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Very narrow doubly excited 2(1,0)"n and 2(—1,0)°n 1P° states of helium
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We present a detailed theoretical study of the very narrow A = — and A = 0 series seen in
the recently reported high-resolution photoionization spectrum of He below the N = 2 threshold
[M. Domke et al., Phys. Rev. Lett. 69, 1171 (1992)]. The hyperspherical close-coupling method
combined with the multichannel quantum-defect theory is used and the photoionization cross section
has been calculated over a wide energy range with high efficiency. Our results are in excellent
agreement with the experimental data and compare favorably with recent accurate theoretical works.

PACS number(s): 32.70.Jz, 32.80.Fb, 32.70.Gs

Since the first observation [1] of doubly excited states
of He, many experimental [2] as well as theoretical [3—11]
efforts have been focused on the photoionization spec-
trum of He. Although three Rydberg series of the 1P°
symmetry ought to exist below the N = 2 threshold, only
two of them, namely the A = + and A = — series have
been experimentally observed while the third A = 0 se-
ries remained missing. The large disparity in intensity
of the + and — series suggested a substantial difference
in radial correlation patterns. The physical significance
of this finding has long overshadowed the missing third
series. The main experimental difficulty in locating the
A = 0 series is its extreme narrowness. On the other
hand, this narrowness has led to some confusion among
theoretical works. While almost all the theoretical meth-
ods [6, 11] produced similar energy positions and widths
for the A = + and A = — resonances, they produced
quite different results for the A = 0 series {11, 12]. Some
theoretical calculations predicted even an incorrect level-
ordering of the A = 0 states with respect to the A = —
states [12].

Improvement in experimental resolving power has
made it possible to observe the hitherto “missing” A =0
states of He in a recent photoionization spectrum [12].
It is thus an important theoretical task to evaluate and
analyze the quantum-defect parameters of this last se-
ries. The accuracy of various computational methods
may be checked on this numerically stringent case. Pre-
viously, we proposed a general computational method
[hyperspherical close-coupling (HSCC) method] for two-
electron atoms [11]. The accuracy and efficiency of the
method have been checked on various physical quantities
of He [11,13]. Also we have reproduced the experimental
photoionization spectrum below N = 5 and 6 thresh-
olds [14]. In this paper, we reproduce the experimen-
tal photoionization spectrum below N = 2 by combin-
ing our method with the multichannel quantum-defect
theory (MQDT). In this article, we focus our attention
mainly on the extremely narrow A = 0 series and check
our method.

Our HSCC method is based on the use of the hyper-
spherical coordinates [15], which replaces the indepen-
dent particle radial distances r; and r2 by a pair of collec-
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tive variables: R and . The hyperradius R = /7% + 73
measures the “size” of the electron pair and the hy-
perangle a=arctan( %") describes the degree of electron-
electron radial correlation. The total wave function
W(ry,ry) is expanded in terms of the diabatic basis func-
tions {¢,(R;a,t1,f2)} which we proposed in Ref. [11],
namely

¥ = (R%? cosasina)™? Z F,(R)pu(R; o, F1, T2).
m

¢y

This expansion is rapidly and monotonically convergent.
The Schrodinger equation is then cast into close-coupling
equations for F,(R), which are solved by a standard
numerical integration method. The solutions are then
transformed into the reactance matrix form, thereby the
MQDT parameters are evaluated. The details of our
method can be found in Refs. [11, 13].

We employ the MQDT treatment [16] near thresh-
olds because the state density becomes very high and
more importantly the resonances become very narrow.
The treatment matches the close-coupling solutions to
the standing wave asymptotic solutions, thus postponing
the imposition of the asymptotic closed-channel bound-
ary condition. This treatment has a major advantage be-
cause the reactance matrix K and the dipole matrix Dy,
depend weakly on energy. Interpolation of these slowly
varying parameters permits efficient computation with
sufficient accuracy. As an example, in Fig. 1(a) we show
the four components of the D matrix in the length form
near N = 2 threshold as well as the phase shifts, namely
the arctangent of the eigenvalues of K matrix in Fig. 1(b).
We see that indeed the D matrix and the phase shifts are
smooth functions of energy (note the expanded scale in
Fig. 1). Within the energy range from E = —0.515
a.u. to the N = 2 threshold, about 15 energy mesh
points can guarantee enough accuracy for the calculation
of photoionization cross sections.

For calculating the physical quantities, we need to im-
pose the asymptotic boundary condition. The rectangu-
lar matrix L defined below eliminates the exponentially
increasing Coulomb functions from the closed channels,
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i~ (1]
where the submatrices are
Loo = looy (2>
L., = (tanmy, + K.) K., (3)

where o and ¢ designate sets of open and weakly closed
channels, respectively, and the diagonal matrix v, de-
notes the absolute value of the reciprocal wave number
of the continuum electron in the closed channels. The

physical reactance matrix K and dipole matrix D are
given by

K = Koo - Kochoa (4)
D =D, — D;Lc,. (5)

After the above elimination of the weakly closed channels
and imposing incoming-wave boundary condition on the
final state, the photoionization cross section (in a.u.) for
a transition from the initial state into one of the final
open channels may be expressed as
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FIG. 1. Four components of (a) dipole matrix Dx(FE) in
the length form and (b) phase shifts as a smooth function of
total energy near the N = 2 threshold.
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where « is the fine-structure constant and w is the photon
energy.

In our calculation the ground-state wave function for
He is also calculated by the HSCC method. With about
20 diabatic basis functions, the energy level obtained is
Ep = —2.90358 a.u. The calculation of the photoioniza-
tion cross section is performed in both length and ac-
celeration forms. The two forms give the same results
within two digits with about 30 basis functions for the
final 1 P° state.

The doubly excited states may be classified by a set
of quantum numbers N (K, T)4n. Here K and T are the
quantum numbers pertaining to the angular correlation
[17] while A pertains to the radial correlation [18]. N
is the principal quantum number of the inner electron
and also represents the threshold of Het while n is the
radial quantum number of the outer electron. In this
scheme, the three Rydberg series of He (1 P°) below N =
2 are denoted as 2(0,1)*n, 2(1,0)"n, and 2(—1,0)n,
respectively. In our discussions to follow, we use instead
the simplified notation n, A to represent a doubly excited
state.

The recent experiment [12] has achieved very high 4-
meV energy resolution. With such high resolving power,
the extremely narrow states of the A = 0 series as well as
higher n states of the A = 4+ and — series have been de-
tected. Reproduction of the experimental spectrum for
the A = + series is not expected to be a difficult task
for our method [11]. Indeed our calculated positions and
shapes of doubly excited states are in excellent agreement
with the experimental ones up to the highest resolved
n,+ state. As an example, we display the calculated
photoionization spectrum corresponding to the photon
energy from 64.3 eV to 65.4 €V in Fig. 2(a) and also we
compare it with the experimental result which is shown
in Fig. 2(b). Our calculated spectrum has been con-
voluted with the experimental resolution of 4 meV. The
experimental result appears to have a somewhat decreas-
ing background. Nonetheless, the experimental spectrum
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FIG. 2. Photoionization spectrum of He below the N = 2
threshold. (a) The present result and (b) the experimental
one [12].



48 BRIEF REPORTS 843

1.4 - T 1 T |3'_l 1 :| T T T_l 1
g 1@ 1af
5 r 1.19)
5 1.3F [
b [
g L [ 3,0 1.17]
o 1.2’“’ 1.2E
1 1 LI T T L | T T T 1 T 1 1 T T T
= [ ®
2
S
[
5
S
o
T
S50 T TR TS S .
62.73 62.7764.11 64.15 64.64 64.67
Photon Energy (eV)
FIG. 3. The photoionization spectrum for A = — and

A = 0 resonance states. (a) The present results and (b) the
experimental ones [12].

has been well reproduced.

The calculated spectrum is expanded for some of the
very narrow n,— and n,0 states as shown in Fig. 3(a)
while the corresponding experimental result [12] is com-
pared in Fig. 3(b). For the higher n, 0 states, it becomes
difficult to resolve them with 4-meV resolution power.
Hence we give the calculated raw spectrum (that is the
spectrum without any convolution) corresponding to the
7,— and 6,0 states in Fig. 4 in order to indicate clearly
the presence of the 6,0 state. Here we wish to note that
the intensity of the A = 0 series is of the same order of
magnitude as that of the A = — series. This can be also
seen from Fig. 1 that the dipole moments corresponding
to the transition from the ground state to these two se-
ries are of the same order of magnitude. The very reason
why these A = 0 states have not been experimentally ob-
served until recently [12] is not only a matter of photon
intensity but due to the extreme narrowness which defied
the finite experimental resolution.

In Table I, we compare our calculated widths of all the
three series with those from other methods [6-10]. We
see that the widths of the A = + doubly excited states
obtained by them are similar, while the results for the
very narrow states, A = 0 and —, differ noticeably. Thus
far, there has been no consensus as to which values are
more accurate and as to which methods are more reli-
able. Because the widths of these very narrow states are
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FIG. 4. The raw spectrum for 7, — and 6, 0 states.

100 times smaller than what the experiment can resolve,
experiments with higher resolution power are still needed
to check the accuracy of these theoretical values quanti-
tatively. On the theoretical side, extracting the width by
fitting to the spectrum becomes less and less reliable as
the width itself becomes supernarrow. This may partly
account for the disparity among the theoretical widths.
However, as is clear from the comparison of our calcu-
lated spectrum with the experimental one in Fig. 3, we
see that both the positions ond shapes of these resonances
are well reproduced. The accuracy and the capacity of
our method are confirmed even in this difficult case.
Some benchmark results are presented for the reso-
nance energies of A = — and A = 0 states in the upper
part of Table II. The error is estimated to be about 2
meV by varying the number of basis functions and the
matching radius. Our results are in excellent agreement
with both experimental ones [12] and other recently im-
plemented accurate theoretical calculations [6-10]. The
quantum defect of the A = — series is calculated to be
0.730 at threshold and that of the A = 0O series is neg-
ative, —0.230, while the experimental results are 0.7205
and —0.260, respectively. It is found [12] that previous
calculations [5] give quite different energy separations,
AF, between the n,— and n — 1,0 states. What is sur-
prising is that some of the results give positive values
for AE while others give negative values. In the lower
part of Table II, we compare our calculated AE values
with the experimental ones as well as with those from
other more recent theoretical methods. We see that all
of these recently calculated results agree very well with
the experimental one. We find, however, that the ab-
solute positions of the very narrow states depend much
more sensitively on the matching radius in our calcula-
tion than the energy separations do. The error in the

TABLEI. The widths I in eV for doubly excited ! P° states of He below N = 2 threshold. The

number a[b] denotes a x 10°.
r

State Present Ref. [6] Ref. [7] Ref. [8] Ref. [9] Ref. [10]
2,+ 3.73 [-2] 3.78 [-2] 3.74 [-2] 4.02 [-2] 3.84 [-2] 3.70 [-2]
3,+ 8.32 [-3] 8.27 [-3] 8.19 [-3] 8.92 [—3] 8.39 [3] 8.11 [-3]
4,+ 3.48 [-3] 3.01 [-3] 3.51 [—3] 3.84 [—3] 3.58 [—3] 3.43 [-3]
3,— 1.16 [—4] 1.04 [—4] 1.05 [—4] 1.13 [-4] 1.12 [—4] 1.03 [—4]
4,— 5.21 [—5] 5.44 [—5] 5.58 [—5] 7.21 [-5] 5.68 [—5] 4.11 [-5]
3,0 4.41 [—6] 3.3 [—6] 4.4 [-7) 3.30 [—6] 1.56 [—6] 4.41 [-7]
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TABLE II. Resonance energies of the A = — and A = 0 states, and energy separations between

n,— and n — 1,0 states.

State(s) Observed [12] Present Ref. [6] Ref. [7] Ref. [8] Ref. [9]

Resonance energy (eV)
3,— 62.7580 62.758 62.7611 62.7611 62.761 62.757
3,0 64.1189 64.119 64.1217 64.1211 64.127 64.1211
4, — 64.1353 64.136 64.1377 64.1374 64.142 64.134
4,0 64.6485 64.647 64.6514 64.6512 64.654 64.648
5,— 64.6574 64.657 64.6598 64.6598 64.662 64.656
5,0 64.9071 64.907 64.9096 64.820 64.910
6, — 64.9123 64.913 64.9145
6,0 65.051 65.052 65.0545 65.003
7,— 65.0552 65.056 65.0578
7,0 65.143 65.112
8, — 65.1435 65.146
Energy separation AE (meV)

4,-/3,0 16.4(4) 17 16.0 16.3 16.0 16.0

5,—/4,0 8.9(6) 10 8.4 8.6 8.0 8.0

6,—/5,0 5.2(7) 6 4.9

7,—/6,0 4(2) 4 3.3

8,—/7,0 3

energy separation is estimated to be about 1 meV. This the narrow A = — series and even the extremely narrow

error is smaller than that in energy position due to can-
cellation of errors. This is not difficult to understand
because the separations are very small and the conver-
gence of the expansion in Eq. (1) is monotonic. We find
further that the convolution affects the peak position of
each resonance by as much as 1 meV. Since the experi-
mental positions are extracted from the convoluted cross
sections, this suggests that the agreement with the ex-
periment may be actually even better than presented in
Table II.

To conclude, the photoionization spectrum of He be-
low N = 2 threshold has been studied by combining our
HSCC method and the MQDT. The experimental find-
ings are well reproduced. The positions and shapes of

A = 0 series agree with the experimental results. With
the observation of the third series and with its successful
reproduction at the 1-meV order, we have a firm under-
standing of the He(N = 2) manifold.
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