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Multistability in mesoscopic Rydberg-atom systems
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We describe a system of N two-level Rydberg atoms which travel through a resonant cavity and
interact with a single mode of the resonator. X is assumed to be on the order of a few tens or
hundreds of atoms. In particular, we analyze the case where the atoms are injected in the lower
state (absorber) and the system is driven by an external coherent radiation field resonant with
the atoms and the cavity. While the analogous system in the optical domain displays standard
bistability, the results we obtain for monoenergetic Rydberg atoms are substantially di6'erent. The
switching behavior is not governed by saturation, but by the Rabi cycles of the atoms in the cavity.
The hysteresis cycle of the population of the upper level is butterfly shaped. When the bistability
parameter exceeds an appropriate second threshold, the system displays multistability rather than
simple bistability, and under proper conditions it develops domains of instability in positive-slope
regions of the steady-state curve. We analyze the effects of a velocity distribution (thermal or
Gaussian) of the atomic beam, and of inhomogeneous broadening caused by stray electric fields.
Finally, we discuss the feasibility of an experimental observation of the effects predicted by our
analysis.

PACS number(s): 42.52.+x, 42.65.Pc

I. INTRODUCTION

The interaction of a single cavity mode and a system
of two-level atoms is a central problem in modern optics.
Its investigation has led to the understanding of several
fundamental phenomena such as the 3aynes-Cummings
oscillations [1], maser and laser action. [2], superradiance
and superfluorescence [3], as well as optical bistability [4].
In a macroscopic system, with a large number N )& 1 of
atoms in the cavity, these efFects are adequately described
in terms of semiclassical equations, neglecting quantum
fluctuations.

Recent developments in cavity quantum electrodynam-
ics [5] have led to the investigation of the microscopic
regime (N & 1), in which even the interaction with a
single atom can change the state of the radiation field
significantly. Experimental realizations of such a system
are based on the strong coupling between a single atom
and the cavity mode, either using Rydberg atoms in a
superconducting high-Q rf resonator, as in the micro-
maser [6—8], or atoms in an optical microcavity with a
large finesse [9]. Under such conditions, the behavior of
the system is strongly affected, and often dominated by
quantum fluctuations. In the case of microwave systems,
thermal fluctuations are also significant. Therefore, a
quantum treatment of the electromagnetic field is neces-
sary.

In this paper we consider a new regime for nonlinear
optical systems, intermediate between that considered in
macroscopic theories (N » 1) and that typical of mi-
croscopic systems (N ( 1). We assume the number of
atoms N to be on the order of 10 to 100, and values of

the saturation photon number such that, in first approx-
imation, the semiclassical description is still valid. We
will call this intermediate regime mesoscopic It corre-.
sponds to the border region, in which the semiclassical
picture ceases to be meaningful, and the macroscopic and
microscopic descriptions merge into each other.

In the optical domain, an experimental and theoretical
investigation of a mesoscopic regime was carried out by
Kimble and collaborators [9]. In this paper we analyze
the case of Rydberg-atom systems, obtaining substan-
tially difFerent results. As in the micromaser, a beam of
two-level Rydberg atoms is injected into a superconduct-
ing microwave cavity close to resonance with the atomic
transition. The state of the field inside the resonator is
inferred from the count rate of atoms in the upper or
lower level, after they have left the cavity.

An important property of such a system is that the
spontaneous-emission lifetime is very long with respect
to all other characteristic times. Consequently, tran-
sit broadening is the main mechanism determining the
atomic linewidth, instead of providing only a small cor-
rection as in the optical regime. In the semiclassical
description, based on Maxwell-Bloch equations, transit
broadening cannot be adequately described by means of
phenomenological atomic damping terms. For this rea-
son, we describe explicitly the atomic motion during the
time of flight of the atoms in the cavity.

The problem of the free-running Rydberg-atom maser,
under conditions similar to those defined above, has been
considered elsewhere [10]. In this paper we will focus, in-
stead, on the case of systems driven by an external coher-
ent field injected into the cavity. If the two-level atoms
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enter the cavity in the excited state, one has an amplifier
with injected signal or a maser with injected signal, ac-
cording to whether in the limit of vanishing driving field
one recovers a free running maser below or above thresh-
old. If, instead, the two-level atoms enter the cavity in
the lower state, the atoms do not amplify but absorb the
radiation, and one has a situation analogous to that of
standard optical bistability [4]. We have mainly investi-
gated the absorber case and, for the sake of simplicity,
limited our analysis to the case in which the input field,
the atoms, and the cavity mode are exactly on resonance.
This corresponds to the situation which in the standard
theory is called pumly absorptive bistability [4].

First we consider the case of a monoenergetic atomic
beam. The fact that the atomic linewidth is determined
by transit broadening leads to substantial changes in the
behavior of the system with respect to the standard pic-
ture of absorptive optical bistability.

(1) The mechanism of switching between the branches
of the bistable hysteresis cycle is not based on the satura-
tion of absorption, but on the Rabi cycles undergone by
the atoms in the cavity. As a consequence, the hysteresis
cycle of the intracavity field amplitude as a function of
the input field amplitude exhibits points of transparency
(bleaching) whenever the atoms perform an exact num-
ber of Rabi cycles during their fight through the cav-
ity. The difference from the case of optical bistability be-
comes apparent especially in the hysteresis cycle of the
population of the upper level, which in the case of Ryd-
berg atoms is butterfiy shaped, in contrast to the usual
ring shape.

(2) When the value of the bistability parameter exceeds
a suitable second threshold, the system exhibits multista-
bility rather than simple bistable behavior. In the case
of standard optical bistability, multistable behavior can
arise only when the system operates with more than one
cavity mode and out of resonance.

(3) When the product kr of the cavity damping rate k
and the Bight time 7. of the atoms in the cavity is on the
order of unity or larger, the system develops instabilities
in parts of the positive-slope branches of the steady-state
curve. These instabilities can pr'oduce spontaneous un-
darnped oscillations in the output intensity, which will be
analyzed in a subsequent paper [15]. In the case of stan-
dard optical bistability in the single-mode regime, spon-
taneous oscillations can appear only under off-resonance
conditions.

Next, we extend our analysis of the steady-state be-
havior to the case where the atomic beam displays a ve-
locity distribution, which is assumed to be either ther-
mal or Gaussian. In the former case, the behavior of
the system resembles that of standard optical bistabil-
ity; for example, no multistability is found at resonance.
We also analyze the effects of inhomogeneous broadening
caused by stray electric fields in the cavity. Finally we
discuss the feasibility of observing the effects predicted
by our theory using an experimental setting realized at
the Max-Planck-Institut fiir Quantenoptik.

In Sec. II we describe our model. Sections III and IV
are devoted to the description of the steady-state behav-
ior in the monoenergetic case and to the linear stability

analysis of the stationary solutions, respectively. In Sec.
V we study the effects of a velocity distribution and of
inhomogeneous broadening. In Sec. VI we discuss the
feasibility of experimental observation of the predicted
phenomena, while Sec. VII provides a survey of our re-
sults.

II. THE MODEL

We start by discussing a basic model with a monoener-
getic atomic beam and homogeneous time-of-fight broad-
ening of the atomic line. We assume that, after an initial
transient, one cavity mode, uniform in the longitudinal
direction, is excited, and the coupling of atoms to all
other modes is completely negligible. Under these as-
sumptions, the dynamics of the system can be described
by the following Maxwell-Bloch equations in the slowly
varying envelope approximation:

dnp(t) g
dt

= —k[(1+ ig)np(t) —n;„]+-
1 dz a (z, t),

(2.la)

GJg

2
(2.2)

the Jaynes-Cummings coupling constant [1] g (2g being
the one photon Babi freq-uency), the atomic detuning 6

~ = a ~in) (2 3)

where co~ is the atomic transition frequency and w;„ is
the frequency of the incident field, the normalized cavity
detuning 8

u)~ —cu;„

k
(2.4)

the cavity length L, and the amplitude n;„ofthe coherent
driving field (k~n, „~ being the photon Hux entering the
cavity).

In the field equation (2.1a), the atomic polarization
distributed in the cavity acts as a source for the oscilla-

('B B
~

—+ vp R (z, t) = 2gnp(t) As(z, t) —ib R (z, t),(Bt Bz

(2.lb)

('B B
]
—+ vp Rs(z, t) = —g[n, (t) Z+(z, t)(Bt Bz

+np(t) R (z, t)], (2.1c)

plus the complex conjugates of Eqs. (2.la) and (2.1b). In
Eqs. (2.1) the two-level Rydberg atoms are described by
the position-dependent macroscopic polarization R+ and
(one-half) the population inversion Rs. The quantity np
is the complex amplitude of the cavity mode (~np~2 =
n being the mean photon number in the cavity). The
system parameters are the cavity linewidth k, defined in
terms of the cavity frequency ~, and the quality factor
Q of the cavity
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R+(z, t) = N r+(z, t), R3(z, t) = N rs(z, t), (2.6)

with r+r + r3 = 1/4.
We can also parametrize the atoms by their time of

Bight ~ in the cavity rather than their position introduc-
ing a new variable

/ z L
z = —,0&z /

Vp Vp
(2.7)

Using Eqs. (2.6) and (2.7), the Maxwell-Bloch equations
(2.1) assume the following form:

dt
= —k[(1+ i8)np(t) —n;„] + dz' r-(z', t),

7

(2.Sa)

, ~

r (z', t) = 2gnp(t) r3(z', i) —ib r (z', t),Bt Oz'p

tion of the cavity mode, together with the injected signal.
Equations (2.lb) and (2.1c) are the optical Bloch equa-
tions, with atoms moving at velocity vp in the z direction.
The convective derivative on the left-hand side (Ihs) takes
into account changes of the Bloch vector in time as well
as due to the propagation of atoms.

In the optical domain, where radiative decay is the
main source of atomic damping, there are additional phe-
nomenological damping terms in the Bloch equations.
For Rydberg transitions, however, radiative damping is
negligible. This is why damping terms are absent in our
atomic equations. Instead, in the limit of negligible in-
homogeneous effects, the atomic linewidth is mainly de-
termined by transit broadening. It is included in the
Maxwell-Bloch equations (2.1b) and (2.1c) via the prop-
agation of the atoms along the cavity. It must be stressed
that this is a peculiar feature of systems operating with
Rydberg transitions. For atomic beams whose transitions
are in the optical domain, transit broadening is only a
small correction to radiative broadening [9].

The familiar description of atomic dynamics in terms
of the evolution of the Bloch vector will prove very use-
ful throughout our analysis. From equations (2.1b) and
(2.lc), the conservation of the modulus of the Bloch vec-
tor is easily checked

~

—+ vp i
[R+(z, t)R (z, t) + R3'(z, t)]

t'8 8)
Bt Oz)

—+ vp —
I

' = o. (2.5)
0 Bi Nz(z t)
Bt Bzp 4

Assuming that the number of atoms per unit length
N(z, t)/L is stationary, (2.5) implies that N(z, t) = N
is a constant, equal to the total number of atoms in the
cavity. We can use this result to introduce one-atom
variables r+(z, t) and rs(z, t) defined by

We consider atoms injected into the cavity at z = 0
with zero polarization r+(O, t) = 0], either in the up-
per state [rs(o, t) = 1/2 or in the lower state [r3(0 t) =
—1/2]. In the former case our model equations (2.8) de-
scribe the dynamics of a maser (or amplifier) with in-
jected signal; in the latter case, they describe the dy-
namics of an absorber. In most of our discussion we will
focus on the absorber.

III. STEADY'-STATE ANALYSIS

A. Steady-state equation

In this section we discuss the steady-state behavior of
the system. With np, r+, and r3 independent of time,
Eqs. (2.8) reduce to

0 = n;„—(1 + ig) np + dz' r (z'),
kv.

d /

, r (z') = 2gnp r3(z') —i6 r (z'),

(3.1a)

(3.1b)

1 3(z') = —g nP r+(z') + np r (z') (3.1c)

plus the complex conjugates of Eqs. (3.1a) and (3.1b).
The initial conditions are

r+(o) = o,
1r, (0) =+-,2' (3 2)

where the upper (lower) sign indicates the amplifier (ab-
sorber). From the atomic equations (3.lb) and (3.lc) we
easily obtain

& = +4gzinPiz+ bz = Azp+ bz. (3.4)

In Eq. (3.3b) P~ (PT) is the probability for occupation
of the lower (upper) state.

Inserting the result (3.3a) for the atomic polarization,
Eq. (3.la) provides a closed steady-state equation for
the cavity Beld amplitude ap. Introducing dimensionless
cavity (x) and input (y) field amplitudes

x = 2gcip7) g = 2go!1~'T,

r, (z') = + sin(Az') —i [1 —cos(Az'))—, (3.3a)0 A

1 4gzinpiz . 3 /Az')

1= +—~Pi(z),/

2 T

where on the lhs the arrow pointing downwards (up-
wards) means a quantity calculated starting from rs(0) =
1/2 (—1/2); upper and lower signs must be taken concur-
rently in Eqs. (3.3). The generalized Rabi frequency 0
is deBned as

f'8 0 )
i

—+, i
r ( 3t)z= —g[np(t) r+(z', t)

+np(t) r (z t)l

(2.sb)

(2.8c)

and a cooperation parameter C, proportional to the ratio
of gain to losses

(3.6)



MULTISTABILITY IN MESOSCOPIC RYDBERG-ATOM SYSTEMS 793

the steady-state equation reads

1 —cos QIxIz + (Br)2
I*I' + (~ )'

u
1+2C'

or at very high field y )& 1, y )) C, where

(3.12)

1 —sine QIzIz + (b'r)2~
+i 8 + 4C6r (3 7)

1 —cos x
y =x~4C

X
(3 8)

Note that in the case of atoms injected in the excited
state and in the absence of an external field, Eq. (3.8) re-
duces to z2 = 4C(1—coax) or no = (N/2kr) sin (ga.er),
which is the micromaser stationary equation for the
mean photon number in the semiclassical limit, neglect-
ing quantum and thermal fiuctuations [11].The first mi-
cromaser threshold, obtained in the limit z = 0, corre-
sponds to C = 1/2, which is the same threshold value as
for a resonant, homogeneously broadened standard laser
with the cooperation parameter (here called C~~t) defined
as [4)

Ng2
oPt —

2I QJ
(3.9)

p~ being the atomic linewidth. This coincidence is one
of the reasons for choosing the definition (3.6) of the co-
operation parameter. The comparison of Eqs. (3.6) and
(3.9) illustrates that radiative decay is replaced by the fi-
nite transit time as the mechanism of line broadening for
Rydberg transitions, as opposed to optical transitions.

where the upper (lower) sign must be selected in the case
of an amplifier (absorber) and the function sine (z)
sin(x)/z is used. In order to gain physical insight and
because of its importance, in our subsequent analysis, we
concentrate on the resonant case [6 = 8 = 0 in Eq. (3.7)].
In this situation, assuming for definiteness that the input
field y is real, the steady-state intracavity field x is also
real and Eq. (3.7) becomes

(3.13)

Hence Eq. (3.10) implies a cooperative linear regime
at low incident power, and an asymptotic linear regime
at high incident power, comparable with the saturated
regime in the optical domain. In general, the cubic state
equation (3.11) implies bistability for C ~t ) 4 [4]; in
contrast to that, the presence of an oscillating nontin-
earity in Eq. (3.10) suggests the possibility of rnuttistable
behavior for Rydberg atoms.

Figure 1 shows the steady-state diagrams obtained
from Eq. (3.10) for difFerent values of the cooperation
parameter C. If we tentatively attribute a stable (unsta-
ble) nature to all sections of the x(y) curve with positive
(negative) slope (the precise discussion of the stability
will be given in Sec. IV), we find examples of mono-
stability (C = 0.5), bistability (C = 2), and tristabil-
ity (C = 4). The bistability and tristability thresholds
are at C = 0.85 and C = 2.47, respectively. In general,
the curve y(x) defined in Eq. (3.10) has infiection points
x which obey the equation

(x'1+
I

——1
I
cosx = zsinx. (3.14)

2 cosx
(3.15)

The values of Ctg„x and g = y(x) thus calculated are
reported in Table I for the first four hysteresis loops.

The threshold values of C for the appearance of parts
with negative slope (i.e. , the appearance of new hystere-
sis loops) correspond to the cases where one of these in-
flection points has a horizontal tangent [(dy/dx)z ——0].
&sing this condition together with Eq. (3.14) one ob-
tains that the threshold values of the parameter C are
the positive values of

B. Nonlinear absorber

We start by discussing the case of the absorber, de-
scribed at steady state by the equation 15

1 —cos x
y = X+4C (3.10) 10

First of all, Eq. (3.10) can be compared with the corre-
sponding equation in the optical domain, the well-known
state equation of absorptive optical bistability [4]

X
g = x+2C&pt 1+x2 (3.11) 0

10 15

where C ~t is defined in Eq. (3.9). We see that the
nonlinearity is completely different in the two cases. Ac-
tually, Eqs. (3.10) and (3.11) describe similar behavior
only in the two opposite linear regimes, either at very
low incident field amplitudes y (( 1, where

FIG. 1. Multistability in the nonlinear absorption with a
beam of two-level Rydberg atoms: dimensionless cavity field
amplitude x vs incident field amplitude y from the reso-
nant steady-state equation (3.10). (a) Cooperation parameter
C = 0.5; (b) C = 2; (c) C = 4.
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5.40966
11.89416
18.21702
24.51751

4.08557
10.79203
17.15512
23.47301

TABLE I. Threshold values for the occurrence of the first
four hysteresis loops, calculated from Eq. (3.10) for the res-
onant stationary absorber. At the points (x, y) the function
y(x) defined by Eq. (3.10) has an inflection.

Loops
1
2
3
4

10 I I I I I I V'I /

0.5

a)

00 I I I I I I I I I I I

0 10 20

1.0

Hence, in the case of Rydberg atoms, multistability
(or more precisely the coexistence of more than two sta-
ble stationary states) is possible even in the regime of
single-mode operation, whereas in the optical domain
multistability requires the involvement of two or more
longitudinal modes of the cavity [4]. This difference can
be understood by considering in detail the mechanism
which produces bi- or multistability in the case of Ryd-
berg atoms. As a matter of fact, we note in Fig. 1, as
well as directly from Eq. (3.10), the presence of bleached
states defined by the condition

x =y =2m~ (m=1, 2, . . .),

for which the outgoing x reduces to the value of the in-
cident field y. In these states, the atomic Bloch vector
performs an integer number of rotations during the pas-
sage through the cavity, because Ao ~ = m(2'/r). Each
rotation corresponds to a cycle of absorption and emis-
sion of radiation exchanged with the cavity mode.

The difference between bistability with Rydberg tran-
sition [Eq. (3.10)] or with optical transitions [Eq. (3.11)]
is best appreciated by using a simple graphical method,
first introduced in [12] in the description of a Kerr
medium. From the steady-state equation (3.10) follows

x 1T (x)—:—=
y 1+2Csinc (x/2)

' (3.17)

so that the stationary states are given by the intersections
of a transmission function TR(x), with a straight line x/y,
whose slope is controlled by the input field amplitude y.
Likewise, the steady-state equation for absorptive bista-
bility in the optical regime (3.11) can be rewritten as

x 1
To (x)—:—=

y 1+2C.p, /(1+ x2)
(3.18)

Both functions T&(x) and To(x) vary between 1/(1+2C)
and 1, which is a further justification for the definition
(3.6) of the parameter C. In Fig. 2 the procedure de-
scribed above is applied to the cases of optical and Ryd-
berg transitions, with C &t

——C = 10. In the optical ease
[Fig. 2(a)] we find one or three stationary states, cor-
responding to monostability or bistability, respectively.
With Rydberg atoms [Fig. 2(b)] we find one, three, or
five stationary states, that is, multistability as a conse-
quence of the oscillating nonlinearity. In this case, the
oscillations are not produced by different cavity modes
(only one mode is considered in our model), but by the

0.5

0.0 '
0 10 20

FIG. 2. Comparison between resonant stationary behavior
for optical and Rydberg atomic transitions. The steady states
are the intersections of a transmission curve T(x) (solid line)
with the line x/y (dashed lines), whose slope is governed by
the input field y. (a) Optical transitions. Stationary states
from Eq. (3.18) with C,i,&

——10: bistability. (b) Rydberg
transitions. Stationary states from Eq. (3.17) with C = 10:
multistability.

Rabi eyeles of the atoms in the cavity.
Therefore the physical mechanism leading to bistabil-

ity is quite different in each case. In absorptive bistability
in optical systems, the physical origin of optical switching
is the saturation of the atomic transition [4]. Actually, an
experiment with a beam of Na atoms [13] has shown that
the fIuorescence intensity, proportional to the number of
excited atoms, undergoes a hysteresis cycle (as a function
of the incident power) similar to that of the transmitted
power. In particular, with increasing input power, the
field switches up when the atomic transition is saturated,
while the population of the upper level switches up simul-
taneously due to the atomic bleaching. With decreasing
input power, the internal field remains strong enough to
keep the atoms close to saturation, until a lower input
threshold is reached where the field switches down.

In Fig. 3 we show, for the case of Rydberg atoms, the
calculated hysteresis cycles of the cavity field x [Fig. 3(a)]
and of the atomic occupation probability of the upper
level at the cavity exit P~(~) [Fig. 3(b)], versus the in-
cident field amplitude y. Note that the quantity Pt(~)
[introduced in Eq. (3.3b)] is the dynamical variable of
direct experimental relevance, because the count rate of
atoms leaving the cavity in the upper level is the quantity
actually monitored.

Let us consider the up-switching process in detail. Due
to nonlinear absorption [x (( y in the lower branch of
Fig. 3(a)], as y is increased from small values to y yt,
the excitation probability Pt(~) [Fig. 3(b)] grows contin-
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It must be kept in mind, however, that in the case of Eq.
(3.19) not only the parts with negative slope are unstable,
but also parts with y & 0, as can be easily obtained from
the linear stability analysis described in Sec. IV.

As already observed, in the case y = 0 (no external
field) the value C = 1/2 corresponds to the first mi-
cromaser threshold, when the trivial semiclassical no-
masing state, x = 0, becomes unstable. For sufficiently
high values of C, such as C = 12 in Fig. 4, further
micromaser-type (y = 0) stable stationary states exist.
The system successively reaches all of these states, when
the control parameter y is used to cycle through the mul-
tiple loops, which implies passing y = 0 repeatedly. In
the actual micromaser, these states are connected by fluc-
tuations described by a full quantum treatment [7).

Let us now discuss the speciBc case of maser operation,
y = 0, in our regime, The resonant steady-state equa-
tion can be written as sine (x/2) = 1/2C. The station-
ary states are the intersections of the curves sine (x/2)
with the horizontal line 1/2C. Clearly, the number of
these intersections increases with C (C & 1/2), which
explains multistability. Figure 5 shows the scaled inten-
sity x vs C. Note the presence of two further branches
of solutions for values of C & 10.59 and another pair for
C ) 30.33. In the limit of negligible fluctuations, the
diferent branches are physically separated. As expected,
by a different scaling we can reproduce the steady-state
pump curve of a micromaser in the semiclassical limit
[11]. This is demonstrated in Fig. 6, where we show
xz/8C as a function of v'2C. By the definitions (3.5)
and (3.6), this corresponds to plotting n/N, „versus a
pump parameter grv'N, „, where n is the mean photon
number and N,„= N/2kr is the average number of
atoms passing through the resonator during one cavity
Beld lifetime. This parametrization is suitable for the

l.0

X
8C

0.5—

0.0 I I i I i ~ I I I s

2 3 4 5
I

6
I i ~ ~ I

V2C

FIG. 6. Micromaser semiclassical dynamics recovered:
scaled cavity field intensity z /8C vs pump parameter V'2C
from Eq. (3.19).

IV. LINEAR STABILITY' ANALYSIS

In order to test the stability of the stationary states dis-
cussed in Sec. III, we consider the Maxwell-Bloch equa-
tions (2.1) on resonance (b' = 8 = 0), and introduce the
real and imaginary parts of the Beld and polarization
variables, np(t) and r+(z', t), obtaining

micromaser, where kr « N « 1, and in practice one
describes the behavior of n vs gr with N,„))1 fixed
[11]. On the other hand, when we plot xz vs C (Fig. 5)
we really describe the behavior of n vs N,„,where, in the
spirit of the new regime considered, the average number
of atoms in the cavity N can be varied as well as k or r

Re[r+ (z', t)]
Im[r+(z', t)

d Re[np (t) Re [np (t)] —n;„gN
dg

x ™[np(t) k x ™[np(t)] r o

f 0 & Re[r+ (z', t)] 2, Re[no(t)]
~a +a. " I +(",t) '"'(' ' I [.(t)]
PB

rs(z', t) = —2g(Re[no(t)]Re[r+ (z', t)] + Im[no(t)]Im[r+ (z', t)]).

(4.la)

(4.1b)

(4.1c)

Next we set

Re[no(t) ' ' Re(no)
1m[no(t) Im(np)

Re[r+(z', t) & = 4 Re[r+(z')
Im[r+ (z', t)] Im[r ~ (z')]

r, (z', t), , rs(z')

+ Re[
+ Im[
+ Re[
+ Im[

bnp(t)
hnp(t)
6r+ (z', t)
br+(z', t)

+ mrs(z', t)

(4.2)

where on the right-hand side np, r+(z'), and rs(z') denote the stationary values of these variables, and linearize Eqs.
(4.1) around the steady state. By introducing the usual ansatz [14]

' Re[
Im[
B.e
Im[

hnp(t)
tIno (t)]
sr+(z', t)
~r'(", t)

, bra(z', t)

' Re(6no)
Im(6np)

& =e ' x ( Re[tIr+(z') &+c.c.,
1m[Sr+(z')]

, mrs(z')

(4.3)
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where A is the eigenvalue of the linearized problem, we obtain the equations

Re(b'np) g~ d, Re[6'r+ (z')
Im(6np) r p

Im[br+ (z')
( d ) Re[6r+(z'), Re(np), Re(6np)~A+,

~ I [6~()] —2g 6 (') I ( )
+

~
A+,

~

6rs(z') +2g{Re(np)Re[6r+(z')] + Im(np)1m[br+(z')]z')
+Re(bnp)Re[r+(z')] + Im(bnp)lm[r+(z')]) = 0.

(4.4a)

(4.4b)

(4.4c)

According to the ansatz (4.3), a stationary state is stable if, and only if, Re(A) ( 0 for all eigenvalues A which satisfy
the characteristic equations derived subsequently.

First, we consider the linearized Bloch equations (4.4b) and (4.4c). By a simple but lengthy calculation using Eqs.
(3.3), we obtain a closed third-order differential equation for the deviation 6rs(z') (the prime denoting d/dz')

6,'"+3A6,"+ (n,'+3A') 6,'+A(n,'+A') 6.=- ' ' (2n', —A'). (n. ') —3An. .o.(n. ') . (4.5)
AO

The initial conditions 6r (0) = 6rs(0) = 0, together with Eqs. (4.4b) and (4.4c), imply that brs(0) = 6rs(0) = 0 and
6rs (0) = Ap Re(bnp jnp). Hence the solution of Eq. (4.5) is

Ap 1 —e "' Re(bnp)
2 A o,o

The result (4.6) is inserted into Eqs. (4.4b), whose solutions are

(4.6)

—A
'

CLO

Im[br+(z')] =—Op 1 Im(b'np)
Bo sin(Aoz') + A cos(Boz') —e

*'
) .

2 Op+A np

(4.7)

Expressions (4.7) provide the source terms in the lin-
earized equations (4.4a) for the real and imaginary parts
of the field deviations, Re(bnp) and Im(6np). From Eqs.
(4.7), using the definitions (3.5) and (3.6) of x and C, we
obtain the following eigenvalue equations:

l

value x of the intracavity field, which is linked to y by
the steady-state equation (3.10). One part of the bound-
ary is characterized by the fact that the sign of a real
eigenvalue A changes sign, i.e. , A = 0. For A = 0, Eqs.
(4.10) reduce to

Re(bx) 4&k Jg (x; Ar) Re(6x)('+")"
Im(bx) —.2+ A... J,(x; Ar)Im(6x)

(4.8)

where

1 —cos x =-" =0,
x

/1 —cosx . ) dy
1 —4C

i

—sincx
~

= —= 0,x2 ) dx
(4.11a)

Jy(x;Ar) = 1 —e " cosx

~

1 —e " + z ~xsinx) (49)

Jz(x;Ar) = cosx —e " —A7 sincx.

4&& Jg(x; Ar)A+k- x'+ A'r»2(x; ») (4.10)

Instead of solving Eqs. (4.10) for A directly, we will cal-
culate the stability boundary of the stationary solutions
in the space of the system parameters C, k, 7., and y.
Instead of the input field y, we will use the stationary

Finally, from Eqs. (4.8) we obtain the characteristic
equations

where we have used the steady-state equation (3.10).
Equation (4.1la) defines the turning points of the steady-
state curve and confirms that in the steady-state x(y)
diagrams all branches with negative slope are unstable.
On the other hand, Eq. (4.lib) is never satisfied. [Only
in the amplifier case it can be satisfied, indicating the
instability of the steady-state curve sections with y ( 0
(see, e.g. , Fig. 4).]

The remaining part of the instability boundary is char-
acterized by the fact that the real part of a pair of com-
plex conjugate eigenvalues changes sign, i.e.,

A=iv, v real, v/0. (4.12)

When this part of the boundary is crossed, the stationary
state of the system disappears and a new state appears,
displaying oscillations of frequency v (Hopf bifurcation).
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By introducing the dimensionless quantity

V=VV) (4.13)

substituting Eqs. (4.12) and (4.13) into the first of Eqs.
(4.10), and splitting into real and imaginary parts, we

obtain the two equations

4C
1 = (1 —cosx cosv —x sinx sine v), (4.14a)

x —v

10-

4C . 1(cosx sinv+ —
~

1 —cosv ——
~

xsinx .
k~ x~ —v2 v ( x2 )

(4.14b)

0
0

I i i I

10 15
Y

Eliminating v from Eqs. (4.14) results in an equation
in parameter space, which defines another part of the
stability boundary. On the other hand, by applying the
same procedure to the second of Eqs. (4.10) we obtain
the two equations

4C
cos v —cos x )

X —V

4C
sine 2: —sine v

X —V

(4.15a)

(4.15b)

which, after elimination of v, provide the last part of the
boundary.

Equations (4.14) and (4.15) have been investigated nu-

merically. They depend on the two parameters C and kw.

It turns out that Eqs. (4.15a) and (4.15b) are never si-
multaneously satisfied. On the other hand, Eqs. (4.14a)
and (4.14b) can hold simultaneously, provided that C is
large enough (C ) 3.33), i.e. , has a value beyond the
tristability threshold (see Table I), and provided that k7.

is not too small.
In our numerical search for the solutions to Eqs. (4.14)

we proceed as follows. For given values of C and kv. , we
look for a point x in the middle of one of the positive-
slope parts of the steady-state curve, such that Eq.
(4.14a) as well as Eq. (4.14b) has at least one solution
for v. If no such point exists, the values chosen for C or
kw are too small. When a suitable x has been found, we

keep C and k~ fixed and vary x, until we reach a point for
which Eqs. (4.14a) and (4.14b) have the same solution v.
Then, by construction, the values of C, x, and kr define
a point of the stability boundary, at which the system
should display the onset of spontaneous oscillations of
frequency v/7. . Two such points determine an unstable
segment of the steady-state curve. Figure 7, where C = 5
and kw = 3, shows an example of instability occurring in
the positive-slope part of the stationary x(y) curve. The
existence of such unstable domains crucially depends not
only on C, but also on the product k~. For decreasing C
or k~ these regions shrink and finally disappear.

This result of the analysis implies another remarkable
difference from the optical case. As a matter of fact, in
standard absorptive optical bistability there is no oscil-
latory instability [4]. Such instabilities may occur only
in dispersive optical bistability, as predicted in [16] and
experimentally observed in [17]. With Rydberg atoms,
however, for high enough values of C, one should observe

FIG. 7. Instability in the multistable absorption with a
beam of Rydberg atoms. The dashed parts of the stationary
diagram of cavity field amplitude 2: vs injected field amplitude

y are unstable. The instability boundaries are calculated from
Eqs. (4.14) with C = 5 and kw = 3. The unstable part of
the stationary curve x(y) with positive slope extends from
x = 6.75 (v = 3.06) to x = 7.88 (v = 3.89).

either multistability or instability, simply by changing
the value of k~.

We leave to future work [15] the task of solving nu-
merically the full nonlinear equations (3.1) in the unsta-
ble parameter domain, where we expect the system to
approach a state in which the output intensity exhibits
undamped oscillations.

V. INHOMOGENEOUS EFFECTS

The analysis presented so far was based on the idealiz-
ing assumption that all atoms have the same velocity and
the same transition frequency. In an actual experiment,
however, the atomic beam can only be prepared with a
Gnite velocity spread. Furthermore, the atomic levels are
subject to random Stark shifts due to stray electric fields.
We have investigated how the behavior of the nonlinear
absorber is modified by these effects.

We start by observing that the dynamics of all atoms
with a given velocity v is determined by Eqs. (2.lb) and
(2.lc), independent of the presence of other atoms with
diferent velocities. The reason is that atoms do not in-
teract with each other directly, but only via the cavity
field n. If, for the moment, we restrict ourselves to the
resonant case 8 = 6 = 0, the stationary solution for the
r component corresponding to the subgroup of atoms
with velocity v is

(5.1)

Radiation from all atoms contributes to the cavity Geld
no. Accordingly, the atomic source term in Eq. (3.1a) has
to be integrated over velocity, weighted by a distribution
function P(v),

( AoLn;„= no + ~ dv P(v)v
~

1 —cos . (5.2)
0 0 v
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We have examined two cases of particular practical inter-
est: a Maxwellian velocity distribution and a Gaussian
velocity profile.

X

20-

A. Thermal velocity distribution

The velocity distribution of a thermal beam of atoms,
originating from an elusive source and excited to a Ryd-
berg level, is described by a Maxwellian function

15-

10-

P(v) =,v'e-("~»'. (5.3) '0 I I I I I I I I I ~ I ~ I I

5 10 15 20

The parameter P is the most probable velocity in the
beam. Inserting Eq. (5.3) into Eq. (5.2), the steady-
state equation for the field now reads

~ n = clap+ „, ——I(ApL//3)
4g2NcrpP 1

(5 4)

with I being the first Ramsey integral [18]

I(x) = x
QtU tU 8 COS —.

tD
(5.5)

x = 2gnpL/P, y = 2ga;„L/P (5.6)

Using (5.6) we obtain the scaled steady-state equation
for a thermal beam of Rydberg atoms

Analogous to Eq. (3.5) we can transform to scaled vari-
ables 2; and y

FIG. 8. Multistability for a thermal beam of Rydberg
atoms: cavity field amplitude x vs incident field amplitude
y from the resonant steady stat-e equation (5.7). (a) C = 2;
(b) C=4; (c) C=S.

1
PT(z = L) = —+

2
dv P(v)rs(z = L)„

Maxwellian velocity distribution looks similar to the re-
sult obtained in the standard case of absorptive optical
bistability with radiative broadening. This might suggest
that the distribution of transit times in a Rydberg-atom
experiment has the same effect as spontaneous decay for
optical transitions. That is, however, not the case. The
mechanism leading to bistability with Rydberg atoms is
distinct from saturated absorption, even if the Rabi oscil-
lations are washed out. This is apparent in the behavior
of the upper-level population Py(z = L) of the atoms
leaving the cavity, that was defined in Eq. (3.3b). Aver-
aging over velocity one obtains

1 —2I(x)y=x 1+4C (5.7) 1 2=
2

—~I2(x) (5.10)

1+2C (5.8)

The cooperation parameter C is defined as in Eq. (3.6)
with ~ replaced by ~ = 2L/~~P, which denotes the av-
erage transit time of the atoms through the resonator.

In the asymptotic limit y « 1, Eq. (5.7) approaches
the low field behavior of Eqs. (3.10) and (3.11)

where the function I2 is defined as

o'w QJ 6 cos —.
tU

(5.11)

Plotting Pt (L) as a function of the scaled input field y in
Fig. 9, we see that the hysteresis cycle still has the char-

Results for the steady-state equation (5.7) are shown in
Fig. 8 for difI'erent values of the parameter C. There is
bistable behavior, if C is larger than the threshold value 0.6

Ctg, = 2.300. (5.9)
0.4

Multistability, as found in the monoenergetic case, is ab-
sent, even for arbitrarily high values of C. This can be
understood by looking at the properties of the function
I(x) For x « 2a, 2.I(x) behaves like the cosine function.
Consequently, the first hysteresis loop in the steady-state
solution for the cavity field x shows the same behavior as
in the monoenergetic case. For larger values of x, I(x)
approaches a constant value of 0. This corresponds to
the washing out of Rabi oscillations by averaging over a
broad velocity distribution.

The hysteresis loop for the cavity field in the case of a

0.2,

0.0
5 10 15

I

20
y

FIG. 9. Hysteresis cycle in the upper level occupation prob-
ability Py at the cavity exit as a function of the incident field
amplitude y. The parameters correspond to those of Fig. 8.
(a) C= 2; (b) C = 4; (c) C= 8.
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ent from the homogeneous broadening case discussed in
Sec. III B. If, on the other hand, I' )) 1, the nonlinear
part of the steady-state equation (5.16) is strongly sup-
pressed. In contrast to the case of a thermal velocity dis-
tribution, however, Jr (x) displays multiple oscillations,
even for arbitrarily large I'. Therefore, the multistable
regime can be reached by increasing the parameter C suf-
ficiently, even if in homogeneous broadening dominates
(cf. the dotted curve in Fig. 11).

D. Inhomogeneous broadening in a thermal beam

A realistic model for a Rydberg-atom experiment has
to take into account both velocity and Stark broaden-

I

y = x [1+4CKi (x)], (5.is)

with C, x, and y defined as in Sec. VA. In this case,
Ki (x) contains a double integral, one over the velocity
distribution and one over the frequency distribution. One
of the integrals, however, can be evaluated analytically,
and Kr (2:) finally takes the form

ing efFects. Therefore we finally combine the results of
the previous sections to obtain a general solution for a
beam of atoms with a thermal velocity and a Gaussian
frequency distribution. Proceeding as before, we obtain
the following steady-state equation:

—(w z/I')

gl + tU 1 +g)2
I'

1 —cos— (5.i9)

We have calculated the steady-state equation for C = 8
for three difFerent values of the inhomogeneous linewidth
I' (Fig. 12). As expected for a thermal velocity distri-
bution, no multistability is found. Above the bistability
threshold, the size of the hysteresis loop for a given C is
governed by the parameter I'. The dotted curve (d) in
Fig. 12 demonstrates that by increasing C for fixed I' the
bistability region can be reached. At I' = 10 and C = 23,
for example, there is again a pronounced hysteresis.

Equations (5.18) and (5.19) are our final result for the
theory of resonant bistability in a Rydberg-atom system.
They may be used to estimate the parameters necessary
for the observation of bistability in such a system and to
predict the size of the effect.

VI. EXPERIMENTAL FEASIBILITY

We briefly consider if the effects predicted in this paper
are within experimental reach. We choose parameters
corresponding to conditions in a Rydberg-atom experi-

0
5 30 15 20

Y

FIG. 12. Multistability with a thermal beam of
Stark-broadened Rydberg atoms: cavity field amplitude x
vs. incident field amplitude y from the steady-state equa-
tion (5.18) for C = 8. (a) F = 1; (b) I' = 10; (c) I' = 100. For
comparison (d) shows the hysteresis for I' = 10 and C = 23.

I

ment being set up in Munich at the Max-Planck-Institut
fiir Quantenoptik. As in the micromaser, transitions be-
tween levels of Rb are used. The atomic beam has
a thermal velocity distribution with an average time of
flight through the resonator f—100 ps.. Atom-field cou-
pling constants g for Rb Rydberg states are typically
larger than 10 s . Transition frequencies at a prin-
cipal quantum number n = 50 are around 160 x 10s s
A quality factor Q = 10s of a superconducting resonator
can be realized with a He cryostat. Using Eq. (2.2), we
obtain a field decay time A: of about 800 s . Inserting
these values in Eq. (3.6) for the cooperation parameter,
we have

N ~
C= ' 0.03¹ (6.1)

The bistability threshold for a thermal beam (5.9) is
reached for N = 74 atoms in the cavity, a value in agree-
ment with our assumption of a mesoscopic system. As no
velocity selection is provided, higher-order multistability
cannot be observed.

There are two feasible modifications of this experimen-
tal setup. First, the quality factor of the cavity may be
increased to a value of Q = 10io, as was achieved in
the micromaser experiment [6]. Under these conditions
C —3N and an average number of N = 0.74 atoms in
the cavity is sufFicient to observe the onset of bistabil-
ity. Increasing the Q factor obviously takes the system
from the mesoscopic to the microscopic regime N ( 1.
Another feature of such a system is that the required
atomic flux N/7 of only 7000 s i can be realized even
when a 5'Fo velocity selection is applied to the beam. In
that case, the results of Sec. VB imply the appearance
of multistability.

The setup described above may be modified in yet an-
other way. It is possible to use a Rydberg transition with
a very high value of the coupling constant, g —10 s
In this case, even a quality factor as low as Q —10s
is sufhcient to obtain the same cooperation parameter
C = 3N as above. For such a moderate Q value, the
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product kw has a value around 8, i.e. , the system is in the
region where instabilities should appear in the positive-
slope branches of the steady-state curve.

It is interesting to note that for a coupling constant g
as large as 10 s, the product 2g7, which appears in the
scaling (3.5) for the field variables, is on the order of 20.
Consequently, a single photon is a sufBcient field to cycle
the system through the hysteresis loop. In this regime,
the mesoscopic treatment given in this paper is no longer
valid because quantum and thermal fluctuations can no
longer be ignored. Nevertheless experiments in such a
parameter range might serve as a test, if the semiclas-
sical treatment is still a valid description of the average
behavior of the system.

VII. CONCLUSION

Summing up, we have investigated the mechanism
leading to multistability in a system of two-level Ryd-
berg atoms interacting with a single resonant mode of a
microwave cavity. The effect is based on the Rabi oscil-
lations of the atoms during their time of flight through
the cavity and the absence of damping by spontaneous
emission. From a Bloch equation model we have derived
an analytic steady-state equation and calculated multi-
stability thresholds.

The quantity actually monitored in a Rydberg-atom
experiment is the level population. Therefore we have
also determined the steady-state hysteresis curves for the

upper-level population. It has a characteristic butterfly
shape, distinct from the standard case of bistability based
on saturated absorption. Another feature not present in
the standard theory for the resonant case is that the sys-
tem may develop domains of instability, even in positive-
slope regions of the steady-state curve.

In order to match our theory as closely as possible to
experimental conditions, we have investigated the influ-
ence of a velocity distribution of the atoms and of Stark
broadening in stray electric fields. We have found that a
Gaussian velocity distribution increases the multistabil-
ity thresholds, while with a thermal atomic beam, only
bistability can be achieved. Adding inhomogeneous line
broadening does not alter the general picture, but leads
to a further increase of the thresholds for multistability.

A comparison with parameters achieved in present
Rydberg-atom experiments shows that multistable be-
havior, as well as instabilities in the upper branches of the
hysteresis curve are well within experimental reach. It
even seems feasible to investigate the system in a regime
beyond the analysis presented here, where quantum fiuc-
tuations of the cavity field become important.
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