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Comment on "Regular and chaotic motions in ion traps: A nonlinear analysis of trap equations"
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Using Lie-group and prolongation techniques, Baumann and Nonnenmacher [Phys. Rev. A 46, 2682
(1992)] recently studied integrability of a Hamiltonian describing the dynamics of ion traps. It is pointed
out that their results can be obtained more simply and directly by recognizing that the problem is separ-
able in each of the integrable limits found by Baumann and Nonnenmacher. Similarities between this
system and a hydrogen atom in a generalized van der Waals potential are also considered.

PACS number(s): 32.80.Pj, 02.20.—a, 02.60.—x, 35.10.—d
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where y and A, are again dimensionless physical parame-
ters. Scaling the coordinates by y

' and the momenta
by y' and going to cylindrical coordinates (x =peas/,
y =p sing, z =g) gives the Hamiltonian

In a recent paper Baumann and Nonnenmacher [1]
studied the dynamics of two ions in a Penning or Paul
trap. Using Lie-group methods they determined exact in-

tegrals of the motion in various limits, all of which had
been discovered previously by Bliimel et al. [2]. This ap-
proach was prompted by a failure of the Painleve test to
uncover global integrals of the motion. The purpose of
this Comment is twofold: First, to remark that the ex-
istence of these integrals is a simple consequence of the
separability of the problem in appropriate coordinates,
and second, to comment on the classical dynamical simu-
lations presented in [1].

In cylindrical coordinates (p, g) the Hamiltonian stud-
ied in [1] is

H=E = '(P +P )+—'(p +—A, g )+—+1 v
2 p g I p 2 2

where r=(p +g )'~, and A, and v are dimensionless
physical control parameters. It is illuminating to com-
pare the ion-trap Hamiltonian (1) with that of a hydrogen
atom in a generalized van der Waals potential (CxVDW)
[3—5]. In Cartesian coordinates the GVDW Hamiltonian
1s

Equation (3) is identical to Eq. (1) except for the sign of
the Coulomb term. Thus the analysis presented here for
the ion trap applies equally to the GVDW system. In
both cases the system is seen to consist of a two-
dimensional oscillator plus Coulomb and centrifugal
terms. Importantly, the z component of angular momen-
tum (L, ) is an exact constant of motion of (1) and (3); in
the ion-trap problem it is related to v while in the
GVDW system it corresponds to the magnetic quantum
number m.

In what coordinate systems, if any, is Eq. (1) separable' ?

The Coulomb problem is well known to be separable in
both polar and parabolic coordinates [6]. The oscillator
contribution to H is clearly separable as written in cylin-
drical coordinates. In addition, the oscillator may
separate in other coordinate systems when the frequen-
cies in the two modes are commensurate (i.e., a ratio of
integers). [The frequencies in the oscillator modes will be
denoted by co~= 1 and co& (alias ~A, ~).] Specifically, when

co:co& stand in a 1:1 ratio (A, =+I) the two-dimensionalP'
oscillator is also separable in polar coordinates while in
the cases of 1:2 (A, =+2) or 2:1 (A, =+—,

'
) frequency ratios

it is separable in parabolic coordinates [7]. The complete
Hamiltonian (1) can therefore be expected to separate
when the oscillator portion together with the Coulomb
and centrifugal terms are all separable in the same coor-
dinate system.

When A, =+1 the Hamiltonian (1) is separable in spher-
ical polar coordinates. To see this, the Hamiltonian (1)
with A, =+1 is 6rst converted to Cartesian coordinates
giving

2

~
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H —i (p2+p2+p2)+ i (X2+ 2+ 2)+ 1
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(3) where v does not now appear explicitly. It is apparent
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that Eq. (4) is separable in spherical polar coordinates
(for arbitrary v) and reduces to a radial equation. Similar
considerations apply to the GVDW problem.

For a 1:2 frequency ratio (A, =+2) the transformation
to parabolic coordinates,

g=(u —v )/2, p=uv,

leads to a complete separation for arbitrary v. In these
coordinates Eq. (1) becomes

H= P +P +u +v +4+
2(u +v ) Q V

Pp

L

4

K;:,' I

(6)

and the Hamilton-Jacobi equation is separable upon mul-
tiplication by (u +v ). Similarly, the GVDW problem
also separates in this coordinate system as noted in Ref.
[4].

In the case of a 2:1 ratio of frequencies (A, =+—,') the
system might again be expected to separate using a
different set of parabolic coordinates,

p=(u —v )/2, g=uv,

which yields

1
6 6 2vH= P +P+ + +4 +

2(u'+ v') " " 4 (u2 v2)2

(8)

The term in v in the Hamiltonian obviously prevents
complete separability. Hence the problem separates only
when v=O for A. =+—,', so that the integral obtained upon
separation is valid only in the limit that v=O. This
agrees with [1]where an integral was found for v=O with
A, =+—,'. The integrals of motion when the problem is se-

parable in parabolic coordinates are closely related to the
Runge-Lenz vector of the Coulomb problem [3—6]. In
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FIG. 2. As Fig. 1 but for A, =2.1, corresponding to Fig. 3 of
[1].

fact, the Runge Lenz vector is essentially the separation
constant in parabolic coordinates [6].

The case A, =+—,
' and arbitrary v was treated by Blumel

et al. [2], who derived a global invariant G(p, g, P,P&)
by means of a generalized Runge-Lenz vector. The
reader is cautioned, however, that Eqs. (31)—(38) of [2]
contain algebraic errors [8]. In corrected form, Eq. (37)
of [2] does indeed give a valid global invariant, so that (1)
is integrable for k=+ —,

' and arbitrary v. This integral of
motion does not seem to be related in any obvious way to
further separability of (1).

The Poincare surfaces of section presented in [1] are
somewhat puzzling. Specifically, in Figs. 2 and 5 of [1]
the Kol'mogorov-Arnol'd-Moser (KAM) curves associat-
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FIG. 1. Poincare surface of section in the (P~,p) plane for
several sets of initial conditions with E=5, A, =2, and v=0.
These parameters correspond to Fig. 2 of [1].

FIG. 3. As Fig. 1 but for E =1.8, A. =0.5, and v=0. 1, corre-
sponding to Fig. 5 of [1].
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ed with a single trajectory cross each other multiple
times. This is a result of failing to select a single branch
of the Hamiltonian when projecting the dynamics onto
the surface of section [9]. We present surfaces of section
in Figs. 1 and 2 in the (I',p) plane defined by /=0 and

P& )0. Figures 1 and 2 correspond to Figs. 2 and 3 of [1]
except that several different sets of initial conditions are
integrated. The results in these two cases agree with the
general conclusions contained in [1] concerning integra-
bility of the dynamics, i.e., chaotic versus regular motion.
However, our definition of the surface of section does not
give rise to crossings of KAM curves. Figure 3 is a sec-
tion computed with k=+ —,

' and v nonzero and is chosen
to correspond to Fig. 5 of [1]. While the equivalent sec-
tion in [1]exhibits chaotic dynamics we could find no evi-
dence of chaos for this set of parameter values. We have
established numerically that the chaos apparently gen-
erated by a single trajectory in Fig. [5] of [1] is not due to
the particular choice of section made in [1]. We can only
conclude that the chaos in Fig. [5] of [1] is a result of nu-
merical error and is therefore spurious. This, in turn,
would affect the calculation of Lyapunov exponents
presented in Fig. 4 of [1). An extensive search in which
the energy and v were varied over a wide range of values
similarly failed to find any evidence of chaos for A, =+—,'.
Therefore, our calculations support the existence of a glo-
bal invariant for I,=+—,

' and v arbitrary [2,8].
An obvious way to search for additional integrals of

motion is the Painleve test [10]. However, Baumann and

Nonnenmacher [1]report (without providing details) that
the Painleve test failed to uncover any integrals of motion
for the ion-trap problem. In contrast, for the GVDW
problem, Cxanesan and Lakshmann [4] were able to dis-
cover integrals of the motion using the Painleve test in
parabolic coordinates: For m =0 and arbitrary y they
found the problem to be integrable when A, =1, 2, and —,'.
These results correspond to the results for the ion-trap
problem with v=0. The similarity between the two
Hamiltonians and the apparent disparity in the applica-
bility of the Painleve test suggests that further analysis
would be profitable.

In conclusion, we note that in all cases the integrals
discovered in [1] and [4] can be recovered using separa-
bility of the system in the appropriate coordinate system.
The remarkable separability discovered here has been
previously overlooked in both the ion-trap and the
GVDW problem [1—5].

Note added in proof. Since the submission of this Com-
ment we have discovered a paper by A. Deprit and S.
Ferrer [Phys. Lett. A 148, 412 (1991)]that points out that
the GVDW system separates for A, =+2,+—,

' in the case
that m =0.
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