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Generalization of an eflicient procedure for calculating the evolution
of the wave function of a system interacting with a short laser pulse
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The wave-function-splitting technique which has been developed for localized potentials is gen-

eralized to long-range potentials. This technique allows for a significant reduction of the grid size

without losing information. The method is demonstrated for a standard one-dimensional model and
some practical details are discussed.

PACS number(s): 32.80.Rm, 31.15.+q

I. INTRODUCTION

In recent years interest has grown in the direct numer-
ical solution of the time-dependent Schrodinger equation
for systems interacting with a short and strong laser pulse
[1]. This is so because this approach provides the most
fiexible and straightforward solution of the dynamics of
the problem. Many of these methods are based on the in-
troduction of a box for the underlying space coordinates
with a subsequent transformation of the differential equa-
tion into a matrix equation. The most serious drawback
of confining the system in a finite volume is that the
wave function spreads during the evolution of the sys-
tem and one has to prevent the reflection of the wave
function from the boundaries. There are essentially two
ways to deal with this problem. The first is to choose
the box so large that the wave function does not hit
the boundary during the evolution. The problem here
is that the calculation is often prohibitively large and
long. The second is to use absorbing boundary condi-
tions or the wave-function-splitting technique [2, 3]. The
problem here is that it is no longer possible to calculate
the photoelectron spectrum after the pulse if the exter-
nal part of the wave function is thrown away. However,
it was shown by Heather and Metiu [2] that the spec-
trum can be reconstructed if the interaction with the
laser is localized. The latter condition has prevented a
general use of this very efficient technique. It is the aim
of this article to show how to adapt this method to the
general case of long-range potentials. As a specific exam-
ple a standard one-dimensional model with the potential
V(x) = —I/gl+ xz [4] will be studied, but it should
become clear that the technique can be used for any one-
dimensional or three-dimensional model.

II. THEORY

The procedure of Heather and Metiu [2] was based on
the fact that the outer parts of the spreading wave func-
tion are purely outgoing describing ionization and do no
longer interact with the field if the atom-laser interac-
tion is localized to a region around the nucleus. The
wave function can therefore be split into two parts: the

where E(t) describes the laser pulse and V(x) the atomic
potential, there are two problems preventing a direct ap-
plication of the procedure described above. First the in-
teraction with the laser is not localized so that it seems
impossible to define an external part which is propagat-
ing freely. This, however, is an artificial problem as it is
well known that the electron has to be near the nucleus
in order to exchange energy with the laser. The second
problem is the fact that if V(x) is long ranged, e.g. , has a
Coulombic tail, the Fourier transformation does not give
the proper energy representation. So the Fourier trans-
formation has to be replaced by the projection onto the
energy eigenstates of the unperturbed Hamiltonian.

In order to proceed one first has to transform (1) into a
form which makes visible the localization of the interac-
tion. This is done by a transformation into the Kramers-
Henneberger frame [5—7] which leads to the form

. 8
i—@KH(x, t) = [

—zb, + V(x+ cx(t))]@KH(x, t), (2)

where

dr dr' E(r').

The point is that a(t) is bounded if E(t) is bounded [8].
Denoting the maximum amplitude of o.(t) by ao we have
that those parts of the wave function which have their
support at ~x~ )) era are propagating in the unperturbed
potential. So the effective scale for the interaction with
the laser is given by no. It might, however, not be the
only relevant scale. The condition that the outer parts of

internal part which has to be propagated by the full nu-
merical procedure chosen and the external part which
can be propagated analytically by using its energy repre-
sentation which is obtained by a Fourier transform. The
splitting can be applied several times during the pulse
and the different external parts can be added together.
But considering the general form of the time-dependent
Schrodinger equation within the dipole approximation
(atomic units are used throughout)

. 8
i—4(x, t) = [

—z' 6 + V(x) + E(t) . x]C'(x, t),
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the external parts are all thrown away. Comparing the
full spectrum of Fig. 2 with Fig. 1 there is almost no dif-
ference between the two, especially since all Stueckelberg
oscillations are reproduced correctly. The contribution
from the internal wave function demonstrates that this
spectrum is in fact dominated by the contributions from
the external parts.

IV. DISCUSSION

One of the biggest problems of the present implementa-
tion of the splitting technique is the need to calculate all
overlaps of the external part of the wave function with the
unperturbed eigenfunctions. This requires n~N multipli-
cations per split where n@ is the number of unperturbed
eigenfunctions used and N is the number of grid points
needed. It is not only necessary to store this amount
of data, but also the computer time needed to calculate
this can easily exceed the time to propagate the wave
function on a much larger grid, because most propaga-
tion algorithms (e.g. , the Crank-Nicholson algorithm) are
only proportional to the number of grid points per time
step. The most efIicient method to ensure that the over-
lap calculation does not dominate the computer time is
to minimize the number of splits during the evolution.
This can be achieved by introducing three zones as given
in (6). In the third and external zone the internal part
of the wave function is set to 0 after each split. In the
subsequent evolution it spreads into this region, but it
takes some time to reach the boundaries of the box again.
The larger the external region, the longer it takes for the
wave function to get to the boundaries and the smaller
the number of splits required. So one has to compromize
between the wish to reduce the grid size as much as possi-
ble and the need to minimize the number of splits. In the
present calculation the size of the external zone was 160
a.u. which led to a total number of 27 splits. The time
required to calculate the overlap integrals was therefore
negligible compared to the time needed to calculate the
20000 time steps of the total evolution.

The internal region which in (6) is given by xq has to
be chosen according to two requirements. One is that
it has to be much larger than o,o. The other is due to
the assumption that the external part of the wave func-
tion describes those parts of the system which ionize and
which, therefore, do not return to the internal zone. So
xy has to be large enough to accommodate all bound or
resonance states which are important during the evolu-
tion of the system. In the present calculation the second
requirement is stronger because 0;0 is relatively small. I
varied 2:~ between 180 and 300 a.u. without finding any
differences in the results. The data shown in Fig. 2 were
obtained with 180 a.u.

As discussed by Krause, Schafer, and Kulander [3] the
form of the function applied in the intermediate zone

[see (6)] should be as smooth as possible and the cutoK
applied should not be too sudden. This is to prevent
any reflections from that region. The value taken for the
width of the intermediate zone was 100 a.u. and no at-
tempt was Inade to systematically study the influence of
this parameter on the result. But comparing this value
to the value used by Heather and Metiu [2] it seems prob-
able that it is possible to reduce it down to 10 or 20 a.u.
if the requirements for computer time should be reduced
further.

There is one final point which has to be discussed. In
the calculation described in the preceding section 530
energy eigenstates were used to reconstruct the spec-
trum. But a grid of 6000 points only supports about
250 states in the same energy region. In order to in-
crease the energy resolution the eigenstates had been
created on a grid of 20000 points with the same grid
spacing. This is an equivalent procedure as the one used
by Heather and Metiu [2] to increase the energy resolu-
tion. It might, however, lead to a problem. In using the
Crank-Nicholson algorithm to propagate the wave func-
tion one implicitly diagonalizes the Hamiltonian at each
timestep on the given grid. So the eigenfunctions used
implicitly are different from the ones created on the larger
grid, even in the external zone, especially since the eigen-
values are at a slightly different position. This can lead
to a phase mismatch. There is no sign of this problem in
the present calculation which might be due to the rela-
tively small time periods over which the wave function is
propagated. One should, however, check this point if the
splitting technique is used for long propagation times.

V. CONCLUSION

We have shown how to generalize the wave-function-
splitting technique, originally developed by Heather and
Metiu [2], for localized interactions to arbitrary poten-
tials including the Coulomb potential. This technique
allows for a significant reduction of the grid size without
loss of the information necessary to calculate the final
electron spectrum. The method was demonstrated in a
one-dimensional model calculation and details for the im-

plementation of this technique have been discussed.
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