C+ . (89)

a =—'e' 8 +p+ —8&, a =—'e ' —8 +p+ —8

In later applications, it is also useful to introduce the
operators

4„,=e' e 'Y„,(p)e" T„(p)
iAY ( ) eil( 0+g)T ( ) c=-,'e-" a, +p ——a,l c~= le ~0 g +p2 P g

(90)

and T„ is given by (72).

B. Rotation of the operators

where
—1/2

a, A+=
1/2

To obtain the wave function Y„ i(p) using the ladder
operators a+ and c+, we transform the generators of the
os(2) subalgebra into a form that can be written as a
product of a time-dependent function and an operator de-
pending only on p and 8. Let o be some operator which
acts on the manifold of solutions Q& . Then, we have

2

—1/2

C

(91)

The operators a, a ~, c, and c ~ are the analogs of the cor-
responding operators in [7]. See the Appendix.

Finally, the generator m 3 transforms as
o% =oe' e '1 (g&, g2) T(p)

—qL gL
e 'e 'e ' oe' e 'p(g& $2)T(~)

e 'e '+m3e' e '=i [g)3B„+,'jp3+ih—oy3]

=M3 . (92)

e 'Oy(g&, g2) T(p),

where the new operator 0 is defined to be

0 —e ze lAOe lAe zqL . —gL

(84)

(85)

Note that all the spatial dependence has been removed in
M3 It is now a purely p-dependent operator.

C. Reduction to a radial equation

'+ar]L . . —qL
2

—1/2

e" a +p+ —'a
p 0

(86)

with A given by (72) or (82). The operator 0 acts on the
product space of functions denoted by
I Y„ i(p)e" T„(p)J. Note that the generator X, of the
o(2) algebra is invariant under this transformation.

Let the operator o be a generator of the Heisenberg-
Weyl algebra w2. For a+, given by (55), we get

jd f3a3+,c+,IJ, (93)

where the operators d3 and f3 are defined to be

d32(m3+X, ), f32(m3 —X, ) (94)

The operators in this algebra satisfy the nonzero cornmu-
tation relations:

To complete the solution of Eqs. (10), we shall exploit
the representation theory of the Lie algebra
9=os(2)C+o(2). It is more convenient to work in the new
basis

and

1/2 [m3, a~ ]=+a~, [a,a+ ]=I,

(87)

[m3 c+]=+c~, [c,c ]=I,
[X„a~]=+a~, [X„c~]=+c~.

(95)

—1/2

e 'e ' c e' e
—gL

2 e " a+p ——'a
p 6)

(88)

For the reInaining operators c+ of the w2 subalgebra, we
obtain

The detailed represeritation theory for this Lie algebra
is presented elsewhere [19]. The specific representation
that is of interest to us is denoted 1,zz 1,&2. The rep-
resentation space is spanned by a set of vectors
I ~ n, m ),n, m EZ+ j, where Z+ is the set of non-negative
integers. The base for the Lie algebra 9' acts on this
space in the following way:
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a, ln, m &
=& n+ ll n+ I, m&,

a (n, m & =&n (n —l, m &,

c+ (n, m &
=v'm +1(n, m +1&,

c (n, m &='(/m [n, m —1&,

I(n, m &=)n, m & .

(96)

f3~n, m &=(—,'+n)~n, m &, d3~n, m &=(—,'+m)~n, m &,
+(x) +cof dx dy %„(x,y))Ii„(x,y)

=f f «)d &210,O(gl 024'0, 0($)
=f f pdpdOY„(p)Y„(p) .

D. Solution of the radial equation

(107)

The representation space is a normed space and we have

&n', m' n, m & =5„„5 (97)

We identify the solution spaces Qs and Q@ with the un-
2 2

rotated and rotated representation spaces of the irreduc-
ible representation 1»2 T»2.

It is advantageous to transform d3 and f3 into opera-
tors acting on the solution space Q& of the oscillator.

2

We have

We can use the algebraic structure of 9 in the basis (93)
and the structure of the irreducible representation

, /2 t, /2 to obtain an explicit form for the radial
functions. Since the representation 1 ) /2@ T»2 is
bounded below with respect to the spectra of both f3 and
d 3 there exists an extremal state

—r]L
P, e,V) =e coo(P, O, P)

=e "''e'
yo, o(p e)TOO(p)

l), =e 'd3e " '=
—,)(JN, ,+X,),

V, =e 'f3e '=
—,)(JR,—X, ) .

gL —gL

(98)

(99) Since

Yo, o(p)TO, O(p) . (108)

According to (96), the spectra of these operators are

S(d3 ) =S(2)3)= Im+ —,':m EZ+ J,
S(f3)=S(V3)=In+ —,':n EX+ I .

(100)

(101)

a Pp p=Q %p p 0 — --aYp p=cYp p=O

we obtain

—
p /21

0, 0
7T

(109)

(110)

Let B„EQ& be the coordinate representation of the

vector ~n, m & in the representation space t, /2C3) 1
Then, we have

9',e„=( +n-,')e„, 2),e„=(m+-,')e„. (102)

We have already seen that the polar coordinate system
(p, 8, (u, ) is a natural coordinate system for this problem.
Therefore, we express X)3 and 9'3 in these coordinates:

after normalization. Therefore, the extremal eigenstates
are

i% p /2 gy i% ~ z —
p /2

0,0 ~ e ~ 0, 0

This means ep p= 0 p p.
According to Eqs. (96), we have

l l&3= [v3d, 4'3v—»p +-,'—i3—+i7 0+~0]
2

(103)

1'P„= .—, a+c+%'p p .
V n!~ m!

(112)

where X,= —iB(). Substituting (103) into (102) and solv-
ing the resulting first-order partial differential equations,
we obtain the result

iNY ( )
ie(nz —n) 7 ( )

where % is given by (82) and

q) —e (Ae zY (p)ei e(m —n) 7 (113)

in which the radial wave function Y„(p) is

)k
)
—( ) 1(~m —n)( 2) m —n —p/2

After some calculation [19], the complete wave function
can be written as

(n +m +1)/2

7
—) /2 0

71, 772 3 (105) (114)

u =n+m, I =m —n . (106)

Note that these solutions are normed. The norm is

The radial functions Y„(p) are unknown at this point.
If we compare the functions (81) with (104) and (72) with
(105), then we see that they are equivalent solutions if we
make the identification

where

k = ,' [n +m —
~
m n~ ]—, —

T., (v)=v'3 '" —iE
e

and the p-dependent function has the form
(n+m +1)/2

(115)

(116)



48 SUPERSYMMETRY AND A TIME-DEPENDENT LANDAU SYSTEM 959

The last equation may be compared to T„(p) in (72).
Note that for each n there is an infinite degeneracy in m.

Recall that m3 and X, are diagonal in the basis

j, since they are linear combinations of d3 and f3.
From (94), we see that

From Sec. V, the solutions to this equation can be tak-
en as

'P+ = II„(x,y, r)

(126)
m3=d3+f3, X,=d, f3 .—

Therefore, the eigenvalues of m 3 and X, are

m3%„=(m +n +1)%„

and

(117)

(118)

where 0'„(x,y, r) is given by (113) and

'P„(x,y, r) is its partner. The function P„ is a
function of either of the variables of separation (g„g2) or
(p, 8). The result is a double eigenvalue problem:

=(m —n)%„ (119) a+a+ %'„ +$ n~, m (127)

where n, m EZ+. This implies that the spectrum of m3 is

S(m3) = Im +n +1:n,m EZ+ j, (120)

where each eigenvalue is (n +m+1)-fold degenerate.
The spectrum ofX, is

Using (126) for the solution %'„and a similar expres-+~ +
sion for its partner, and noting (86) and (87), we obtain
the result

S(X,)= Im n:n—, m EZ+ j = I0, +1,+2, .. .j, (121) T+ + ~ n~, m~ n~, m~

which is as expected since the operator X, generates the
group O(2). Each state can also be characterized by the
eigenvalues of m3 and X,. Since each state with eigen-
value n +m +1 is (n +m +1)-fold degenerate, the de-
generate states are classified or labeled by the eigenvalues
ofX,. They are

(128)

Finally, since the operators 3+ contain no time
derivatives and because of Eqs. (91), the two-component
Pauli equation can be written as

+(m+n), +(m+n —2), +(m+n —4), .. . , +1 «0,
(122)

a~a 9'n+, m+

aa 4n, m

0

0 n +1

according to whether n +m +1 is even or odd, respec-
tively.

VI. SOLUTIONS TO THE PAULI EQUATION

where Sz~ are given in Eq. (11). The symmetry analysis
above for each of S2+ and S2 yields the same time-
dependent coe%cients g, y„y2, and p3. Multiplying S2+
by —

—,'q&3 and using [a,a+]=I in Eq. (64) and its
h p~ ~A p partner gives

—
—,'y3Sz+ =2a+a+ +X,—m3++1,

=2a+a+ 2f3++1, —(124)

where m3+ and f3+ are given by (54) and (94) and their
partners. Equation (10) can therefore be rewritten as

(2a+a+ 2f3++1)%+=0 . — (125)

At this stage, we can return to the original problem
discussed in Sec. I. The solutions of the Schrodinger
equation found in Sec. V and the symmetry structure
developed in parallel make possible the solution of the
Pauli equation and the identification of the supersym-
metry. In this section, we present the solutions of the
Pauli equation in a useful form.

The two-dimensional Pauli equation is reduced in Sec.
I to Eq. (10),

(123)

(129)

where the operators a a and aa~ are given in the coordi-
nate representation by

a "a =
—,
' [ —(B~ ~ +8~ ~ ) 2i (g~B~

——g, B~ )

+(0i+4)—2]

aa =—,'[ —(B~ ~ +8~ ~ )
—2i(g B~

—g, B~ )

+(g, +g~)+2] . (130)

Equation (129) is the generalization of the factorization
obtained in Ref. [7].

VII. SUPERSYMMETRY

In this section, we identify a supersymmetry associated
with a nonrelativistic charged spin- —, particle moving in a
time-varying uniform magnetic induction B(r)=B(r)z.
This supersymmetry generalizes that discussed in Refs.
[2,3,7].

The relevant time-dependent Pauli equation for this
system is Eq. (1), with P(r, t) =0 and the gauge choice in
Eq. (2). For more generality, we do not take p, as zero
but instead separate variables with respect to z. The
momentum in the z direction is then represented in the
expressions below by its eigenvalue sc+.

As described in the previous sections, the solution
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space Qs spanned by the functions
2+

:n+,m+ EZ+ j forms a basis for a representa-

tion space for the irreducible representation 1',&z t
of the Lie algebra of operators {d3+,f 3+,a+, c+, Ij. A
partner space Qz spanned by the partner functions{@„:n, m ~Z+ j also exists and forms a basis for
the same irreducible representation of the isomorphic Lie
algebra of operators {d3,f3,a+, c+,I j. The spectra
are

S(f3+)={n~+,':n+ E—Z+j,
S (d 3+ ) = {m ~ + —,':m+ EZ+ j . (131)

From Eq. (129) we see that the spectrum of the operator
a~a is

S(a a)= {n+.n+ HZ+ j
= {0,1,2, . . . j,

while the spectrum of aa~ is

(132)

S(aa )={n +1:n &X+]={1,2, 3. . . ] . (133)

In effect, the two operators a a and aa have identical
spectra, except that the latter is missing the ground state.
This suggests the existence of a supersymmetry.

Following Ref. [7], we introduce a unified notation that
permits the simultaneous handling of the two spaces. We
define a parameter v that takes the value 0 for the "bo-
somc" space Qs and 1 for the "fermionic" space Qs
It distinguishes the upper and lower components of the
two-component Pauli equation. States in the two spaces
can then be denoted by

~
n, m; v), where n =0, 1,2, . . . .

For the bosonic space n =n+ and m =m+, while for the
fermionic space n =n and m =m . In two-component
notation, we have

8=a a+b b . (139)

Note that although 8 is an integral of the motion, there
is implicit time dependence in a and a . When normal-
ized as H =eBA'/M, this operator is a time-dependent
extension of the usual Hamiltonian for the time-
dependent Landau problem. It directly generalizes the
operator denoted by 8 in Ref. [7]. Using Eq. (139) and
the new ket notation, the factorized Schrodinger equation
(129) becomes

D~n, m;v)=(n+v)~n, m;v) . (140)

This expression shows that the states ~n+, m+', 0) and
~n =n+ —l, m;1) are degenerate, except for the
unique ground state ~0, 0;0), which has zero eigenvalue
for 8 (as required for unbroken supersymmetry).

The framework for the supersymmetry is now almost
complete. It remains merely to introduce appropriate su-
persymmetry generators mapping degenerate states into
one another. These operators are defined by

Q=ab, Q =a b. (141)

They satisfy the graded commutation relations of the su-
persymmetry quantum-mechanical algebra sqm(2):

{Q,Qj={Q',Q'j=o, {Q,Q'j=N,
[B,Q]= [A, Qt]=0 . (142)

Explicitly, the action of the supersymmetry generators is

b
I n, m; v ) =5, ~

n, m; 0), b
~ n, m; v &

= 5O I n, m; 1 & .

(138)

We can now introduce the time-dependent operator 8,
defined by

~n, m;v& =g„(g&,gz)
1v

(134)
Q n, m;v&=v'n 5O ~n

—l, m;1&,

Qt~n, m;v) =&n +15& ~n + l, m;0) .
(143)

a~n, m;v) =Vn ~n
—l, m;v),

attn, ;m)v= nv+1 n+1, m;v),
c~n, m;v) =&m ~n, m —1;v),
c

~
n, m; )v= &m + 1 n, m + 1;v ) .

(135)

These expressions are the natural time-varying extensions
of the results obtained in Ref. [7].

We can also define raising and lowering operators b
and b for the index v. By definition, these operators
satisfy the anticommutation relations

{b,bt j =I, {b,b j = {bt,bt j =0 .

Their two-component form is

(136)

0
0 0

0 0
1 0 (137)

Their action on the ket ~n, m; v) is given by

The action of the operators a and c and their conjugates
becomes

The operator Q maps bosonic states into fermionic ones,
while its conjugate does the reverse.

VIII. SUPERCOHERENT STATES

At this stage, we are in a position to construct the su-
percoherent states of the time-varying Landau system.
To do so requires a supersymmetric generalization of the
standard displacement-operator method. A natural ap-
proach to this was introduced in Ref. [7], using the super-
manifold formalism developed in Ref. [22] and the tech-
niques for the Baker-Campbell-Hausdorff relations of
Ref. [23]. For a description of the general procedure and
examples of its application, see the above references and
Refs. [24,25].

In the present case, the relevant superalgebra 0, is the
one obtained by extending the Lie algebra 9 as follows:

0, ={a a, c c,a, a, c,ct, l;btb, b, b j . (144)

A fixed state is required by the construction. We choose
it as the ground state ~0,0;0). The subalgebra consisting
of the operators {a a, c c, 1;b b j leaves this state fixed,
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X&=a+a", Xz=i(a —a ), X3=c+c

X~ =i (c —c ), X5 =i ( b +b ), X6 =b t b. — (145)

Constructing a unitary representation of the supergroup
for an element in the quotient algebra [7,25], we obtain

T(g) =(iA, X, +i A2Xz+iC3X3+iC4X4

+i O,X5 +i O2X6),

=exp( —Aa + A a —Cc +Cc +Ob +Ob ), (146)

where A = A 2+i A &, C =C2+iC &, and 0= —0&+i 02.
This means that A, CE BL and OE'SL are complex
Grassmann-valued variables.

Using a suitable Baker-Campbell-Hausdorff relation
for the supergroup element and Lemma 1 of Ref. [23], we
can construct the analogs of the supercoherent states in
Ref. [7]. The states are parameterized by three
Grassman-valued parameters A, C, and 8, and are given

i.e., the ground state is an eigenvector of these operators.
According to the procedure of Ref. [7], the supercoherent
states are to be defined via the action of the operators in
the quotient algebra {a,a, c,c;b, b ] on the fixed state.

It is convenient to define a super-Hermitian basis for
the quotient algebra:

some aspects of integrals of motion in simple problems
with supersymrnetric quantum mechanics have been dis-
cussed in Ref. [27].

If one introduces a time-dependent electric field in ad-
dition to the present magnetic field, the basic algebraic
structure derived here can again be applied. Provided
this leads to a supersyrnrnetric formulation, this provides
a means of obtaining the explicit form of supercoherent
states for this more general case. It is plausible that su-
percoherent states for a relativistic electron moving in an
electromagnetic field of arbitrary configuration could be
found using these methods combined with coherent states
in the proper-time formalism, as discussed in Ref. [28].
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APPENDIX: CONSTANT MAGNETIC INDUCTION

In this appendix, we demonstrate explicitly the connec-
tion between our results and the special case of constant
induction treated in Ref. [7]. When the magnetic induc-
tion 8 is constant and uniform, w =e8, the differential
equations (26) and (27) take the form

~Z) =exp( —,'OO) exp( —
—,
'

~
A

I ) exp( —
—,
' ICI') E +—w E' =0, cx= 1,2 (A 1)

A Plc P7l

Xg — (~ nm; )0 +~On, m;1)) .
n! m!

(147) and have real solutions

1/2
2

' 1/2
2
w

W7
sin

WV
cos

(A2)

satisfying the Wronskian condition W(X&,X2)= 1. The
complex solutions (41) become

wuw/2
g e

—iud/21 . 1 — 1

v'2 ' v'tv ' v'to

(A3)

with Wronskian 8'(g, g)= i. —
The complex solutions to Eq. (25) are given by (44):

—2
q&3= —,g= —,'wr . (A4)

Using the equations derived in Sec. VB, we can write
down the generators of the Schrodinger algebra

Recall that the operators a, a f, c, and c f have an implicit
time dependence in them through their dependence upon
the variables g, =x/tp3/ (r) and gz=y/y3 (r). The su-
percoherent states defined above are the natural time-
dependent generalizations of the supercoherent states de-
rived in [7].

In Ref. [26], several theorems about time-dependent in-
tegrals of the motion are given. The first states that any
function of integrals of the motion is itself an integral of
the motion. The second states that eigenvalues of time-
dependent integrals of the motion do not depend on time.
The third states that applying an integral of the motion
on a solution to a wave equation (either a Schrodinger or
a Pauli time-dependent equation) yields a function that it-
self is a solution to the same wave equation. Since a, b, c,
and their conjugates are integrals of the motion, so too is
the operator T(g). Furthermore, since ~0, 0,0) is a solu-
tion to the Pauli equation, ~Z ) is also a solution to the
same equation. All the formulas in Ref. [7] may be
rewritten identically for the properties of the present su-
percoherent states, with obvious replacements. Note that
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1 w
m elw1 Q J

2 2
(x 8„+yB~ )

——w (x +y )
— —iho

l 2 2 2 lW

4 2

m =—e '"' 8+ L ——(xB +y& )
1 W lW

+ 7 2 2 2 x

+—w (x +y ) — +iho
4 2

m, =—8 + L, +—iho, L, =iL, =i(yB, —xB ),2l
W

quantum numbers n and m, respectively. Thus

a q'„= n 4„

c 4„ = m 4„

a+%'„=+n +1%„+i
(A12)

c+%„=&m+ I+„
In the special case of constant field, the ~ or p variable

may be separated and we can work with the Cartesian-
like coordinates (g„gz) or with the polar coordinates
(p, 8), as defined in (A10) and (A9), respectively. In the
former case, we use the wave function f„(g if'), and in
the latter we use g„(p,O)= Y„(p)e' "'. On these
solution spaces, the operators f3 and d 3 are replaced by
X, =a a and N, =c c, respectively. The ladder opera-
tors a and c are defined by

a
&2w

8„+iB +—(x + iy) (A5) a =
—,
' [(B~ +i B~ )+(g, + if~)]

e lW7

a+=
&2w

—(8 iB —)+—(x —iy)
w

X

1

&2w
(8 +iB )+—(x+iy)

c =
—,
'

[(B& —i 8& )+(g, —g )] (A13)
1

c
v'2w

w
8 iB —+—(x —iy)x y 1

&2w
(8„iB )+——(x iy)—

1
C+ =

&2w
—(8„+iB )+—(x+iy)

I=1.
The generators of the
0={d3,f3,a~, c+,I]. We have

subalgebra 9 are

f = (iB, h—), —d = (iB,+—wX, —h ), (A6)
1 . 1

where we have made use of (A10). In polar coordinates
(A9), the operators and their conjugates are given in Eqs.
(90).

The operators in (A13) are exactly the a and c opera-
tors obtained in Ref. [7]. Their time-dependent exten-
sions are a and c, respectively.

The number operators obey the nonzero commutation
relations

along with the operators (A5)
From the results of Sec. V, the solutions (113)are

(A7)

[N„a]=—a, [N„a ]=+at, [a,at]=I,
[N„c]=—c, [N„c ]=+c, [c,ct]=I .

(A14)

where Y„(p) is given by (114) and

1/2

The action of these operators on the manifold of states
{g„]is

wTn, m

—i(n+m +1)wp/2e e (AS) N, g„=ng„, ag„=&n g„
a P„=&n+lg„+, ,N, g„=mf„

where n, m EZ+. The polar coordinate system is related
to the Cartesian system through the transformation

ctP„ =&m + ly„ (A15)

p =g, +g~, 0=tan '(g~/g, ),
where

(A9) Substituting (A13) for a in N„we obtain

N. =-,'[ —
aq q +aq q +m, +g', +g', —2]

1/2

g, =x
1/2

(A10) 1

2w
(8»+cl& +wX )+ (x +y ) —w

4

following Eqs. (71).
&y direct calculation, we see that the action off3 and

d3 on 4„ is

f3%'„=(n + —,
' )qI„, d3%„=(m + —,

' )4„. (Al 1)

Also, the ladder operators a+ and c+ raise and lower the

(A16)

which is proportional to the Hamiltonian [7].
This completes the explicit demonstration that our for-

malism contains as a special case the description of the
motion of a nonrelativistic spin- —, charged particle in a
constant and uniform magnetic induction.
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