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Learning about non-Markovian effects by degenerate four-wave-mixing processes
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I analyze the conditions for the correctness of the formula proposed by Lavoine and Villaeys [Phys.
Rev. Lett. 67, 2780 (1991)] for learning about the non-Markovian effects by degenerate four-wave-mixing
processes. I show that this dependence does not provide information about non-Markovian relaxation
dynamics for the case of the inhomogeneously broadened transition. Such information can be obtained
by the modification of a three-pulse four-wave-mixing experiment.

PACS number(s): 42.50.Md

In a recent interesting Letter, Lavoine and Villaeys [1]
have analyzed the influence of non-Markovian effects in a
three-pulse time-dependent four-wave-mixing experi-
ment. In this experiment [Fig. 1(a)], pump pulses propa-
gate in the directions k; and k, and induce a grating in a
medium. The dependence of the grating efficiency on the
delay time T between pulses k; and k, is recorded using
the scattering of the probing pulse k;, delayed by a fixed
time T with respect to pulse k,. Authors [1] have shown
that the energy of the diffracted light can be expressed as
a square of the relaxation function g (7) [2-4],

I(r)~|g(m)|?, (1

when the medium is excited by very short pulses. Their
calculation does not make assumptions about the analyti-
cal form of g (7). For this reason it is possible to consider
result (1) as general, and this result is interesting from the
point of view of learning about the dynamics of the bath.

In this Brief Report, I first define more precisely the
conditions of the correctness of Eq. (1). Then I show that
this dependence does not provide information about
non-Markovian relaxation dynamics for the case of the
inhomogeneously broadened transition (slow modulation
limit). Such information can be obtained by the
modification of a three-pulse four-wave-mixing experi-
ment [5].

Previously a similar study [6] was conducted for the
case of the Gaussian modulation of an optical transition
frequency. I considered a two-level system (E,>E,),
subjected to the action of radiation and a random station-
ary adiabatic perturbation W (t), which gives rise to re-
laxation in the system. I suppose that the quantity
u(t)=#"[Wy,(t)— W ,,(t)], which describes a stochastic
modulation of an optical transition frequency, is a Gauss-
ian random process with the correlation function
K ()={(u(0)u(t)). Contrary to Ref. [1], I did not make
any assumptions about the rates of the time evolutions of
the coherences and the populations.

I obtained the following formula for the energy of the
diffracted light [Ref. [6], Eq. (10)] for the case of the
Gauss-Markov modulation when the correlation function
has an exponential form K (t)=a’%exp(—|t|/7,), a is the
amplitude of modulation, and 7, is the correlation time of
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the interaction with the surrounding bath:
I(1)~ |g(r)Pexp(q)g ~*"y(2p2%,q) , @)
where

g=2p*{1+exp(—T /1, )[1—exp(—7/7)]} , (3)

(a)  petes]
~ [
As
S I

K -+ %,
FIG. 1. Geometry for three-pulse time-delayed four-wave-
mixing experiments: (a) grating on the basis of a polarization (r

variable, T = const); (b) population grating (r=0, T variable).
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Here the parameter p =ar, characterizes a kind of sto-
chastic modulation (p >>1 corresponds to the slow
modulation that results in an inhomogeneous broadening
of the optical transition; p <<1 corresponds to the fast
modulation that results in a homogeneous broadening of
the optical transition); g (t)=exp[— [ (r— 1)K (1)dt] is
the relaxation function; y(b,z) is the ir?complete gamma
function [7]. Equations (2) and (3) reduce to Eq. (1) only
for T >>7,. That is to say, the delay time T of the probe
pulse must be much larger than the correlation time. The
lack of the signal dependence on the ratio T /7, in Eq. (1)
is connected apparently with neglecting the influence of
bath fluctuations on populations in [1] due to the assump-
tion that the time evolution of the coherences is much
faster than that of the populations. This must be the case
within the slow modulation limit (p?>>1) (see below and
Refs. [5,8]). However, in general, it is not the case.

Further, in the slow modulation limit (inhomogeneous-
ly broadened transition) the dependence I(7) for T >>7,
is the following [Ref. [6], Eq. (17)]: I(7)~exp(—a?7?).
That is to say, in this case, formula (1) does not provide
information about the correlation time of the interaction
with the surrounding bath.

This result is not astonishing. Really, it is well known
that the relaxation function g (7) is the Fourier transfor-
mation of the absorption spectrum [4]. In the case of the
slow modulation this spectrum reflects directly the distri-
bution of the modulation with the modulation amplitude
a. Both the width of the absorption spectrum (in the fre-
quency domain) and the width of the relaxation function
(in the time domain) will be about a, and the response of
the system is dynamic and coherent [4]. Thus, in the
slow modulation limit, the relaxation function g (7) does
not provide additional information with respect to the ab-
sorption spectrum.

The possibility of the correlation time measurements in
the slow modulation limit (p?>>1) is based on the time
evolution of an inhomogeneously broadened optical tran-
sition [5,8]. This problem was investigated in Ref. [5] by
considering coherent optical effects (a photon echo) in
such a system. It has been demonstrated that the follow-
ing times are typical for the time evolution of the system
investigated:

a l<T'«<71,,

where a ~! plays the role of the reversible dephasing time
of an optical transition, T'=(r.a ~2)3=1_p ~2/3 plays
the role of the irreversible dephasing time, and the corre-
lation time 7, plays the role of the relaxation time of pop-
ulations. Thus, if one wants to measure the correlation
time 7, in the slow modulation limit, one ought to use the
population grating [Fig. 1(b)] instead of the grating on
the basis of a polarization [Fig. 1(a)]. The latter corre-
sponds to the three-pulse echo experiment. Therefore it
has been proposed in Ref. [5] to modify the three-pulse
method in the slow modulation limit such that 7=0 and
T=var. In this case the pump pulses k; and k, form
both the grating on the basis of a polarization and the
population grating. The polarization grating attenuates
for the time ~7T'. Therefore, if pulse durations
t,>T'>a ~1 (and naturally, T~t,>T'), only the popu-
lation grating preserves, and the probing pulse kj, de-
layed by the time T, allows one to measure the popula-
tion grating relaxation, i.e., time 7.

For this case the dependence I(T) is determined by
Egs. (11) and (16) of Ref. [5], obtained for the case of a
strongly broadened vibronic transition. For simplicity
we shall write this dependence here only for the partial
case of the strictly resonance excitation of the absorption
band and large Stokes shift of the absorption and emis-
sion spectra:

I(r=0,T)~[1—¢XT)] !, 4)

where ¢¥(¢1)=K (¢)/K(0) is the normalized correlation
function of the interaction with the surrounding bath [for
the case of Gauss-Markov modulation  ¥(¢)
=exp(—|t| /7,)]. Thus the dependence I(T) allows one
to determine the correlation time 7, of the frequency fluc-
tuations for the case of the inhomogeneously broadened
transition.

It is necessary to note that Egs. (2) and (3) do not
reduce to Eq. (4) for 7=0, since Eq. (4) has been obtained
for the case of the excitation by pulses of durations ¢, <7,
and t,>T'=(7,/a*)'?>a "' [5], and Egs. (1)-(3) are

correct for pulses 7, <<a "'/, .
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