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Statistics of avoided crossings for generic quantum systems
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The distribution of isolated avoided crossings in quantum systems whose classical counterparts possess
a mixed phase space of regular and chaotic dynamics is investigated. The distribution function for the
width is shown to consist of two components: a near-Gaussian distribution suggested by random matrix
theory for the chaotic component and an approximately 5-shaped component originating from tori in
the regular portion of phase space. A statistical measure for overlapping avoided crossing based on
parametric correlations of energy levels is introduced and shown to be sensitive to the fraction of classi-
cally chaotic phase space.

PACS number(s): 03.65.Sq, 32.30.—r, 05.45.+b, 05.40.+j

I. INTRODUCTION

Both experimental [1,2] and numerical [3,4] studies
have provided evidence that non-integrability of a classi-
cal Hamiltonian system is rejected in the spectra proper-
ties of the corresponding quantized systems. On the scale
of the average spacing between nearest levels, the distri-
bution of the nearest-neighbor spacing (NNS) has attract-
ed much attention [5]. Berry and Tabor [6] proved
rigorously that except for special cases (one-dimensional
systems and harmonic oscillators), the NNS distribution
for a classically regular system is Poissonian. In the clas-
sically chaotic regime, the NNS distribution for a real
Hamiltonian system has been shown numerically to fol-
low a Wigner distribution as predicted by the random
matrix theory for the Gaussian orthogonal ensemble
(GOE) [7].

The local behavior on the finest scale of the quantum
spectra, namely, the statistical properties of the avoided
crossings (AC) between energy levels, had been proposed
in early studies as the fingerprints of classical chaos [8],
though at that time only on a qualitative level. Very re-
cently, the width distribution of avoided crossings for the
classically completely chaotic system has been investigat-
ed quantitatively [9—12] using random matrix theory
(RMT), which suggests that the AC distribution is Gauss-
ian for GOE systems. Comparison with numerical exper-
iments showed overall good agreement, however, in the
limit of extremely small avoided crossings, deviations
from random matrix theory were observed [13].

In the following, we present a study of the AC distribu-
tion for "typical" (i.e., generic) Hamiltonian systems
whose classical counterparts possess a mixed phase space
of regular and chaotic dynamics. We find the integrable
component in the classical phase space of a generic sys-
tem to be rejected in an approximately 5-shaped peak
near the origin of the AC width distribution, and find the
distribution to change from a 5 type to a Gaussian one as
the corresponding classical system undergoes a transition
from regular to chaotic motion. Furthermore, we intro-
duce a measure for the overlap of nonisolated avoided
crossings which is based on the study of correlated

motion of energy levels. We show that this measure is
sensitive to changes in the underlying classical phase
space structure.

II. AVOIDED CROSSINGS
AND PARAMETRIC MOTION OF ENERGY LEVELS

ah. A, b, /2H"(~"= ~Z2 —~~ (3)

where 5/2 is the coupling matrix element between two
diabatic levels and a is the slope with which the levels ap-
proach each other and would cross if 6 would be zero.

Consider a generic system with the symmetry of time
reversal described by the Hamiltonian

H(A, ) =Hp+A, V,
where Ho is a separable Hamiltonian and Vis, in general,
a nonseparable perturbation. When A, increases, the clas-
sical system undergoes a transition from regular to chaot-
ic motion. It is well known [14] that for H(A, ) with no
additional symmetry the quantum levels generally do not
cross each other as A, varies. Instead, two levels may ap-
proach and recede from each other along two branches of
a hyperbola. This behavior is termed avoided crossing.
Around the point of the closest approach, A,„the dis-
tance between two levels can be approximated by the
Wigner —von Neumann formula

~E=E„„(X)—E„(X)=QC'+4am'V', ,

where C=E„+&(A,, )
—E„(A., ) is the minimum distance,

Vp ~
V + ]( A,

& ) ~
is the coupling among two levels at the

point of the closest approach, and hA, =A, —A, Equation
(2) corresponds to the "adiabatic" representation of an
isolated avoided crossing. A more detailed quantitative
criterion for an isolated AC will be given below. An al-
ternative diabatic representation follows from the
description of the effective 2X2 Hamiltonian for the lev-
els ( n, n + 1), denoted by (1,2) in the following, by the
matrix
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Solving the eigenvalue problem (3) and comparing with
(2) leads to the correspondence

a=VO . (4b)

„E„=&niVin &= V„„=p„,
2

V;„

dA,
" . E E—

(6a)

(6b)

dA,
'"

. . 'J J" E E E —E. —j (Ai, n) J Pl J

I;„(p;—p„)
(6c)

For systems with time reversal symmetry the coupling
matrix elements V;„are real and we assume the spectrum
to be entirely discrete. It is worth noting that Eq. (6) de-
scribes the parametric evolution of the matrix element
V;„ in the adiabatic representation.

We have recently implemented Eq. (6) in numerical
studies of the morphology of avoided crossings [16] and
of parametric correlations of energy levels [17]. In the
following, we use this set of equations for determination
of the width distributions and the A, ("temporal" ) correla-
tion between avoided crossings.

III. WIDTH DISTRIBUTION
OF AVOIDED CROSSINGS

For classically completely chaotic, metrically transitive
systems, random matrix theory predicts a Gaussian dis-
tribution of the width of an avoided crossing. In its sim-
plest form, the underlying argument can be phrased as
follows [12]. The two free parameters in M,a in the dia-
batic representation [Eq. (3)], a and b„are independent
Gaussian random numbers. Near a quasidegeneracy with
b,A.~O (more precisely, ab, A, ~O, ) the width of the avoid-
ed crossing is given by 5 [=C, Eqs. (2), (4)]. Consequent-
ly, RMT predicts

P( C)= 2 —c'l(~«&')
~&c)

with ( C ) the mean value of the width in the ensemble of
avoided crossings. In the semiclassical limit, equivalent

Note the interchange of the role of (off-) diagonal ele-
ments in the (adiabatic) diabatic representation

~=2&1IH.al2&d;. =(&2IHI2& —&1IHl1 &).g;. (5)

Note, furthermore, that b. and a in (5) are assumed to be
independent of b,A, , i.e., the diabatic state vectors

~
1,2) to

be invariant under variation of hX for small AA, . The
latter plays an important role for the correlated motion
of energy levels near avoided crossings.

As shown by Pechukas [15], parametric motion of en-
ergy levels of (1) as a function of the parameter A, can be
described by a set of "equations of motions" in the A,

"time, "

We note that any other sharply peaked function (on the
scale of the mean spacing) is admissible as well, while the
advantage of a 5 function is that it is without additional
free parameters. For generic quantum systems with a
mixed classical phase space consisting of regular islands
and several chaotic seas, we expect P(C) to consist of
two components: One with fraction 1 —y is formed by
avoided crossings involving two adjacent levels from the
quantization of the classical tori of regular islands and
Eq. (8) applies. The other group with fraction y involves
at least one level embedded in the chaotic sea. The
Gaussian distribution [Eq. (7)] should be applicable to
this group. Therefore, the distribution for all AC's reads

1/2

P(C) =(1—y)5(C)+y exp( DC ), (—9)

where D is determined by the average width

2D— (10)

This distribution interpolates between a 6 distribution
[Eq. (8), (y=O)] and a Gaussian distribution [Eq. (7),
(y= 1)]. The parameter y can be determined by fitting
the results of numerical experiments for quantum spec-
tra. At the same time, we expect y to be closely related
to the fraction of the classically chaotic phase space.

As a model system for testing hypothesis [Eq. (9)] we
use the system of two coupled Morse oscillators with [19]

2

IIo= y Ho
i=1

Ho =P; /2M;+ V;(r, ),
P1P2 /m

where M; are the reduced masses for the two diatomic
pairs in the molecule, V; are the corresponding Morse po-
tentials, and m is the mass of the central atom. This sys-
tem provides a simple model for the vibronic motion of

to the limit A —+0, (C) is of the order fi where N is the
number of degrees of freedom of the system [18].

In the quasi-integrable limit, on the other hand, the
Hamiltonian system can be quantized via torus [or
Einstein-Brillouin-Keller (EBK)] quantization. Invariant
tori fill most of the accessible phase space. Energy levels
are characterized by complete set of compatible quantum
numbers (N actions of the ¹orus). Primitive (i.e.,
nonuniform) semiclassical quantization therefore gives
crossings rather than avoided crossings [8]. Uniform
quantization lifts these degeneracies and induces small
splittings due to dynamical tunneling between tori and
narrow phase space zones within which the nonintegrable
perturbation destroys tori. The size of avoided crossings
in the near-integrable limit is of the order exp( —I/fi)
and therefore small compared to the average spacing. On
the scale of the average spacing between energy levels,
the distribution for these avoided crossings can be ap-
proximately described by a 5 function

P(C) =5(C) .
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linear triatomic molecules and has been extensively stud-
ied as a model for the quantum mechanics of a classically
chaotic system with two degrees of freedom [20]. We
used the molecular parameters for H—C—C which pro-
vide 770 bound states in the integrable limit. The cou-
pling to the continuum is neglected. More detailed infor-
mation on our numerical calculation is given in Ref. [21].
It is important that the interval of A, within which the
avoided crossings are counted must be small compared to
the range of A. when the classical phase space of Eq. (1)
undergoes structural changes.

The study of the parametric evolution of the spectrum
[Eq. (6)] is particularly convenient to identify isolated
avoided crossings. Only those avoided crossings should
be included which are dominated by a two-level interac-
tion such that two-level approximation [Eq. (2)] is locally
valid near the point of the closest approach A, The va-
lidity of the two-level approximation can be easily tested
for each avoided crossing within our calculation by re-
quiring that the residual forces exerted by other levels
[see Eq. (6b)] on the two levels in question, F&, are negli-
gible compared to the dominant two-level force F2 be-
tween the two levels, i.e.,

The validity of the RMT prediction [Eq. (7)] for small
C cannot be tested, however, for a mixed system since the
region near the origin is always "overshadowed" by the 5
contribution due to regular islands. Only in the limit of
completely chaotic systems, or systems whose regular is-
lands are too small to accommodate quantum states, does
the C~O limit of RMT become accessible. For several
such systems (strongly "kicked" top, billiards, hydrogen
in strong magnetic field [22]) recent investigations [12,13]
found systematic deviations which were detected in the
cumulative distribution

I(C)=I dC'P(C') . (13)
0

The width of the avoided crossings for billiards has been
recently linked to very long periodic orbits [23]. Accord-
ing to the GOE result [Eq. (7), or Eq. (9) with y = 1],I(C)
should be proportional to C in the limit of small C for
chaotic systems. Using a sample of = 10000 AC's, it was
shown in Ref. [12] that I(C) does not grow linearly with
C. As found by Goldberg and Schweizer [13],I(C) grows
instead quadratically with C for small C, i.e.,

P(C)= I(C) ~ C, C~O .= d
dC

max — +] 2
p'2

k, s

k (Wn, n +1) s k

22~...+i«F2=
En+i —E. (12)

for A, =A, We have fund that for F&/F2 (0.1 the two-
level approximation is accurate enough and therefore
used this criterion to choose avoided crossings. %'e note
that the results are stable against the variation of the
cutoff criterion, provided that F& «F2.

Figure 1(a) displays the AC distribution in the pertur-
bative regime (0 ~ A. ~ 0. 1) where C is in units of the aver-
age spacing. The circles are the values of Eq. (9) aver-
aged over each window of size AC =O.OS and the numeri-
cal results of the system for coupled Morse oscillators are
represented by histograms. The dominant feature is
clearly the sharp peak near the origin C=O. Note the
peak width is not intrinsic but is determined by the win-
dow size AC. The sharp peak near the origin signi6es
the approximate separability and the persistence of
Kol'mogorov-Arnol'd-Moser (KAM) tori in the classical
phase space. A very weak Gaussian component at
large C is recognizable. For strong perturbations
(0.5 ~ I, &0.8) chaotic motion becomes prevalent, though
some regular islands still exist (see Fig. 2). Figure 1(b)
shows that the corresponding AC distribution consists of
two components: a dominant Gaussian tail and a small
peak near the origin, as predicted by distribution Eq. (9).
Figure 2 displays the k dependences of quantum parame-
ter y and the fraction of classical chaotic phase space [21]
Q, I in the energy hypershells within which the quantum
energy levels lie. We averaged the fraction Q, I within
each window of M. =O. 1. One can see that y closely fol-
lows Q,I. The AC distribution changes from a 5 type to a
Cxaussian one as the corresponding classical system un-
dergoes a transition from regular to chaotic motion.
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FIG. 1. The AC distribution (a) in the near-integrable regime
(0&A, ~0. 1) and (b) in mostly chaotic regime (0.5~A, ~0.8)
where C is in units of the average level spacing. The circles are
the averages of the distribution function Eq. (9) over the win-
dow of the histogram (0.05 of mean spacing). The numerical re-
sults for coupled Morse oscillators are given by histograms.
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(18)

the matrix elements become

From (15c) follows that bE(b, A, ) V,~(b, A, ) is a constant of
k motion, in particular

bE(bA, ) V)i(bA, )= VcC

for all b.A, . In the limit of "large" b, A, (but still within the
range of validity of the two-level approximation), i.e.,

FIG. 2. Quantum parameter y (diamond) and the fraction of
classically chaotic phase space in the energy shells contributing
to the energy level statistics, Q„, (triangles) as a function of A,

for coupled Morse oscillators.

V&z(bA, ) = sgn( Vohk. ),C
25K,

b,Z(b, z)=2~b, zV, ~
.

(19a)

(19b)

The origin of this deviation is not yet clear. The proposal
that they are due to insufficient ensemble size can be
clearly rule out [24]. As recently suggested, another pos-
sibility would be numerical errors in the determination of
the width distribution [25]. The third possibility is strong
parametric correlations among matrix elements and
efFects of overlapping avoided crossings [24]. We will in
the following analyze the distribution of nonisolated
avoided crossings.

IV. OVERLAPPING AVOIDED CROSSINGS

A multitude of overlapping avoided crossings has been
proposed from early on as a signature of classical chaos
in quantum spectra [8]. Numerical calculations support-
ed this criterion qualitatively, but a quantitative descrip-
tion for the amount of overlap has only recently begun to
develop. One measure is the mixing angle describing the
incomplete exchange of diabatic state vectors across an
avoided crossing due to the presence of other nearby lev-
els [26]. In the following we introduce a measure that is
solely based on the parametric variation of the energy
levels without explicit reference to wave functions.

The parametric equations of motion [Eq. (6)] provide a
convenient framework to analyze the parametric correla-
tions among matrix elements. Specializing to the two-
level system involved in an isolated avoided crossing Eq.
(6) becomes

Equations (18) and (19) are used to define a measure for
overlapping avoided crossings. The latter are character-
ized by a breakdown of the Wigner —von Neumann for-
mula for isolated avoided crossings [Eq. (2)]. The two-
level approximation [Eq. (15)] underlying Eq. (2) becomes
invalid due to the presence of levels with which one of the
two levels undergoes a subsequent avoided crossing. The
avoided crossing can be considered to be isolated if the
asymptotic form of the level separation [Eq. (19)] is
reached prior to the encounter with other levels. Denot-
ing the distance between two adjacent avoided crossings
in X parameter space of the same level by EA,O, the ratio

C
2b, k,c Vo

(20)
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measures the amount of overlap. An isolated avoided
crossing corresponds to R «1 while R =1 implies strong
overlap.

AE =p,
2

VizhE =4
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The Wigner —von Neumann formula for b,E(A, ) [Eq. (2)]
solves the system (15). Moreover, we find an explicit ex-
pression for the hA, -dependent adiabatic coupling matrix
element

Fl&. 3. Overlap parameter (R ) (circle) and the fraction of
classically chaotic phase space in the energy shells contributing
to the energy level statistics, Q,&, (triangles) as a function of X

for coupled Morse oscillators.
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The ensemble average R provides a measure of the
overlap of the avoided crossings for the system. Because
R varies by orders of magnitude in classical transition re-
gime, it is convenient to employ for an ensemble of avoid-
ed crossings the geometrical mean

(21)

Figure 3 depicts (R ) as a function of I, averaged over
all AC's within a given window of 6=0. 1. In the per-
turbative regime (0 ~ A, ~ 0. 1), ( R ) = 10 indicating the
avoided crossings are mainly isolated. When
0.7~A, 0.8, (R ) has risen to =0.5 indicating the pre-
valence of overlapping avoided crossings. In order to il-
lustrate the correspondence to the classical phase space
structure we have overlaid the fraction of classical chaot-
ic phase space Q,&. The relative position and scale be-
tween the two axes (left-hand side Q, &

and right-hand side
( R ) ) were determined by a least-y fit

min(~ ~) g Ilog~o(R )(A,;)—[AQ, ((A,;)+8jj

As expected, the amount of overlap is directly correlated
with the fraction of chaotic phase space.

V. CONCLUSIONS

The distribution function for the width of avoided
crossings, P(C), for a Hamiltonian with mixed phase
space is shown to consist of an approximately 5-shaped
component associated with the regular fraction of phase
space and an approximately Gaussian distribution for the
chaotic fraction of phase space. A measure for overlap of
avoided crossings is introduced and shown to be closely
correlated with the fraction of chaotic phase space.
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