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Calculation of the micromaser spectrum. II. Eigenvalue approach
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%'e calculate the micromaser spectrum via the eigenvalues and eigenvectors of the master equa-
tion. We show that (i) it is not always the lowest eigenvalue which governs the linewidth and (ii)
the oscillations in the linewidth originate from an interplay between two eigenvalues.
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I. INTRODUCTION

In the first [1] of these two papers on the micromaser
spectrum (hereafter referred to as paper I) we have pre-
sented a Green's-function approach as well as various
approximate analytical expressions for the micromaser
linewidth [2]. In the present paper we pursue another
approach: We obtain the spectrum numerically via the
eigenvalues and the eigenvectors of the micromaser mas-
ter equation. We identify the contributions of the in-
dividual eigenvalues to the spectrum and show that the
micromaser linewidth is not necessarily determined by
the lowest eigenvalue. Moreover, in the neighborhood of
trapping states two eigenvalues have an essential influ-
ence on the linewidth.

The paper is organized as follows: In Sec. II we ex-
press the correlation function K(t) = (at(t)a(0)) gov-
erning the spectrum in terms of the off-diagonal ele-

ments p„+q ——p„of the "moment" operator p which
satisfies the equation of motion for the density opera-
tor pf of the maser field subject to the initial condition

P„= v n+1P„+i. Here P„ is the steady-state pho--(~)

ton statistics. We therefore cast in Sec. III the equation
of motion for the maser density operator pf, which is
identical to that for p, into a system of linear differential
equations. This allows us to express the quantities of in-
terest such as K(t) by the appropriate superposition of
eigenvectors of the corresponding matrix. In particular,
the spectrum of the maser is the sum of Lorentzian dis-
tributions, each of which has a width given by the real
part of an eigenvalue. The weight of each Lorentzian dis-

tribution follows from the initial condition for p„). We
determine the eigenvalues and eigenvectors numerically
in Sec. IV and discuss their behavior as a function of the
pump parameter and the number of thermal photons. We
conclude by summarizing our main results in Sec. V.

II. SPECTRUM FROM THE DECAY OF
OFF-DIAGONAL ELEMENTS OF

THE DENSITY MATRIX

In the present section we relate the time dependence
of the two-time correlation function

K(t) = (at(t)a(0)) (2 1)

S(ur —co,) = Re K(t) e '&" )'dt

of the two-time correlation function K(t). Here io, de-
notes the frequency of the cavity Geld.

The central problem of the calculation of' the micro-
maser spectrum is therefore to find the time dependence
of K(t). With the help of the time evolution operator
U(t) for the combined field (f) —reservoir (r) system the
correlation function K(t) reads [3]

K(t) = Trf „Ut(t)at(0)U(t)a(0) pf „(0) (2.3)

or

K(t) = Trf at(0) p(t) (2.4)

where we have defined the trace over the reservoir of the
first moment of the field operator as

P(t) —= Tr„U(t)a(0)pf, „(0)Ut (t) (2.5)

We therefore call p the moment operator. In the Markov
approximation the operator P(t) satisfies [4] the equation
of motion for the field density operator

to the time dependence of the off-diagonal elements of
the field density operator. As in paper I we define the
micromaser spectrum as the Fourier transform
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&(t)px, (0)& (t)

with the initial condition

(2 6) 8(") = r—1 —cos (grgn+ 1) cos gry'n+ 1+ k

t' k (' k—p (nb + 1) l
n + — —pnb l

n + 1+—
P(0) = a(0)py(0) . (2.7)

Since we are only interested in the correlation function
K(t) at steady-state we choose the steady-state solution

of the Geld density operator p&' as the initial condition,
that is,

p(0) = a(0)py (2.8)

or

K(t) = ) (nlat(0) p(t)ln)
n=O

= ) gn+1(nip(t)in+1)
n=O

(2 9)

In the number state representation we can perform the
trace in Eq. (2.4) and find

(."(k) = p (nb + 1) g(n+ 1) (n + 1 + k) .
(3.3b)

(3.3c)

Here r is the injection rate of Rydberg atoms whose time
of flight through and coupling strength with the cavity
field are given by r and g, respectively. The cavity de-

cay rate is denoted by p and nb is the mean number of
thermal photons.

For our numerical calculations we interpret the matrix
elements p(")(t) = (nip(t)ln+ k) of the operator p(t) as
the nth component of the vector x("&(t), that is,

~(k) = p(A:) (3.4)
- n

When we recall that Pgi (t) satisfies Eq. (3.2) with p„(t)
replacing pgi, (t), the equation of motion for the vector(k)

x(")(t) reads

K(t) = ) gn+ Ip„,„+,(t).
n=0

(2.1o) x(k) q(k) x(k) (3.5)

The initial condition Eq. (2.8) reads

p, -+i(o) = (nla(0) p~'In+1)
= gn+ 1(n+ Ilpz'in+1) (2.11)

where Q(k) is a tridiagonal matrix with the elements

The time-dependent solution of Eq. (3.5) can be ex-
panded according to

or

P„„+ (0) = v n+1P„+, , (2.12)
x(")(t) = ) c,'"'x,'"'e-"'"",

L

(3.7)

where P„= (nip&' ln) denotes the steady-state photon(s)

statistics.

III. SOLUTION OF MASTER EQUATION IN
TERMS OF EIGENVALUES AND

EIGENVECTORS

(k) ~(k) (k)
L L L

(3 8)

The coefficients ci( have to be determined such that(k)

x("&(O) = ) c("' x'"'
L

(3.9)

where xL and AL follow from the eigenvalue equation(k) (I )

So far our considerations are rather general; we now
concentrate on the micromaser. In the previous section
we have shown that the moment operator p which deter-
mines the time dependence of K(t) satisfies the master
equation for the micromaser field. The equation of mo-
tion for the density matrix elements

fulfills the initial condition

x(")(0) = p(")(0) = y'n+ 1 p„,„(0)
= Qn+ 1 p("+,')(0), (3.10)

p, +k
—= (nit@In+A') = p'"' (3 1)

(k) (t) g(k) (k) + 8(k) (k) + (n(k) p(k) (3.2)

where C, 8, and A„are given by(A) (A) (k)

Ai i = r sin (gr~n) sin (grV'n+ g) + pnsgn (n+ i's ),
(3.3a)

of the micromaser field in the interaction picture reads [5]

x(')(0) = p(')(0) = Qn+1P„+i. (3.11)

We obtain the steady-state photon statistics P~ from
Eq. (3.2) using the condition of detailed balance and
find [5,6]

which is the number state representation of Eq. (2.7).
According to Eq. (2.10) only p„(t) and therefore only

x(i& (t) has an influence on the micromaser spectrum. We
therefore confine ourselves for the remainder of the pa-
per to the case k = 1. Furthermore, we investigate the
micromaser spectrum at steady state, where we have
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nb N sin (g7.~v ))
+1 .( +1) )'

v=1
(3.12)

'
ns wei hted by Ki. The width ofLorentzian distributions, weig e

each in ivy ua 1 Lorentzian distribution is t e rea
(~)the eigenvalue Al

normalization constant and N = r/pp

represents e nt th umber of atoms passing t roug

an be determined numericallyThe coefficients c& can e e
from Eq. (3.9) with k = 1, that is,

c ' x ' = x(') (0)
l

(3.13)

'th E . (3.11) and (3.12). Equation (3.13) is
(')(0) of th ' ti 1 d'-the expansionn of the vector x
rs. We determine [7] thet' Eq. (3.11), in eigenvectors. e e e

b noting that the eigenvaluescoefficients ci y no in
(1) T

f the transposed matrix Qthe eigenvectors yl o
~ (&)are related to the eigenvalues Al and 'gnd ei envectors xl

of the matrix Q(i) via

IV. DISCUSSION

1 sis b first discussing the eigenvalues
nd th how howmaser master equation an en sof the m~cromas

f these eigenvalues.the micromaser sp ectrum emerges rom e
'x ( ) is not symme roct ' the eigenval-Since the matrix

h the real part
A( f

In Fi . 1 we s ow e
d h

'
aginary part of the first 10 eigenvalues i oan t eima '

atrix ~(i) normalized to the cavity a p'
parameter 8 = Ng7.poft e umppa

osen N =50andnb = 1 e
re b numerically ca cu a ing

(1)values of the truncated m atrix of size
nl decay —the8 = 0—the field in the resonator shows only ecay-

eigenvalues ta e a simk 'mple analytic expression

(x) ~(x)
&l1 lg 12' (3.14) =it ——)p, i=123, . . . .

l 2 (4.1)

-T
.13 b ( ) and use the or-When we multiply Eq. (3.13) y yi

. (3.14), the coefficients ci readthogonality relation, Eq.

(3.i5)

all in redients of the correlation function
K(t). Equation (3.4) expresses t e corre a
K(t, Eq. (2.10), as

um arameter 8 the eigenvalues de-
d h fia minimum aroun e rs

'dl increase. This behav-

um arameters they cross eac o erfor larger pump pa
te a rather complex'0 i
1 tt dtll ' }ibo-

i her ei envalues crea e a
picture. sAs an example we have p o e

h al arts of two eigenvalueshood of 8 = 2vr where the rea par s

(3.16)

which with the help of Eq. (3.7) reads

K(t) =) Kie-"
l

(3.17)

ribution Kl of the lth eigenvalue to the
( ")correlation function follows from q.

(&)Ki=) y,
m

gm+ I Pm+1
ImA(

(~j

p

(1)x) gn+I x, (3.18)

wellcalculate the eigenvalues A& as wel

the ri ht- and leR-sided eigenvectors xl and yl o

Eq. (3.17),

Kl
~(~ ~c) = R,e) (1)

l l

(3.19)

' romaser: It consists ofis then the spectrum of the microma

I [ I

2 4
Hj

FIG. 1. The real part (a) and the ' g'the imaginary part (b) of the
of the micromaser master equa-10 lowest eigenvalues A& p o e

N ~. Thef the ump parameter 8 = g~.tion as a function of e p
~ of the cav-s are normalized to the decay time p o

N = / of to h th Iity. The sca ' jaled in ection rate N = r p o a o
h rmal hotons is nb = 0.05.N = 50 and the number nb of therma p o
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merge into one as shown in Fig. 2(a). This merging is
accompanied by a bifurcation in the imaginary part dis-
played in Fig. 2(b). It is interesting to note that the
eigenvalues of the Brownian motion in a periodic poten-
tial display a similar bifurcation behavior [9].

Prom this "chaotic" behavior of the eigenvalues
it seems impossible to understand the micromaser
linewidth [full width of the spectrum S(u —cu, ) at half
maximum] shown in the top row of Fig. 3 for diKer-
ent numbers of thermal photons and calculated via the
eigenvalue method. Only the combined knowledge of the
eigenvalues along with the weight factors K~ gives insight
into the behavior of the micromaser linewidth as a func-
tion of the pump parameter. For this purpose we show in
the second row of Fig. 3 the first three eigenvalues along
with the corresponding weight factors Ki, K2, and Ks.
Note that we do not number the eigenvalues according
to their size but rather according to their natural depen-
dence on 8. In this notation curve (1) corresponds to
the first eigenvalue, curve (2) to the second, and curve
(3) describes the third eigenvalue. The weight factors
Ki, Kz, and Ks correspond to these eigenvalues. This
way of numbering brings out most clearly the inHuence
of various eigenvalues via their factors Kt. The higher
weight factors are negligible for the parameters discussed
here and we therefore have suppressed them. To ana-
lyze the influence of the number of thermal photons np
the left column discusses the case of nb = 10 whereas
the right column contains nb = 0.05. We are now able
to explain how the weight factors K~ together with their
corresponding eigenvalues produce the dependence of the
linewidth on the pump parameter 8. We first consider the
left column of Fig. 3 and start our discussion with val-
ues of 0 ( 1.5~. We note that in this regime the weight

p(&)
I

'I I

y I ~

~ I~ I

I Il

II
I I II
I I II
I

(
( I
II

I
I(

I
I
I

~ ll
I I II

~ II
I I ~ I

I II
I II

I ~ II
I II

II
III
(I

factor Ki is almost unity whereas Kq and Ks are almost
zero. Hence a single eigenvalue, namely the first eigen-
value, governs the micromaser linewidth. Moreover it
is the lowest eigenvalue. This is in complete agreement
with ordinary laser theory. However, around 8 = 1.5m

the first eigenvalue crosses the second eigenvalue. Note
that it is still the first eigenvalue (Ki = 1) which governs
the spectrum but now it is not the lowest one. In the
neighborhood of 0 = 2vr an interesting interplay between
the two eigenvalues begins. Here the spectrum consists
of two Lorentzian distributions with different widths Ay

and A2 and weight factors Ki and K2. These jumps be-(~)

tween the two eigenvalues give rise to the narrow struc-

6.8 I I I I I I I I I I I I I
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FIG. 2. When the real parts of two normalized eigenvalues
A~ l/p of the micromaser master equation merge into one as
shown in (a) they assume a nonvanishing imaginary part as
indicated in (b). Here we have chosen 1V = 50 and nb = 10

FIG. 3. The micromaser linewidth D/p (top row),
the three lowest eigenvalues Ai l/p, Az l/p, and A3~ /p
of the matrix Q~ l and their normalized contributions
Ki = Kl / QI KI I KQ = KQ/ QI KI, and K3 —K3/ QI KI,
to the correlation function K(t) = (at(t)a(0)) as a function
of the pump parameter 8. The solid lines in the row second
from the top show the eigenvalues that essentially determine
the micromaser spectrum. The left column is for nb = 10
whereas the right column is for nb = 0.05. In both columns
the scaled injection rate of the atoms is N = 50.
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tures in the spectrum which are so intimately related [1,2]
to trapping states. Note that in this regime the third
eigenvalue crosses the other two but does not play any
role yet (Ks = 0). In particular, around 8 = 3vr the first
two eigenvalues lie even higher than the third. In the
vicinity of 8 = 3.5vr, that is, the second group of trap-
ping states, the first eigenvalue switches off completely
and now an interplay between the second and the third
eigenvalue starts.

The presence of thermal photons does not manifest
itself in the eigenvalues as shown in the second row of
Fig. 3. However, it smears out the narrow structures in
Ki, K2, and Ks, that is, the jumps between Ki and Kz
and between Kz and Ks. This gives rise to a sharp but
smooth turnoff of the first eigenvalue around 8 = 2n. and
switch on of A& . Similarly in the vicinity of 8 3.7ir,

the eigenvalues A& gets switched off in favor of As().(1) (~)

Hence around these values of the pump parameter the
linewidth makes a smooth transition from one eigenvalue
to the next.

master equation for the micromaser. The spectrum con-
sists of a sum of Lorentzian distributions —the width of
each Lorentzian distribution is the real part of a single
eigenvalue and its weight factor results from the expan-
sion of the initial condition into eigenvectors. We have
discussed the eigenvalues, which can assume imaginary
parts, in their dependence on the pump parameter and
the number of thermal photons. However, for the under-
standing of the spectrum for the parameter of interest
discussed here the three lowest eigenvalues suffice. In par-
ticular, the present analysis summarized in Fig. 3 reveals
three striking features: (i) The micromaser linewidth is
not determined by the lowest eigenvalue. (ii) There exist
regions of the pump parameter in which the linewidth is
determined by a single eigenvalue. (iii) In the neighbor-
hood of trapping states ttoo eigenvalues have an essential
influence on the linewidth. For low cavity temperatures
the linewidth jumps between those eigenvalues whereas
for higher cavity temperatures it changes smoothly from
one eigenvalue to the other.

V. CONCLUSION

We conclude by summarizing our main results. We
have analyzed the micromaser spectrum by numerically
solving for the eigenvalues and the eigenvectors of the
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