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In this paper, a quantum dynamical model describing the quantum-measurement process is presented
as an extensive generalization of the Coleman-Hepp model. In both the classical limit with very large
quantum number and the macroscopic limit with very large particle number in the measuring instru-
ment, this model generally realizes the wave-packet collapse in quantum measurement as a consequence
of the Schrodinger time evolution in either the exactly solvable case or the non-exactly-solvable case.
For the latter, the quasiadiabatic case is explicitly analyzed by making use of the high-order adiabatic-
approximation method, which manifests the wave-packet collapse as well as in the exactly solvable case.
By highlighting these analyses, it is finally found that an essence of the dynamical model of wave-packet
collapse is the factorization of the Schrodinger evolution rather than the exact solvability. Therefore
many dynamical models including the previous well-known ones, whether they are exactly solvable or
not, can be shown to be only the concrete realizations of this factorizability.

PACS number(s): 03.65.—w, 11.90.+t, 03.80.+ r

I. INTRQDUCTIQN

Though quantum mechanics has been experimentally
proven as a quite successful theory, its interpretation is
still an important problem that the physicist cannot avoid
completely [I—4]. In order to interpret its mathematical
formulism physically, one has to introduce the wave-
packet-collapse (WPC) postulate as an extra assumption
added to the closed system of rules in quantum mechan-
ics. This postulate is also called von Neumann's projec-
tion rule or wave-function reduction process. Let us now
describe it briefly. It is well known in quantum physics
that, if a measured quantum system S is in a state ~P)
that is a linear superposition of the eigenstates ~k ) of the
operator 3 of an observable A just before a measure-
ment, i.e.,

iy&= pc„ik &,
k

where the ck's are complex numbers, (1.1)

then a result of the measurement of A is one ak of the ei-
genvalues of A corresponding to

~
k ) with the probability

~ck . The von Neumann's postulate tell us that, once a
well-determined result ak about A has been obtained, the
state of S is no longer i/ ) and it must collapse into ik )
since the immediately successive measurement of 3 after
the erst one should repeat the same result. Using the
density matrix

p=~y)(y~= y c,c„*,~k)(k
~

(1.2)
k, k'

for the state iP), the above WPC process can be ex-

pressed as a projecton or reduction

p~p= g c„~'ik&(k~ . (1.3)

N
Ht= g V(x —a„)t7~P',

n=1

However, to realize the WPC, the external classical
measuring apparatus must be used to detect the result.
Then, one thinks the WPC postulate is not quite satisfac-
tory since quantum mechanics is expected to be a univer-
sal theory valid for the whole "universe" because the
detector, as a part of the universe, behaves classically in
the von Neumann's postulate. A reasonable description
of the detector should be essentially quantum and exhibit
the classical or macroscopic features in certain limits. If
one deals with the detector as a subsystem of the closed
system (the universe is the measured system S plus the
detector D), it is possible that the quantum dynamics of
the universe can result in the WPC through the interac-
tions between S and D. Up to now, some exactly solvable
models have been presented to analyze this problem
[5—10]. Among them, the Coleman-Happ (CH) model is
a very famous one and has been extensively studied in the
last twenty years [5—9]. In order to describe the studies
in this paper clearly, we need to see some details of this
model.

In the original CH model, an ultrarelativistic particle is
referred to the measured system S while a one-
dimensional array of scatterers with spin —, is referred to
the detector D. The interaction between S and D is
represented by a homogeneous coupling
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where o'&"' is the first component of the Pauli matrix; a„
is the position of the scatterer assigned to the nth site in
the array. The Hamiltonian for D is

H, =cP, (1.5)

where c, P, and x are the light speed, the momentum, and
the coordinate operators, respectively, for S. This model
is quite simple, but it can be exactly solved to produce a
deep insight on the dynamical description of the
quantum-measurement process. Starting with the initial
state

p, (t)=Tr (ly( r)&&&(&)l) (1.7)

of the measured system is obtained by taking the trace of
the density matrix for pure state

p(t) =
~
p(t) & ( g(t) l

of the universe to the variables of D. Obviously, p, (t) de-
pends on the particle number N of D. When N~ ao, i.e.,
in the macroscopic limit, p, (t)~p after long enough time
t as in Eq. (1.2). Namely, the Schrodinger evolution of
the universe, equal to S+D, leads to the WPC for the
measured system. More recently, the original CH model
was improved to describe the energy exchange between S
and D by adding a free-energy Hamiltonian [9]

(1.6)

where ~D & is pure state of D (it is usually taken to be the
ground state), the evolution state ~P(t) & for the universe
equal to S+D is defined by the exact solution to this
model. Then, the reduced density matrix

[11—13] to the special case where the coupling parameter
depends on the position of the measured ultrarelativistic
particle quite slightly. Finally, we point out the possible
essence in the dynamical realization of the WPC, which
is largely independent of the concrete forms of model
Hamiltonians.

II. GENERALIZATION OF THE CH MODEL
AND ITS EXACT EVOLUTION OPERATOR

be the angular momentum operator acting on the nth site
and the angular momentum operators on different sites
n = 1,2, . . . , N commute with each other. Then, we
write the interacting Hamiltonian for the present general-
ized model

N

HI = g J(n) B(x —a„),
n =1

(2.1)

in terms of the three-vectors B(x —a„) depending on the
coordinate x of S and the fixed coordinates a„of the
scatterers in the spin array. As the energy exchanging
between D and S is studied in Ref. [9], we introduce a
free Hamiltonian for the spin array D

Based on the original CH model, the present generali-
zations are to assign an arbitrary spin j„ to each scatterer
on the one-dimensional array as the detector D and to
take an inhomogeneous coupling of the scatterers to the
ultrarelativistic particle as the measured system S. In
this case the spin couplings have different directions on
different sites of the array. Let

J(n)=(J (n), J (n), J,(n))

N

Hp =@co g cT3"'
n=1

(1.9)
N

HD= QBp(x —a„)J,(n), (2.2)

and correspondingly improving the interaction slightly.
Notice that the improved model remains exactly solvable.

However, because the spin quantum number is fixed to
be —, in the original CH model or its improved versions,
they cannot describe the classical characters of the mea-
surement. Usually, the classical feature of a quantum ob-
ject is determined by taking a certain value for some
internal quantum numbers of the detector D or A=O. In
the case of the angular momentum, this classical limit
corresponds to infinite spin. In an informative paper
[10], this problem was analyzed by using another exactly
solvable dynamical model for quantum measurement. So
it is expected that the WPC in the classical limit can be
incorporated in an extensive generalization of the CH
model. The first step of this paper is to establish such a
generalized CH model manifesting the WPC as the
dynamical process in the classical limit as well as in the
macroscopic limit simultaneously. Then, we attempt to
find the essence for this model substantially resulting in
the realization of the WPC as a quantum dynamical pro-
cess as well as for those well-established ones before. To
this end, we will explicitly study the dynamics of this gen-
eralized CH model in both the exactly solvable case and
the nonsolvable case. For the latter, we will apply the
high-order adiabatic-approximation (HOAA) method

to distinguish the states of the detector D via energy lev-
els. Then, we have a Hamiltonian

N
H=cP+ g J(n) R(x —a„), (2.3)

for the universe equal to S +D, where

R(x)= (B,(x),B2(x),B3(x)+Bp(x)) .

In the above model, because of the introduction of the
arbitrary spin j„, which labels any (2j„+1)-dimensional
irreducible representation of rotation group SO(3), we are
able to consider the behaviors of the quantum dynamics
governed by this model Hamiltonian in the classical limit
with infinite spin j„. It will be proved that, as in the mac-
roscopic limit with infinite N, the quantum dynamical
evolution of the universe also leads to the WPC for the
measured system in the classical limit. The reason that
the limit with infinite j„ is called classical is that the
mean-square deviations of the components J, (n) and
J (n) possess the limit feature [17]

b J (n) AJ (n) —+0 as N~O .
Jn Jn +2j„

To solve the dynamical evolution of the universe,
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S +D, exactly, the polar coordinate (R, 8, Q) for the space

I R j of the coupling parameter

R=R(sin8cosg, sin8 cosP, cos8)

is introduced, where

To solve Eq. (2.9) in this exactly solvable case, we use the
Rabi-Ramsy-Schwinger rotating coordinate technique.
We carry out the transformation on U, (t),

U, (r) = W(t) U~(r)

R (x)= IB i (x)+82(x)+ [80(x)+83(x)] ]
'I

[8,(x)+82(x)]'I
tan[8(x) ]=

82(x)
tan[/(x) ]= x

(2.4)

—iJ ( n )( atlc ) ( x—a„+ct ) It)
e UJ( t

n=1
(2.12)

Here, the rotated evolution operator Ui((t) is governed
by the rotated Hamiltonian

N

Hz = W(t) 'H, (t)W(t) co g—J,(n)

Notice that the functions R, 8, and P usually depend on x
through the coupling parameters R. According to the
quantum rotation theory, the interaction Hamiltonian HI
can be rewritten as

N
HJ=St(8, $) g R„J(n)S(8,$),

n=1

where

S(x)=S(8(x —a„),t)t/(x —a„))
i~z~n)y(& ag ]/&IIe " e

n=1

(2.5)

is a global rotation of the spin array generated by the lo-
cal rotations

N 6)= g R J„(n)sin8+ J,(n) cos8——
R

(2.13)

Q =R 1+ —2cos(8)—CO CO

R R
R sinO

sina =

we rewrite the above rotated Hamiltonian as
N

H„= g Q[J„(n)sina+ J,(n)cosa]
n=1

(2.14)

Notice that this is a time-independent Hamiltonian.
In terms of

1/2

—iJ (n)P(x —a„)/il —iJ (n)8(x —a„)/A'
nS x=e e (2.7)

—iJ a/A'~ iJ a/ti

n =1
(2.15)

for each site. Later on, we will show that it is just this
factorization of the Hamiltonian that leads to the WPC
in quantum measurement through the factorization of the
evolution operator.

For the evolution operator U(t) of the universe satisfy-
ing the Schrodinger equation with the Hamiltonian (2.3),
we introduce the "interaction" picture by

U(r) — ictP/AU (r) (2.8)

where e "' is the generator for the coherent state as
Gaussian wave packet [17]. In this picture, the reduced
evolution operator obeys a time-dependent Schrodinger
equation

(2.9)

with the time-dependent Hamiltonian
N

H, (t)= g h,„(t)

N
J(n) R(x —a„.+ct) .

k=1
(2.10)

Notice that the Schrodinger equation governed by the
Hamiltonian H is exactly solvable only for the harmonic
case with

8(x)=const=8, R =const,
(2.11)

COX())(x)=, (o=(real const) .
C

From the above expression for Hz, the rotated evolution
operator Uz (t) follows immediately,

Ui((t) =e
—iH& t/rt —iJ a/fi inJ (n—)IA' iJ a/A'

e ' e ' e
n=1

(2.16)

Therefore, the evolution operator for the universe

—iJ ( n ) ( aux Ic )( x —a„+ct ) /tl —iJ a It)
e

n=1
—iQJ (n)/fi t'J a/R

Xe ' e (2.17)

finally is obtained from the above Eqs. (2.8), (2.12), and
(2.16).

Here, we should remark that the exact solvability of
the above generalized CH model mainly depends on the
harmonic form of the function R(x) of x. If it is not har-
monic, the above method cannot work well and certain
approximation methods should be used to deal with the
evolution operators approximately in various cases. If
the coupling function B(x) depends on x quite slightly
then the measured ultrarelativistic particle may move so
slowly that the spin states of the scatterer in the detector
can hardly be excited, the adiabatic (Born-Oppenheimer)
approximation or its generalization can make sense for
the problem. Thereby, the Berry's geometric phase
[14,15] and the corresponding induced gauge field can be
incorporated in this dynamical model of the WPC for the
quantum measurement in the adiabatic case.
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III. DYNAMICAL REALIZATION
OF WAVE-PACKET COLLAPSE:

EXACTLY SOLVABLE CASE

To consider the dynamical realizability of the WPC in
the above model for quantum measurement, we consider

I

an ideal double-slit interference experiment. Let a
coherent beam of the ultrarelativistic particles be split
into two branches represented by the wave functions

I g, &

and If@&, respectively. In the same time, the detector is
assigned to its ground state.

o&=IX mi= —A&S j2 mr= j2&—S SIJ+,mr= (3.1)

where
I jk, mk & (k =1,2, . . . , N) are standard angular-momentum states. The choice of ground state is required by the

stable measurement D. Like the authors in Refs. I5 —9], we also suppose that only the second branch wave I/2& in-
teracts with D. Starting with the initial state

lg(0) & =(c, lg &+c,ly, &)s lo&,

where

Ic I'+Ic I'=1,

(3.2)

the evolution operator (2.17) defines the evolution state at an instant t in the interaction picture with the interaction
HI +HD,

Iq(t)&=c, q, &s 0&+c, lq, &s U, (t)lo& .

Then, we get the corresponding density matrix

p(t)= q(t) &&/(t)l = Ic) 'I$$(t) &&$$(t)ls lo&&ol+ Icpl'I/2(t) &&i//(t)ls U, (t)lo&&0IU, (t)

+c,c,* ly, (t) &&@,(t)ls U, (t)lo&&ol+c, c*, I@,(t) &&@,(t)ls Io&&olU,'(t).

(3.3)

(3.4)

In the problem of WPC, because we are only interested in the behaviors of the system S and the effect of the detector D
on it, we only need the reduced density matrix for S,

p(t)s=TrDp(t)=lc, l'I@,(t)&&/, (t)l+ C, I'I1(,(t)&&@,(t)l+(C, C2 Ip, (t)&&/, (t) +C,cf Ig, (t)&&/, (t)l)&OIU, (t)lo&,

(3.5)

where TrD represents the trace to the variables of the detector.
Obviously, under certain conditions to be determined, if the vacuum-vacuum transition amplitude &ol U, (t) lo& van-

ishes for the detector D, the coherent terms in Eq. (14) vanish and thus the quantum dynamics automatically leads to
the wave-function reduction

p(t), pat) = Ic, I'ly, (t) & & y, (t)l+ Ic, I'lq, (t) & & y, (t) . (3.6)

Namely, the WPC occurs as a quantum dynamical process under these conditions.
Now, let us prove that these conditions are just the macroscopic limit and the classical limit, which, respectively, cor-

respond to the cases with very large particle number Xand very large quantum number j„.To this end, we evaluate the
norm of vacuum-vacuum transition amplitude &ol U, (t) IO&. Using the explicit expression of the d function

d' (a)=&j,mle ' lj, m'&,

we have

N ~n

I & ol U, (t)
I
0 & I

=
n =1 mn Jn

N ~n (2j„)!
(j„+m„)!(j„—m„)!

2 CX
cos

2

~n mn g„+m„
20sin—

2

—im„Qt
e

n=1

2~n

cos —e ~ ~'+ sin
2 2
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that is

Qt t

l &ol U, (t) lo) I
= Q 1 —sin sin a

2
(3.7)

The above formula is a main result of this paper, which
directly manifests the WPC in the classical and macro-
scopic limits. Let us now go into some details for this
conclusion. Notice that in a nontrivial case Q, a&0 and
so

1 —sin
Qt

sin a
2

Qt
e " = 1 —sin (a)sin

2
(3.&)

is usually a positive number less than 1. Thus, in the
classical limit with j„—+ ~ mentioned before, .

l&o U, (t)lo)l o as j„
This means &ol U, (t) lo) ~0, as j„~cc, that is to say, the
WPC occurs as a quantum dynamical process in the clas-
sical limit. This is just what we expected. Then, we
reach a concise statement that if the detector behaves clas-
sically, but need not behave macroscopically, the O'PC can
be dynamically realized I'n the measurement. The classi-
cal detector was required as a purely classical object be-
fore, but here it is proved to be a classical limit of a quan-
tum object and the quantum mechanics can work well on
it for quantum measurement. We should also stress that
the macroscopic limit with very large 1V is not necessary
for the WPC. So long as the detector is in the classical
limit, the WPC still appears as a dynamical evolution
even for small N.

Now, we turn to discuss the macroscopic limit
behaviors of the problem in detail. In Eq. (3.3), let us
define the positive number b.„(t)by

eter R(t) is not harmonic and so some approximation
methods are needed to probe the evolution of the
universe, S+D. As an example of the nonsolvable mod-
el, the adiabatic case where the parameter R (x +ct —a„)
in H, (t) depends on time "slightly" will be used to illus-
trate the above-mentioned observation. Because the
quasienergy state of H, (t) can hardly be excited by the
variation of H, (t) as t in this case, the so-called high-
order adiabatic-approximation method in connection
with Berry's geometric phase [14,15] can effectively be
employed to this end. This method was recently
developed by this author [11—13] and is now reformulat-
ed in the evolution operator form in the Appendix. This
reformulation of the HOAA method is quite convenient
for application in this paper.

Defining the functions

f„(t)=f(x —a„+ct )

—iJ (n)p„(t)/rt —iJ (n)8„(t)/rt

n=1
(4.1)

according to the HOAA method. Then, in the equivalent
Hamiltonian governing U'(t)

H'(t) =Ho(t)+ V(t):,
N aHo= g R„(t)—cos[8„(t)] P„(t) J,(n),

at
(4.2)

V(t)= g
n

ae„(t) ay„(t) „
J~(n)+sin[8„(t)] J„(n)

Bt y at

(4.3)

for f=R, e, p, etc. , we first factorize the effective evolu-
tion operator U, (t) into

U, (t) =S(t)U'(t)

Then,

l &0 U, (t)lo) l =exp —g i().„(t) (3.9)

can be regarded as a perturbation. The standard pertur-
bation theory determines the first-approximate evolution
operator

Usually, b, „(t) is nonzero and positive and thus the series

)b,„(t) diverges to infinity, that is to say,
&ol U, (t) lo) as well as its norm approach zero as N~ co.
This just shows that the WPC can be realized as a quan-
tum dynamical process for the generalized CH model in
the macroscopic limit.

—i f R„(t')dt'/rt —i f cos[8„(t')](Sp„(t')/St')dt'J, (n)
U,'t= e o" e

n=1

n=1

—i f R„(t')dt' iy„(t)J, (n)
e o " e (4.4)

which describes the geometric feature of the evolution in
terms of the Berry's phase

IV. ADIABATIC APPROXIMATION
FOR NONSOLVABLE CASE

, BP„(t')
y„(t)= —f ' ", cos[8„(t')]dt',

0 Bt
(4.&)

As in most of the previous studies about the dynamical
realization of the WPC for quantum measurement, the
above discussions in this paper only concern an extremely
idealized case where the model is exactly solvable. So it
seems that the exact solvability is necessary for this prob-
lem. However, it is not really true. We will observe that
the WPC can also happen in the nonsolvable case of the
above generalized CH model. In such a case, the param-

When the parameter R is subject to a cyclic evolution
that R(0)=R( T), the Berry's phase

y„(T)=f [1—cosO„]dg„
0

(4.6)

is just a solid angle spanned by the closed curve traced by
the parameter R. To consider whether the WPC happens
or not for the adiabatic evolution, we explicitly calculate
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I & ol U, (t) I
o & I

= g I & ole
' ""'"'" "lo

& I

n=1

, (8„(t))l '"
n=1

leos[8„(t)/2]l
n=1

(4.7) t)ttt„( t) 88„(T)R„(t), A'

Bt
R„(t) « 1 , (4.8)

able case, the generalized CH model still realizes the
WPC quantum dynamically for the adiabatic evolution.

Furthermore, let us prove that it does so for the nona-
diabatic evolution. In fact, if the parameter R does not
change slowly enough for the adiabatic condition

By the proof similar to that in the last section, we see that
l & Ol U, (t) l0) l

~0 as N ~ oo. Namely, even in a nonsolv- we at least consider the second-order approximation

N

U,'(t)= U' (t)[1+U', (t)]= U'(t) + [1+U',"(t)]
n=1
—i f R„(t')J (n)dt'/R —i f cos[(t„(t'))(Sp„(t')/St')dt J(n)'

e 0

n =(

X 1+ f Uo (t) —,8„(t')J (n )+sin[8„(t')], (tt„(t')J„(n) Uo(t)dt' - . (4.9)
o

' at' " ai'

Because of the cutoF in the Dyson series for the approximate evolution operator, the unitarity of the evolution operator
is broken and so its leaded evolution state is not normalized to unity. Thus, when we calculate the vacuum-vacuum
transition amplitude &ol U,'(t)lo), we should first renormalize it. Let us by U,'(t) denote the renormalized evolution
operator defined by

U,'(t) lP &

U,'(t)
& yl U,'(t) U,'(t) ly &

(4.10)

for any state vector lP ). This renormalization results in a reasonable vacuum-vacuum transition amplitude satisfying

&o U,'(t)ly)
0 U,'(t) 0

& ol U,'(t) U,'(t) lo) &j„,—j„U(" (t)U'("(t) j„,—j„&
(4.11)

As the formula given by Eq. (4.11), the above equation
also explicitly defines the dynamical realization of the
WPC in the classical limit with N —+ ~. Here, we have
taken it into account that

&j. j.l
U("(t)lj—., —j.&

& j„,—j„l
U(" (t) U'(" (t) Ij„,—j„)

for n =1,2, . . . , N . (4.12)

Based on the above discussions on the first- and
second-order approximations, we guess that the WPC
can be realized in an arbitrary-order approximation.
Trying to prove this guess, we find some essential proper-
ties related to the %'PC closely in the next section.

I

pends on the choice of concrete forms of interaction.
However, motivated by the above discussions, we will
show a more universal fact that it is the factorizability of
the evolution, other than its exact solvability, that leads
to the WPC in quantum measurement. Now, let us de-
scribe what is the factorization of the evolution. Let x
and p be the coordinate and momentum operator of the
measured system, respectively; x„(n = 1,2, . . . , N) be the
variables for the measuring instrument. Usually, the evo-
lution operator U(t, p, x,x;) for the universe, S+D, de-
pends on x, p, and x„(n =1,2, . . . , N). If this operator
can be expressed as the following factorizable form

U(p, ,x;)=U, (p, x, t) / U(")(x,x„,t),

V. COMMENTS ON ESSENCE
OF DYNAMICAL REALIZABILITY

Including the above discussion in this paper, the previ-
ous investigations on the dynamical realization of the
WPC in terms of quantum dynamical models only pro-
ceeded with the concrete form of the model Hamiltoni-
ans, especially of the interactions between S and D. It
seems that the dynamical realizability of the WPC de-

then we say that the evolution characterized by
U(t, p, x,x;) is factorizable. Here, U, (p, x, t) is the evolu-
tion operator of D in absence of the interaction with the
detector D, and the unitary operator U(")(x,x„,t) only
depends on x„and x for fixed n, In this case, the reduced
density matrix of S for the above-mentioned double-slit
interference experiment in the interaction picture is ob-
tained as
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p(t)s =TrDp(t) =
I c, I'I (i', (t) & & @,(t) I+ I c, I'I @,(t) & & q, (t) I

+ [c,c,* I q, «) & & @,(t) I+c,c*,
I @,(t) & & @,«) I ] & ol U, (t) lo &, (5.2)

for the positive function

A„(t)= —ln(I&0„l U( ) 0„&l),

the series gk, hk(t) diverges to infinity. That is to say,
& 0 U, (t) l0 & as well as its norm

l&olU, (t)lo&l = ~ 1&0„lU(")lo,&I
k=1

N
=exp —g hk(t)

k=1
(5.4)

approach zero as X~~. Then, the WPC appears in the
macroscopic limit if we can incorporate a quantum num-
ber J„ into U "(x,x„,t) such that bk(t)~ ~ as J„~~.
When J„enjoys the classical limit at J„=~, like the
spins j„ in this paper, the WPC also occurs in this limit
as a quantum dynamical process. Therefore, we conclude
that the essence of the dynamical realizability of WPC is
the factorization of the evolution operator for the appre-
ciated model of quantum measurement.

Naturally, the question that follows is what is the gen-
eral form of the model Hamiltonian which can realize
this factorizable evolution. The answer is that the Hamil-
tonian should be decomposable in a certain sense. The
following Hamiltonian sufficiently enjoys the answer:

H =H0+H' =Ho+Hi +HD. ,
N N

HI r Vk(x~xk )~ HD X hk(xk ) '
k=1 k=1

(5.5)

Here, the measured system S is still represented by
an ultrarelativistic particle with the free Hamiltonian HO
=cP, but the detector D is made of X particles with
the quite general single-particle Hamiltonian hk(x„),
(k =1,2, . . . , N), which is Hermitian. S is assumed to be
independently subjected to the interaction Vk(x, xk) of
each particle k. Here, x and xk are the coordinates of S
and the single particle k in D, respectively, and the kth
interaction potential Vk(x, xk) only depends on x and xk
and hk(xk) on the single-particle variable xk. To prove
the above statement, we take the transformation (2.8).
Then the reduced evolution operator U, (t) obeys an
effective Schrodinger equation with the effective Hamil-
tonian

where

Io&= 0, &elo, &g g Io„&,
and lok & is the ground state of each single particle in D.

Because

l&O„IU(")(t)IO„&l= 1 — y I&nlU(') O„&l''~'~1,
n (%0)

(5.3)

N N

H, (t) = g h,k(t)= g [hk(xk)+ Vk(x+ct&xk)],
k=1 k=1

= U'"(t)e U"'(t)e . e U' '(t), (5.7)

is factorizable; that is to say, U, (t) is a direct product of
the single-particle evolution operators

U "(t)=Texp 1/iA I h,k(t)dt (5.8)
0

where T denotes the time-order operation. As proved in
the following, it is just the above factorizable property of
the reduced evolution operator that results in the quan-
tum dynamical realization of the WPC. Notice that some
results of this section were announced by this author
more recently [16].

Before concluding this paper, we shall give some re-
marks on the results and method of this paper. We first
point out that this paper emphasizes the unified descrip-
tion of the classical limit and the macroscopic limit for
quantum measurement. Because the macroscopic phe-
nomena in quantum mechanics cannot be identified with
those classical ones completely (e.g. , the magnetic-fiux
quantization is a macroscopic quantum phenomenon, but
it is not definitely classical), it is quite necessary to distin-
guish between these two cases. We should also remark
that, in practical problems, there must exist interactions
among the particles constituting the detector D, but in
the present discussions there are no interactions among
the particles in the detector. We understand it as an ideal
case. How to realize the quantum measurement for the
WPC in the interaction case is an open question we must
face. It is expected, at least for some special case, that
the certain canonical (or unitary) transformation possibly
enables these particles to become the quasifree ones. This
is just similar to the system of harmonic oscillators with
quadratic coupling. In this case, we can imagine that the
detector is made of free quasiparticles that do not in-
teract with each other.

APPENDIX: REFORMULATION OF THE HIGH-ORDER
ADIABATIC APPROXIMATION METHOD

In order to use it in this paper conveniently, we now
reformulate the high-order adiabatic approximation
method in Refs. [11—13] in a general form, which can

(5.6)

depending on time. Since H, ( t ) is a direct sum of the
time-dependent Hamiltonians h,k (t) (k = 1,2, . . . , N)
parametrized by x, the x-dependent evolution operator,
as the formal solution to the effective Schrodinger equa-
tion

N

k=1
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work well on the evolution operator for both the Hermi-
tian and non-Hermitian Schrodinger time evolutions.

Let the Hamiltonian H, (t) of the quantum system de-
pend on time t through a set of the slowly changing pa-
rameters R(t)=(R, (t),R2(t), . . . , Rx(t)). We also as-
sume the quasi-energy-levels Eh (t) (k = 1,2, . . . , K) of the
time-dependent Hamiltonian H(t)=H(R(t)) for a frozen
time t are not degenerate. We diagonalize H(t) by a simi-
larity transformation S(t)=S(R (t) ) in the following way:

S(t)H, (t)S(t) '=Hd(t)

i A U'(t) =H'(t) U'(t),t

Bt

where the equivalent Hamiltonian

(A3)

H'(t) =H (t) —iRS(t) S(t)d at

can be decomposed into the diagonal part

(A4)

Ho(t)=Hd(t)+ diagonal part of ifiS—(t) S(t)—] 8
at

E, (t)
0

0

E (t)

0 0

(Al)
and the off-diagonal part

V(t)= off-diagonal part of iA—S(t) S(t)
at

(A5)

U, (t) =S(t)U'(t),

then U'(t) obeys the Schrodinger-type equation

(A2)

The corresponding quasienergy state to Eh(t) (k
=1,2, . . . , k) is denoted by l

k(t) ).
If we deter~inc a solution of the Schrodinger equation

of the evolution operator U, (t) governed by H, (t) as the
following form

(A6)

Physically, since V(t) completely vanishes when H(t) is
independent of time, we deduce that V(t) is a perturba-
tion in the case that H(t) depends on time quite "slight-
ly." Later on, we will give the analytic condition where
V(t) can be regarded as a perturbation. Then, the adia-
batic Dyson series solution of U'(t):

U'(t)=U,'(t) 1+ g U„'(t)
k=1

( —i /h )f Ho(s)dsUot=e
k

(A7)

Uh(t) = 1 2 k —1—f f f . . f V(s, )V(s2) . V(sh, )V(sh)ds[ds2 . dsh )dsh s
0 0 0

irnrnediately follows from the standard time-dependent perturbation theory. Here,

(i/i]) f H(s)ds (
—i/rt) f H(s)dsVt =e o Vte (A8)

i f dt'E —(t )/R'
e 0

i f dt'E (—t')/A'
0

t„(t)=f d„(s)ds=i n f S(s) ' S(s)ds nl .
8

0 0 BS

The first-order approximation solution Uo(t) can be decomposed into the dynamical factor
I

and each diagonal element in the above matrix is just the
Berry's phase factor, i.e.,

0
i f dt'Ez(t —)/A'

~ ~ ~ 0 (A12)

0
i f dt'Az(t )'

00

and the geometric factor

i f dt'A (t')
e 0

0

(A9)

(A 10)

In terms of the concept of differential manifold, this
phase can be rewritten as a curve integral

y„(t)=y„(R(t))=f A [R]dR" (A13)
R(~)

of the potential one-form A „[R]dR":

where

0 if dt'Az(t')
~ ~ ~ e 0

s(„[R]=i n S[R] ' S[R] n),8

on the parameter manifold

(A14)

d„(t)=i n S(t) ' S(t) )nat
(Al 1)

M=[R=(R)sR2s. . . )RE)l s

R; H(real number field), i = 1,2, . . . , K j .
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Here, A„[R] is called induced gauge potential. In this
iy„QR(7') j

sense, the Berry's phase factor e " can be under-
stood as an element of the holonomy group for a closed
parameter curve C: IR(t) R(0)=R(T)I.

It is pointed out that the transformation S[R] di-
agonalizing H, (T) is not unique, i.e., S'[R]=S[R]X[R]
also diagonalizes H, (t) if the matrix X[R] commutes
with H, (t) .This means that state vectors
~n[R]) =(S[R]X[A]) '(n ) as well as ~n[R])
=(S[R]) ' n ) are the instantaneous eigenfunctions of
H, [R (t) ]. The above indeterminacy of S[R] results in
the gauge transformation for induced gauge potential

A„[R]~A„'[R]=A„[R]+i(n ~X[R] ' X[R]~n ).
BR"

(A15)

From the second-order approximation

U(t)'= U,'(1)[1+U(t)', ]

(
—i jh) I Ho(s)ds i t=e o '

1 —— V(s)ds
0

(A16)

we observe that the adiabatic condition under which the
adiabatic-approximation solution Uo ( t ) works well, is

(ir(n
~
V(t)~m &

(A17)
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