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Continuum wave functions and phase shifts for the one-electron state
of the Coulomb two-center problem
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Electronic continuum angular and radial wave functions are represented in a compact form by expan-
sions over spherical harmonics and the Legendre functions of the first kind, respectively, with separated
exponents. Particularly for the continuum radial case, the phase shift is expressed through the charac-
teristic exponent by a formula that generalizes previous asymptotic analytic expressions for small and
large intercenter distances.

PACS number(s): 03.65.0b, 02.90.+p, 31.20.—d, 33.80.Gj

I. INTRODUCTION II. GENERAL CONSIDERATIONS

There have been numerous studies of the Coulomb
one-electron two-center problem. Most of these concern
bound states and are based on the use of continued frac-
tions [1] or matrix methods [2] or power series and asso-
ciated Legendre expansion series with use of recurrence
relation properties [3] or by power series only [4], etc.
For the continuum states, additional difficulties arise
when trying to solve analytically the Schrodinger equa-
tion describing the motion of the electron in the field of
the two fixed nuclei A and B with charges Z~ and Z~.
Most authors have obtained the electronic continuum
wave functions by numerical methods [5—7] but, so far,
few of them. have been interested in finding analytic solu-
tions to the problem. Greenland and Greiner [8] have
presented several mathematical closed-form solutions in
the entire complex plane but determined the phase shifts
by using different recurrence relations and corrected er-
rors in a preceding paper [9]. Later, Abramov and Slav-
yanov [10] and Abramov et al. [11]proposed an asymp-
totic expansion for the phase shifts in the united-atom ap-
proximation in terms of the parameter v, called the
characteristic exponent [8]. For large intercenter dis-
tances, they used the asymptotic formula of Komarov,
Ponomarev, and Slavyanov [12]. In this work, the ana-
lytic approach is reinvestigated. Closed-form solutions
are obtained by choosing the convenient basis functions
which lead to a pair of three-term recurrence relations for
the separated angular and radial Schrodinger equations,
respectively. Particularly, in the radial case, the phase
shifts are determined through an analytic expression in
terms of v for the whole range of the intercenter distance.
For illustration, application to the so. state of H2 is con-
sidered and comparative values of the phase shift by use
of the analytic formula with those found by numerical
procedures [6,7] are presented for the so. , po. , and p~
states of H, H +. All calculations are performed in atom-
ic units.

It is well known that the equation of motion of one
electron moving in the field of two fixed nuclei A and B
and distant rz and r~ from A and B is separable in pro-
late spheroidal coordinates:

p=(r~ rs)/R— , 1 ~@~+1,
A, =(r~+rs )/R, 1~A, ( m, 0~p~2vr .

This separation leads to the angular and radial forms

m

+R(Zz —Zs)p pp + A M—(p, y)=0, '(2)

+R (Z~ +Z~ )k+p A,
—A 'A(A ) =0 . (3)

For the continuum states, the energy parameter p is
defined by p =ER /2 where E=K /2 is the energy for
an electron in a state with momentum K. Then
p =KR /2; m is the magnetic quantum number and A is
the separation constant representing the eigenvalue of
another constant of motion related to the total angular
momentum and to the Runge-Lenz vector [13]. M(p, y)
and A(A. ) are the angular and radial regular solutions of
Eqs. (2) and (3), respectively. The wave function is given
by

PI~~~(K, R;p, l, , y)=N)~m~(K, R)M(p, y)A(A), (4)

where Nl~ ~(K,R) is the normalization constant, and l
(l= ~m ~+q, q=0, 1,2, . . .) represents a quantum number
corresponding to the azimuthal quantum number in the
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spherically symmetric case, i.e., the united-atom-limit an-
gular momentum number.

III. ANGULAR EQUATION

There is no difficulty in solving Eq. (2). We shall recall
here the process used to obtain the separation constant
and the angular functions M(p, y).

A. Expansion and recurrence relations

An appropriate regular expansion for M(p, (p) is

(5)

where b„=p —A+n(n+1).
Equation (8) may be considered as an infinite set of

homogeneous equations for the C„coefficients. For this
set to be compatible, the determinant of the associated
matrix [JR—2A] must be equal to zero,

det[At —SA]=0.
The eigenvalues of [At] are the separation constants A
('e Ailm() ~high must be l~b~l~d by l =

I
m

I +q,
q=0, 1,2, . . .. 2 is the identity matrix. The matrix [JR]
being symmetric, all the A&I

I

eigenvalues are real, and
since its elements are real all the C„coefficients can be
considered as real. Hence

M(p, (p) =e +—'~"

where the spherical harmonics F„(i)) are defined in
terms of the associated Legendre polynomials P„(p) as

1/2
2n+1 1 (n+1 —m)
4' I ( n + 1+m )

XP„ (cosi))e'

i [+ (sr/Z)n+argi (n+ i T is)] y m(ne n
n=ImI

may be considered as a regular solution for Eq. (2).

(10)

The angle i) (@=costi) is restricted to the range 0~ii
77.

The constant JV(( is chosen so that

fM(p, rp)M'(p, (p)dr= 1 with dr=sinridi) dp. The
substitution of Eq. (5) into Eq. (2) leads to the following
three-term recurrence relation for the g„—+coefficients:

Qn gn ) +bngn +Cn gn+ ) =0,
a„+—= [R (Z„—Z~ )+2ipn ]

1/2
(n —m )

(2m —1)(2n+1)
(6)

b„=p —A+n(n+1),
c„—= [R (Z~ —Zs )+2ip(n+1)]

' 1/2
(n+1) —m

(2n+1)(2n+3)

with the boundary condition g
I I

1=0.
We can symmetrize the matrix whose elements are the

coefficients in Eq. (6) by setting
r 1/2

+;( ~2)„1(n+1+i )s
g„—=e

I (n+1+i )s

B. Determination of the separation constant
and the C„coefticients

For fixed values of K, R, l, and
~
m ~, the separation

constant A&I
I

can be calculated very easily by use of
Kerner's [14] procedure together with Killingbeck's [15]
procedure applied to relation (8). These procedures are
also detailed in Ref. [16]. The application to the case of
H, H + is performed: all the values of Ai( (R) obtained
for K =1 and for the sar, po. , and pm waves agree totally
with those tabulated in Ref. [7]. Once the value of Ai(
is known, and assuming that for a large value of n

(n =N, ) greater than the series truncation value N we set
C& +,=0 and C& =1, then all the C coefficients down

1 1
n

to C(
(

are determined by using Miller's [17] backwards
recurrence algorithm. The condition C„~C„/CI

I

cor-
responding to an overall normalization is used. Let us
note that Ponomarov and Somov [6] and Rankin and
Thorson [7] have used the expansion (5) to represent the
angular part but, because of the algorithm they adopted
to calculate the series coefficients, convergence was poor
even for moderate values of R and K.

IV. RADIAL EQUATION

where

ei [+(vr/2)n+argI"(n+ ]+is)]C
n

R (Z„Z~ ) Z„Zs
p K

The new coefficients C„satisfy the equation

u„C„ i+ b„C„+u„+ iC„+i =0,
' 1/2

(n m)(n +—s )
Qn = 2p

(2n —1)(2n + 1)

(7)

(8)

The radial equation (3) has two singularities at A, =+1
and one essential singularity at ao, and the radial
Coulomb spheroidal function A(A, ) is required to be finite
at A, = 1. As A,~ oo, A, ~2r/R and pA, ~Dr where r is the
distance of the electron from the geometric center of the
nuclei. A(A, ) must have the asymptotic form

sin[Xr +o 1n(2Kr ) +b i( (]
limA(A, ) =

where AI Im I

is the phase shift.
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A. Solution for the radial equation

It is now known [8,10] that there are two linearly in-
dependent solutions A, (A, ) and A, 1(A, ) which satisfy
the properties

A„(e '"kl=e ' A (A, )

2ing ) e 2i vr( v+—1 )A
and

P +„=p —A+(v+n)(v+n+1),
+ [q+2ip(v+n+1)](v+n+1+m)

(2v+2n +3)
+2ip(v+n+1+io )(v+n+1+m )

(2v+ 2n +3)

Am(+)(g) +ipk ~ dm(+)pm (g)v+n v+n (13)

v =vi)
~

(K,R ) is the characteristic exponent and deter-
mines the branching character of the solution around
X= ao; its value can be real or complex. It is important
to notice that the above definition implies that v can be
replaced by v+k, where k is an arbitrary integer.

We shall consider the well-known expansion over the
Legendre functions of the first kind with separated ex-
ponent as a regular general solution for Eq. (3):

q (Z„+Zi) )
q=R(Z„+Zi) ), o =

2p E
Alternative forms of relation (17) are

e„* „=—a„* „y(p„„+7,* „(.~ „,),
m(k) m(+)~v+ n d v+ n ~d v+ n —1

&.*+.= r.*—+.~(~.+.+a.*+.&.+. i »—
m(+) m(k)

v+n dv+n v+n+1

(18a)

(18b)

Indeed, since

P,+„(A.)= [Q„+„(A,) —Q, „,(A, )] (14)

and since the following relations are satisfied by the
Legendre functions of the second kind [18]:

Equation (18a) will be used for n ~0 and Eq. (18b)
for n ~0; v is the correct characteristic exponent if
C—Xl:,=1.

The convergence of the recurrent relation (17) and the
convergence of the solution (13) will not be developed
here since they have been discussed elsewhere [8].

Q „,(e '
A, )=e ' "Q „)(A,),

gm (e2ing) e
—2i ( iv)+)gm

then

Am (g) —an~V e+ip2. y dm(+)gm
7T

(15)

(16a)

C. Relations between the d ++' expansion
coefBcients and series representation

for the solutions

~m(+) ~m(+)
~v+n d —v —n —1 (19)

(a) Since P'+'„(A, ) =P „,(A, ), the substitution
v+ n ~—v —1 n in the sol—ution (13) leads to

and

Am(g) — tan~V kipiydm+ gm.
7T

(16b)

which can also be obtained from Eq. (17) when perform-
ing the same substitution.

(b) In the same way, the relation

are the two independent solutions which satisfy the prop-
erties (12). Therefore

A ' —'(A, )=A '*'(A, )+A ' +—' (A, )

is a suitable regular solution for Eq. (3).

p ( g )
I ( 1 +v + n +m )

v+" I (1+v+n —m )
v+"

leads to

m(+) I'(1+v+ n +m ) m(+)
I (1+v+n —m)

(20)

B. Recurrence relations

Substituting expression (13) into Eq. (3) gives the fol-
lowing three-term recurrence relations satisfied by the
d +

+—„' coeKcients:

(c) The matrix, whose elements are the coefficients
a++„,P +„,and y,++„ in Eq. (17), can be modified to the
matrix whose elements are a +„,P,+„,and y +„by set-
ting, for instance,

(+) 1
„I(v+1+io) I (v+n+1 icr)

d (
—

)

r(v+1 —ia) r(v+n+1+ia)" +"

(21)

where

[q+2ip(v+n )](v+n —m )

(2v+ 2n —1 )

+2ip(v+n +i o )(v+ n —m )

(2v+ 2n —1)

and since

I"( v+ n + 1 i cr ) I ( v+ —1+i o )

I (v+n+1+io ) I (v+1 io)—
I ( —v —n —io ) I ( —v+icr)
I (

—v —n +i o ) I ( —v i cr)—
the relation (19) is satisfied by the d +'„' coefficients.
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(d) From Eq. (17),

(dm(+))e dm( —) (dm(+) )e dm( —)
v+n v++n ' v

v+n~v+n —) +~v+nQv+n + v+n'Vv+n +)

(22) where

(24)

(e) The recurrence relation (17) can be modified so that
the (+) signs as well as the sign of the magnetic quantum
number m are removed on setting

1/2
(+) + „ I (v+n+1+icr) I"(v+1+io )

I ( v+ n + 1+io)I .
( v+ 1 +i o )

L

' 1/2
I (v+n+1 —m) I (v+1+m)X 9v+n ~I (v+n+1+m) I (v+1 —m)

I[(v+n) —m ][(v+n) +o ]]'~
av+-n = 2p 2v+2n —1

[ [(v+ n + 1) —m ][(v+ n+ 1) + cr ] ]
'~

~v+n =
2v+2n +3

d-'+-' =q ——1 .v v

Then the coe%cients q +„satisfy the relation

(23)
(f) Series expansions. Finally, the expansion of the hyper-
geometric series representation for the Legendre func-
tions of the second kind, i.e.,

Q „,(A)=
m/2

, I ( —v —n)I ( v —n ——m) (I+&) +„e'
I ( 2v —2n—)

2XF —v —n —m, —v —n, —2v —2n;' 1+A,
(25)

where

X (1+A, )" g a, (t)(1+A. )',
f = —oo

and the use of relations (20) and (19) lead to
m/2

Am(+)(g) +ipse ~+ 1

A, —1

(26a)

we can write

[Am(+)(g) ]e —ipk y dm
(
—) pm

v +n v +n
n = —oo

which is of the form of A ' )(A, ). This implies that ei-
ther

v* =v (modk )

2
—v —t

a (t)=
I (1+v+t)I (1+v+t+m)

k
X g, d, ' —„'I (1+2v+2t+k)

k=O

or

or

v'= —v —1 (modk) .

Consequently, v can be real,

v=b (modk ),

(27)

(27a)

2 '1 (1+2v+2t )av(t) =
r(1+v+t)r(1+v+t+m )

—1 " d.+i'+k

k=1 v+t j=1

Similarly, we get
m/2

gm(+) +ipse, ~+ 1

A, —1

X(1+A, )
' g a )(t)(1+A, )' . (26b)

D. Determination of the characteristic exponent v
and the d „+*„'coe%cients

A '+)(A, ) being a solution of the linear equation (3),
then [A '+)(A, )]* is also a solution. Using relation (21),

or complex,

v= —
—,'+ib (modk ),

v=+ib (modk) .

(27b)

(27c)

The possible values for v=v&~ ~(K,R) given A must satis-
fy the condition to obtain a nontrivial solution for Eq.
(17), i.e., the infinite determinant h(v) of the coefficients
of d +

—„' in Eq. (17) must be zero for self-consistency;
starting with R =R i, R, ~ 1, the roots of b, (v) may be
obtained with relative accuracy by considering its expan-
sion around the central term b), (v) =P . The truncated
determinant b,zj+) 2i+, (v) equal to b, (v) with all rows
and columns beyond j+ 1 and —j—1 deleted is a ratio of
two polynomials % (v)/Q (v); %~(v) is of degree
2(3j+1) in v [or (3j+1) in v(v+1)]. By finding the
roots of AJ (v) successively for j=2, 3, . . . , the root that
converges to the required form can be considered as a
first approximate value of v. This can be achieved easily
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by computing b,2J. +, 2~+, (v) in a formal language such as,
in this case, Macsyrna implemented on an Apollo 3500.
A (v), as well as the corresponding roots, are found in a
straightforward way. Then the starting value for v is im-
proved in the following manner: the d +

—„' coefficients are
set equal to zero for n & X and n & —N, where X is an in-
teger sufficiently large so that the good convergence of
the solution is guaranteed; the relation (18a) for n =N
down to n =0 and (18b) for n = Nup —to n = —1 are
used to compute the C,—+„and the 2)~+„coefficients. v is
then adjusted so that 2),:,C —=1. Then v=v(K, R ) can
be used as a starting value for R2=R1+bR. Once v is
determined, on setting d ' +—'=d ' +—'l =1 to fix the nor-
malization for the solutions, the d, +'*„' (n &0) and the
d +'

—„' (n (0) expansion coefficients are easily obtained
from C' +'„and 2)(„+)„,respectively.

This procedure to find a starting value for v differs
from the one proposed by Greeland and Greiner [18].
They used properties of functions of complex variables
together with the procedure used in the determination of
the characteristic exponent for the Mathieu functions
[18] to show that cos2mv is real, which confirms that v
has one of the predicted forms.

K. Asymptotic behavior and phase shift

In order to obtain the asymptotic behavior of the solu-
tion (13), it is more adequate to use an equivalent expan-
sion representation for A ' —'(k) [A '

1(A, )] whose
asymptotic behavior is known. Indeed, the following ex-
pansion a (A, ) [a,(i(, )], which is closely related to the
expansion introduced by Abramov and co-workers
[10,11] and Greenland and Greiner [8], can be used as an
alternative solution for Eq. (3):

m/2

k +„S„~„(A,), (28)

b (t)=e 'p(2ip) +'I (1+v+t+icr)
dm(+)

1 v+t —k

0 k! I (2+2v+2t —k)

or

)~+, I (1+v+t+io )

I (2+2v+2t)
dm(+)

Xd '+' 1+ ~ +
v+t dm(+)k= 1 v+t

k

X + (2+2v+2t —j)

where, whatever the value of the running index t,

a (t)

b.(t)
=const .

Then choosing t =0,

where

e'p I (1+2v)I (2+2v)
(4ip ) I'(1+v+ 1 o )I (1+v)I (1+v+ m )

d
—m( —)

( —1) v+k

K=1 v j=l V

(+) dm(+)
1+ g + (2+2 —j)

k=1 dv j=l
Now we can write the equivalent expression for the solu-
tion A ' '(A, ):

Matching the above expansion (30) with the solution
(26a) leads to

(31)

where A ' '( )=A a (X)+A,a, (X) . (32)

Sm (g) e
—ip(i+1)[2& (g+ 1 )]v+n ~(v+ n 1+1~)

I (2v+2n+2)

XM(v+n + 1+io, 2v+2n +2,.2ip(A+ 1)) .

M(a, b, 2ip(A+1)) is the , confluent hypergeometric func-
tion of the first kind.

When substituting a (A, ) into Eq. (3), the coefficients
k +„ involved in this representation have the advantage
of satisfying the di6'erence equation that coincides with
Eq. (17) for the d ++„' (see Appendix) and we can choose
to set

The asymptotic form of & (A, ) [and of a, , (A, )] is ob-
tained from expansion (28), after replacing the confluent
hypergeometric function by its well-known asymptotic
form:

e
—( m. /2) o.

lim a„(A, ) = , e
—i Ip(k+1)+a ln[2p(A. +

2ip(A, + 1)

+p e+i[p() +1)+0 )n[2p(A+) )]]

m(+)k+„=d +„ (29)
(33)

After replacing the conAuent hypergeometric function
in Eq. (28) by its expansion series in powers of (1+1,), the
expression for a ()[.) is written as

m/2

(A, ) = e 'P g b, (t )(1+A, )'+', (30)
t = —oo

where

where

p y dm(+)

and

a = e ;~(~+n+1) I (v+n+1+io ) m(+)
I (v+n+1 io)—
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or from Eq. (21),

+&) I (v+1+ t tr') ~ d ( —)

The phase shift ht ~m ~

in Eq. (11) is related to 8 by
~z) (=+

The exponential form of tanO and the definitions of
f(v) and g(v) lead to

Let us note that because of relation (19),

; ~2 +&l sinn(v+t'o )
l&~ & +—v —1 Sln&(V l0 )

and

(34)
2i0 A„P +A,P

3 a+3 )o,'

1+p

Then

ydm(+)
;~„+t) I (v+1 —t'o ) n=e

r(v+ I+t~)
d v+n

(35)

a a
1+ p

CX~

where p = 3
&
/A, . After replacing p, P

(=P &), a„, and a, & by their expressions in terms
of v, we finally obtain the expression of the phase shift
through v and through the d +

—„' coefficients:

lim A ' '(A, )g~ 00

—( m/2)o.

(f(v)cosIp(A, +1)+o ln[2p(A+ I)] j2ip A+1

+ig(v)sin[p(A, + I)+o ln[2p(A, +1)]l )

(36)

where

f(v)= A (/3 +a )+A, (P,+a, ),
g(v) = 2 (P —a )+A, (P,—a, ) .

An alternative form of the above limit is

B sin[p(A, +1)+o.1n[2p(A, +1)+8]]

y dm(+)~g; I (v+1 t'a —
) ne'=e

I (v+ I+to )
(

v+ n

1+p+, ~2 +~~ sinn. (v+ttT)1+e '", psinrr(v i tr )—
where

2v+ 1

...r(v+ I+t~)
p = —ie'

I ( v+itr) 4—

(39)

B sin[Ãr+o. 1n(2Kr)+8+p]

where
e

—( ~/2) oB= [ [g (v) —f(v) ][g.+f(v) ] I
'"

tan(8) = i-(v)
g(v)

2K
represents the normalization factor and where

(37)

(3&)

X ( —1)
(v+ —,') cos mv

1(v+m+1)I (v —m+1) r—v —
&

I (v+ —,')I (v+1)

Expression (39) is an extension to the whole range for R
and p of the asymptotic form in the united-atom approxi-
mation proposed by Abramov et al. [11]. It is easily
verified that in the united-atom limit, 0 tends to the ap-
propriate phase shift: argI (I + 1 i a); 8 is relate—d to the

TABLE I. Separation constant, characteristic exponent, and phase shift for the so state of H2+.

R (a.u. )

0.5 0.020 775

0.082 415

0.319000

0.680 575
1.127 734

1.622 380

X=1, l=0, m=O

—0.174 332 5

—0.5+ i(0.428 067)

—0.5+ i(0.869 500)

—0.5+ i(1.101 183)
—0.5+ i(1.256 255)

—0.5+ i(1.380 605)

5=0+@
—0.3613

—0.6782
—0.6782"
—1.2413
—1.2375
—1.7082
—2.1011
—2.1080
—2.4354

0.486 518

1.622 380

4.195 130

6.719 161
9.228 306

11.733 215

I(:=5, l=0, m =0

0.821 506 78

—0.5+ i(0.531 69)

—0.5+ i(1.663 556}

—0.5+ i(3.020 378)
—0.5+ i(4.459 031)

—0.5+ i(5.935 768)

—0.0366
—0.0366'
—0.3133

—0.6233
—0.6320
—0.7953
—0.8704

—1.0464

'Value obtained by the numerical procedure of Ponomarev and Somov aud by asymptotic formula of Abramov et al. [11].
Values calculated by the algorithm of Nakamura and Takagi [19].
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phase shift hps reported by Ponomarev and Somov [6]
and the phase shift 5z reported by Ramkin and Thorson
[7] by O=b,

~
—p —ln/2 and 8=5+ —p —oln(2), respec-

tively.
F. Applications and discussion

The procedure presented in Sec. IV D is tested first for
the cases of the so. , po. , and do. states of Hz+ for
K =(2)' and R ~4 a.u. All the corresponding values of
v reported in Ref. [8] are found again. Next, K is in-
creased from 1 to 5 and the calculation repeated for the
so. state of H2+ in the range 0.5 ~ R ~ 5 a.u. The results
are shown in Table I. For moderate values of the param-
eter p (p 7), to evaluate the initial value v;, it is found
that there is no need for the index j involved in the trun-
cated determinant hz~+, z~+, (v) to go beyond j=7; but,
as p increases, determining v; requires larger values of j
and therefore depends on the computer's capacity to And
the roots of % (v). Beyond this capacity, for the inter-
center distance Rz =R &+6,R, v(R &) is used as the initial
value v; for v(Rz). In all cases, the value of the charac-
teristic exponent is obtained by scanning v, until
2):,C —=1 (12)„:~C+——ll ~10 ). The complex I (z)
functions involved in formula (39) are computed accord-
ing to the series expansion in powers of z for 1/I (z)
when ~z~ ~2 and according to Stirling's formula when
~z~ ~2, the accuracy of the values obtained being ade-
quate for this need. Finally, in order to be able to com-
pare values of the phase shifts issued from relation (39)
with those obtained from a numerical procedure, the case
of the so. , po. , and pm. states of H, H + seems appropriate
since comparative numerical values are available. For

K = 1 and for the selected values of l, m, and R, Table II
displays the values of the characteristic exponent and the
phase shifts which are compared with those found by
Rankin and Thorson [7]. Results agree very well.

In conclusion, the process to obtain the characteristic
exponent is quite simple; once v is determined, it leads to
an analytic expression for the radial wave functions and
allows the determination of the phase shifts which are in-
volved in the calculation of the scattering cross sections
of electrons on two Coulomb centers. The analytic form
of the wave functions may be useful to calculate matrix
elements between bound and continuum states, especially
for 1arge values ofp. Indeed, due to the oscillating nature
of the wave functions, numerical calculation of these ma-
trix elements becomes difficult as p increases [20].
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APPENDIX

Recurrence relations for the S (A, ) are obtained by use
of relations between the confluent hypergeometric func-
tions given in Ref. (18), Sec. 13.4, p. 506, and after setting
z =ip(A, + 1):

2v+ 1

(v+1 —io )v S (X)(2v+ 1)

TABLE II. Characteristic exponents and comparative values of the phase shifts for K =1 calculated by formula (39) and by Ran-
kin and Thorson's algorithm for the so., po. , and p~ waves of H, H +. Note that 6=0+p+O. ln2. The 6z values are printed directly
below the 6 values for ease of comparison.

Z (a.u. )

so.(I =O, m =0) per(l = l, m =0)
V

10

—0.5+ i(0.686 978)

—0.5+ i( 1.153 69)

—0.5+ i(1.412 46}

—0.5+ i(1.560 11)

—0.5+ i(1.613 96)

—0.5+ i(1.537 62)

—0.5+i (0.444 72)

—0.5+ i(1.766 43)

—0.5+ i(2.070 63)

—0.5+ i(2.257 73)

0.2799
0.2798

—0.3537
—0.7192'
—0.9241
—0.9215
—1.4174
—1.4079
—1.8464
—1.8466
—0.2423
—2.2425
—2.5977
—2.5983
—2.9170
—2.9172
—3.2036
—3.2040
—3.4634
—3.4634

0.794 52

0.878 73

—0.5+ i(0.662 23)

—0.5+ i(1.10006)

—0.5+i (1.38006)

—0.5+ i ( 1.585 18)

—0.5+ i(1.735 46)

—0.5+ i(1.836 78)

—0.5+ i(1.889 97)

—0.5+ i(1.890 15)

4.8557
4.8578
4.6292
4.6314
4.2210
4.2276
3.8248
3.8245
3.4536
3.4534
3.2135
3.0975
2.7509
2.7507
2.3833
2.4131
2.0892
2.0890
1.7834
1.7835

i(0. 158 450)

i(0.751 94)

i(1.159 98)

l(1.451 96)

i (1.680 19)

i (1.869 47)

i(2.035 00)

i(2. 188 0)

i(2.34002)

i(2.495 53)

4.2065
4.2061
3.7688
3.7688
3.3512
3.3510
2.9961
2.9659
2.6108
2.6106
2.2822
2.2821
1.9781
1.9780
1.6962
1.6964
1.4357
1.4355
1.1947
1.1935

We believe that there must be a misprint for this value in Rankin and Thorson's table [7].
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dS (A)
(2v+ 1) = [(v+i o )S,(A, )

dz

+ ( v+ 1 i cr )—S„+,( A ) ] .

The S, (A, ) functions satisfy the differential equation

z +2z —z —2ioz —v(v+1)4f

dz ~ dz

ip
( +1) (z 2i—p) 2. + (p —A )z

z —2' /P LP

z +2z —z —2i crz —v(v+1) S (A, ) =02d' d 2

dz~ dz

and the radial equation (3) can be transformed as
+2(1—m )z

d
dz

A(A, )=0 .
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