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‘We calculate the micromaser spectrum via the eigenvalues and eigenvectors of the master equa-
tion. We show that (i) it is not always the lowest eigenvalue which governs the linewidth and (ii)
the oscillations in the linewidth originate from an interplay between two eigenvalues.
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I. INTRODUCTION

In the first [1] of these two papers on the micromaser
spectrum (hereafter referred to as paper I) we have pre-
sented a Green’s-function approach as well as various
approximate analytical expressions for the micromaser
linewidth [2]. In the present paper we pursue another
approach: We obtain the spectrum numerically via the
eigenvalues and the eigenvectors of the micromaser mas-
ter equation. We identify the contributions of the in-
dividual eigenvalues to the spectrum and show that the
micromaser linewidth is not necessarily determined by
the lowest eigenvalue. Moreover, in the neighborhood of
trapping states two eigenvalues have an essential influ-
ence on the linewidth.

The paper is organized as follows: In Sec. II we ex-
press the correlation function K(t) = (a'(t)a(0)) gov-
erning the spectrum in terms of the off-diagonal ele-
ments fppt1 = /3,(11) of the “moment” operator § which
satisfies the equation of motion for the density opera-
tor py of the maser field subject to the initial condition

p~§11) = v/n+1P,y1. Here P, is the steady-state pho-
ton statistics. We therefore cast in Sec. III the equation
of motion for the maser density operator ps, which is
identical to that for p, into a system of linear differential
equations. This allows us to express the quantities of in-
terest such as K(t) by the appropriate superposition of
eigenvectors of the corresponding matrix. In particular,
the spectrum of the maser is the sum of Lorentzian dis-
tributions, each of which has a width given by the real
part of an eigenvalue. The weight of each Lorentzian dis-
tribution follows from the initial condition for ﬁg). We
determine the eigenvalues and eigenvectors numerically
in Sec. IV and discuss their behavior as a function of the
pump parameter and the number of thermal photons. We
conclude by summarizing our main results in Sec. V.
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II. SPECTRUM FROM THE DECAY OF
OFF-DIAGONAL ELEMENTS OF
THE DENSITY MATRIX

In the present section we relate the time dependence
of the two-time correlation function

K(t) = (a' (t)a(0))

to the time dependence of the off-diagonal elements of
the field density operator. As in paper I we define the
micromaser spectrum as the Fourier transform

(2.1)

S(w—we) = Re/K(t) e~ Hw—wdt gy (2.2)
)

of the two-time correlation function K(t). Here w,. de-
notes the frequency of the cavity field.

The central problem of the calculation of the micro-
maser spectrum is therefore to find the time dependence
of K(t). With the help of the time evolution operator
U (t) for the combined field (f) — reservoir (r) system the
correlation function K (t) reads [3]

K(t) = Trs,r [UT(#)a' (0)U (£)a(0)p5,-(0)] (23)

or

K(t) = Try [a"(0)5(2)] ,

where we have defined the trace over the reservoir of the
first moment of the field operator as

A(t) = Tr, [U()a(0)ps, OV (2)] -

We therefore call § the moment operator. In the Markov
approximation the operator p(t) satisfies [4] the equation
of motion for the field density operator

(2.4)

(2.5)
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ps(t) = Tr, [U(t)ps,(0)U (1)] (2.6)
with the initial condition
5(0) = a(0)p(0). (2.7)

Since we are only interested in the correlation function
K (t) at steady-state we choose the steady-state solution

of the field density operator p( %) as the initial condition,
that is,

#(0) = a(0)pf .

In the number state representation we can perform the
trace in Eq. (2.4) and find

(2.8)

oo
K(t) =) (nla'(0)5(t)In)
n=0
o0
=Y VnF1(nlpt)n+1) (2.9)
n=0
or
oo
K(t) =Y vVn+1pnnti(t). (2.10)
n=0
The initial condition Eq. (2.8) reads
Prn+1(0) = (nla(0)p}|n + 1)
=Vn+1{n+1/p{|n+1) (2.11)
or
ﬁn,n+1(0) =+vn+ 1 Pn+1 y (212)
where P, = (n|p(f3)|'n) denotes the steady-state photon
statistics.

III. SOLUTION OF MASTER EQUATION IN
TERMS OF EIGENVALUES AND
EIGENVECTORS

So far our considerations are rather general; we now
concentrate on the micromaser. In the previous section
we have shown that the moment operator § which deter-
mines the time dependence of K (t) satisfies the master
equation for the micromaser field. The equation of mo-
tion for the density matrix elements

Prn+k = (nlpgin + k) = P (3.1)

of the micromaser field in the interaction picture reads [5)

P (&) = AP o0+ BE o) e )8 (3.2)

where C(k) B(k) and AP are given by

AP = rsin (g74/n) sin (gT\/n + k) +ynpy/n(n+k),
(3.3a)

B® = —r [1 —cos (g7vn+ 1) cos (gv'\/m>]

k
= (np + 1) <n+§) =Y <n+1+§) ;

(3.3b)
(3.3c)

C® =y (ny+1)y/(n+1)(n+1+k).

Here r is the injection rate of Rydberg atoms whose time
of flight through and coupling strength with the cavity
field are given by 7 and g, respectively. The cavity de-
cay rate is denoted by v and n; is the mean number of
thermal photons.

For our numerical calculations we interpret the matrix
elements & (t) = (n|a(t)|n + k) of the operator p(t) as
the nth component of the vector x(*)(t), that is,

] =50,

When we recall that p¢) (t) satisfies Eq. (3.2) with p{¥ (t)

replacing pn, )(t) the equation of motion for the vector
x(*) (t) reads

(3.4)

x(k) — Q(k)x(k) , (3.5)

where Q(*) is a tridiagonal matrix with the elements

k k
Qi,i_l = A’Slk) » Q%’f% = By(xk) ’ Q’SL,’I)'L+1 = Cr(zk) .

(3.6)
The time-dependent solution of Eq. (3.5) can be ex-
panded according to

x(®) ) = chk) xl(k) e—)\fk’)t , (3.7)
l

(k)

where x;” and )\§k) follow from the eigenvalue equation

NCHONENONOY

(3.8)

The coefficients cf ) have to be determined such that

x®(0) = Z cgk) xfk) (3.9)
1
fulfills the initial condition
[x®©@)] =P = ViFTpns1nsk(0)
=va+1pl7(0),  (3.10)

which is the number state representation of Eq. (2.7).
According to Eq. (2.10) only ,5%1) (t) and therefore only
x()(t) has an influence on the micromaser spectrum. We
therefore confine ourselves for the remainder of the pa-
per to the case k = 1. Furthermore, we investigate the
micromaser spectrum at steady state, where we have

[x0(©)] =500 = VAFT Pas.

We obtain the steady-state photon statistics P, from
Eq. (3.2) using the condition of detailed balance and
find [5,6]

(3.11)
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Nsin? (gr/V)
v(ng+1)

Np
_POH<nb+1

where Py denotes a normalization constant and N = r/~v
represents the number of atoms passing through the cav-
ity in a time !

The coefficients cl(l) can be determined numerically
from Eq. (3.9) with £ = 1, that is,

3 XD
l

together with Egs. (3.11) and (3.12). Equation (3.13) is
the expansion of the vector x()(0) of the initial condi-
tion, Eq. (3. 11), in eigenvectors. We determine [7] the

coefficients ¢ @ by noting that the eigenvalues )\( ) and

> . (3.12)

=xM(0) (3.13)

the eigenvectors y( ) of the transposed matrix [Q(l)]

are related to the eigenvalues /\l(l) and eigenvectors xl(l)

of the matrix Q) via

T
(1 1 1 1
N A

When we multiply Eq. (3.13) by [ (1)] and use the or-

(3.14)

thogonality relation, Eq. (3.14), the coeflicients c( ) read

T
D = [yl(l)] xM(0). (3.15)

We have now all ingredients of the correlation function
K (t). Equation (3.4) expresses the correlation function
K(t), Eq. (2.10), as

K(t) = Z VRFIpP@) =Y v+l [x(l)(t)]n

(3.16)
which with the help of Eq. (3.7) reads

K(t)=3 Kie X"t (3.17)
l

Here the contribution K; of the [th eigenvalue to the
correlation function follows from Eq. (3.15) and reads

K; = Z [yl(l)]mvm+ 1Pnt1
m

SDIRES [Xz(l)]n (3.18)

Therefore we have to calculate the eigenvalues )\(1) as well
as the right- and left-sided eigenvectors xl( ) and y(l)

the matrix Q1) respectively. The Fourier transform of
Eq. (3.17),
K;

S . E— (3.19)
/\,(1) + i (w — we)

S(w—we) = Rez
1

is then the spectrum of the micromaser: It consists of

Lorentzian distributions, weighted by K;. The width of
each individual Lorentzian distribution is the real part of

the eigenvalue )\1(1)

IV. DISCUSSION

We start our analysis by first discussing the eigenvalues
of the micromaser master equation and then show how
the micromaser spectrum emerges from these eigenvalues.

Since the matrix Q(?) is not symmetric the eigenval-
ues can be complex. In Fig. 1 we show the real part
and the imaginary part of the first 10 eigenvalues /\1(1) of
the matrix Q¥ normalized to the cavity damping con-
stant v as a function of the pump parameter 6 = VNgr.
Here we have chosen N = 50 and np = 104, We have
obtained this figure by numerically calculating the eigen-
values of the truncated matrix Q¥ of size 100 x 100. For
# = 0—the field in the resonator shows only decay—the
eigenvalues take a simple analytic expression

N =(-3)7,

For increasing pump parameter 6 the eigenvalues de-
crease assuming a minimum around the first maser
threshold, § =~ 1, and then rapidly increase. This behav-
ior is analogous to that of the ordinary laser [8]. However,
for larger pump parameters they cross each other and es-
pecially the higher eigenvalues create a rather complex
picture. As an example we have plotted the neighbor-
hood of # = 27 where the real parts of two eigenvalues

1=1,2,3,.... (4.1)

e ,/\\\ WJ\ \r"}'
& |
P

0/m

FIG. 1. The real part (a) and the imaginary part (b) of the
10 lowest eigenvalues /\,(1)/7 of the micromaser master equa-
tion as a function of the pump parameter § = v Ngr. The
eigenvalues are normalized to the decay time vy~ of the cav-
ity. The scaled injection rate N = r/+ of atoms has the value
N = 50 and the number n; of thermal photons is ny = 0.05.
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merge into one as shown in Fig. 2(a). This merging is
accompanied by a bifurcation in the imaginary part dis-
played in Fig. 2(b). It is interesting to note that the
eigenvalues of the Brownian motion in a periodic poten-
tial display a similar bifurcation behavior [9].

From this “chaotic” behavior of the eigenvalues
it seems impossible to understand the micromaser
linewidth [full width of the spectrum S(w — w,) at half
maximum] shown in the top row of Fig. 3 for differ-
ent numbers of thermal photons and calculated via the
eigenvalue method. Only the combined knowledge of the
eigenvalues along with the weight factors K gives insight
into the behavior of the micromaser linewidth as a func-
tion of the pump parameter. For this purpose we show in
the second row of Fig. 3 the first three eigenvalues along
with the corresponding weight factors K;, K3, and K3.
Note that we do not number the eigenvalues according
to their size but rather according to their natural depen-
dence on 6. In this notation curve (1) corresponds to
the first eigenvalue, curve (2) to the second, and curve
(3) describes the third eigenvalue. The weight factors
K, K;, and K3 correspond to these eigenvalues. This
way of numbering brings out most clearly the influence
of various eigenvalues via their factors K;. The higher
weight factors are negligible for the parameters discussed
here and we therefore have suppressed them. To ana-
lyze the influence of the number of thermal photons n,
the left column discusses the case of np = 10~% whereas
the right column contains n, = 0.05. We are now able
to explain how the weight factors K; together with their
corresponding eigenvalues produce the dependence of the
linewidth on the pump parameter 8. We first consider the
left column of Fig. 3 and start our discussion with val-
ues of § < 1.5wm. We note that in this regime the weight
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FIG. 2. When the real parts of two normalized eigenvalues
A® /7 of the micromaser master equation merge into one as
shown in (a) they assume a nonvanishing imaginary part as
indicated in (b). Here we have chosen N = 50 and n, = 10™%.

factor K is almost unity whereas K, and K3 are almost
zero. Hence a single eigenvalue, namely the first eigen-
value, governs the micromaser linewidth. Moreover it
is the lowest eigenvalue. This is in complete agreement
with ordinary laser theory. However, around 8 = 1.57
the first eigenvalue crosses the second eigenvalue. Note
that it is still the first eigenvalue (K; = 1) which governs
the spectrum but now it is not the lowest one. In the
neighborhood of § = 27 an interesting interplay between
the two eigenvalues begins. Here the spectrum consists
of two Lorentzian distributions with different widths /\(11)
and /\gl) and weight factors K; and K3. These jumps be-
tween the two eigenvalues give rise to the narrow struc-
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FIG. 3. The micromaser linewidth D/v (top row),
the three lowest eigenvalues /\51) /7, )\él) /v, and )\gl) /v
of the matrix Q® and their normalized contributions
K, = Kl/zt Kl, Rg = K2/ZIKI’ and Ra = K3/El Kl:
to the correlation function K(t) = {af(t)a(0)) as a function
of the pump parameter 6. The solid lines in the row second
from the top show the eigenvalues that essentially determine
the micromaser spectrum. The left column is for n, = 10™*
whereas the right column is for ny = 0.05. In both columns
the scaled injection rate of the atoms is N = 50.
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tures in the spectrum which are so intimately related [1,2]
to trapping states. Note that in this regime the third
eigenvalue crosses the other two but does not play any
role yet (K3 =~ 0). In particular, around 6 = 3w the first
two eigenvalues lie even higher than the third. In the
vicinity of @ = 3.57, that is, the second group of trap-
ping states, the first eigenvalue switches off completely
and now an interplay between the second and the third
eigenvalue starts.

The presence of thermal photons does not manifest
itself in the eigenvalues as shown in the second row of
Fig. 3. However, it smears out the narrow structures in
K1, K3, and K3, that is, the jumps between K; and K>
and between K, and Kj3. This gives rise to a sharp but
smooth turnoff of the first eigenvalue around 8 = 27 and
switch on of /\gl). Similarly in the vicinity of § =~ 3.7,
the eigenvalues Agl) gets switched off in favor of )\:(,1).
Hence around these values of the pump parameter the
linewidth makes a smooth transition from one eigenvalue
to the next.

V. CONCLUSION

We conclude by summarizing our main results. We
have analyzed the micromaser spectrum by numerically
solving for the eigenvalues and the eigenvectors of the

master equation for the micromaser. The spectrum con-
sists of a sum of Lorentzian distributions—the width of
each Lorentzian distribution is the real part of a single
eigenvalue and its weight factor results from the expan-
sion of the initial condition into eigenvectors. We have
discussed the eigenvalues, which can assume imaginary
parts, in their dependence on the pump parameter and
the number of thermal photons. However, for the under-
standing of the spectrum for the parameter of interest
discussed here the three lowest eigenvalues suffice. In par-
ticular, the present analysis summarized in Fig. 3 reveals
three striking features: (i) The micromaser linewidth is
not determined by the lowest eigenvalue. (ii) There exist
regions of the pump parameter in which the linewidth is
determined by a single eigenvalue. (iii) In the neighbor-
hood of trapping states two eigenvalues have an essential
influence on the linewidth. For low cavity temperatures
the linewidth jumps between those eigenvalues whereas
for higher cavity temperatures it changes smoothly from
one eigenvalue to the other.
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