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Quantum optical master equations: The one-atom laser
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We present a detailed numerical study of the one-atom laser, that is, a single two-level atom interact-
ing with one lasing mode, whereby both the atom and the photon field are coupled to reservoirs. The
stationary as well as the dynamical properties of the model are calculated directly from the quantum
master equation with the help of two numerical methods. These numerical methods do not need any
quasi-probability representation and they do not require approximations. We find that the one-atom
laser exhibits most of the typical features of a normal laser. In the region far below threshold some as-

pects, among them the linewidth, are changed due to eigenvalues of the master equation with imaginary
parts. In this regime the complexity of the eigenvalues prominently enters the dynamical behavior.

PACS number(s): 42.50.Ar

I. INTRODUCTION

With the successful realization of the one-atom maser
[1,2] and advances in cavity-QED technology [3] an ex-
perimental investigation of a one-atom laser seems to be
feasible in the near future, for it now appears possible to
provide what is needed: a large single-mode coupling con-
stant, a low field-dissipation rate, and a strong coupling
between the atom and the pump. In such an experiment
one would be able to study the laser process in detail.
For example, it would be possible to investigate if the
standard way of modeling atomic reservoirs correctly de-
scribes the pump process or if this approximation is too
crude and leads to wrong results. In preparation of such
an experiment we present a detailed numerical analysis of
the standard laser model in the special situation where
the lasing medium consists of a single atom. By the use
of two methods we are able to solve the corresponding
quantum master equation directly, without resorting to
partial differential equations for some quasiprobability
distribution. These approaches are advantageous because
one does not have to make any structural approxima-
tions, such as neglecting higher-order derivatives to ob-
tain a proper Fokker-Planck equation for the P function,
as in one standard approach to the problem [4]. The first
of our numerical methods uses the damping basis forrnal-
ism that is presented in a recently published companion
paper [5]. The essence of the second method is the direct
integration of the time evolution of a slightly generalized
density operator.

The paper is organized as follows. In Sec. II we
present the model and introduce the objects we are going
to calculate. Section III briefly describes the main ideas
on how to tackle the problem: the use of the damping

basis on the one hand and direct integration on the other
hand. In Sec. IV the numerical solutions, concerning sta-
tionary as well as dynamical properties of the model, are
presented. In Sec. V we summarize the results and point
out the essential advantages of our approaches over the
usual ones.

II. THE STANDARD MODEL

H= ,'fig(ato +acr+) ——
—,'—A'b.a, . (2)

It describes the interaction between the photon mode and
the atom. The dynamical variables are the ladder opera-
tors a and a for the field and a.+=o. +io. for the atom,
where o.„, o.~, and o., are Pauli's spin operators. The
constants g and A=coo —Q denote the coupling constant

The standard laser model has N two-level atoms in-
teract with one mode of a resonator. The pump process
is modeled by N inverted reservoirs which are coupled
directly to the atoms. The field mode interacts with the
modes of free space, which also serve as a reservoir. Nor-
mally, this model is studied in the limit of a very large
number of atoms. In this paper we shall concentrate on
the other extreme case, that of one single atom. The cor-
responding quantum master equation is

P = . [H,P]+L,P+L,P =LP—a =1
Bt iA

in which P denotes the density operator of the total sys-
tem. The total Liouville operator L on the right-hand
side consists of a unitary part and a nonunitary one. The
unitary part involves, in an interaction picture, the usual
dipole Hamiltonian (in the rotating wave approximation)
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A

2
v[aa P+Paa 2a —Pa], (3)

couples the field to a thermal reservoir at a temperature
which corresponds to a mean number v of thermal pho-
tons in the cavity. The second term,

B
L,P= ——(1 s)[a+—cr P+Po+o 2o' P—o+]

and the detuning between the atom (level spacing A'0)
and the mode (frequency cop).

The nonunitary part accounts for losses to and gains
from reservoirs. The first term,

L,P= — (v+1)[a aP+Pa a 2aP—a ]
A

(&)= (a (r)a(r=0))
( t(0) (0)&

which can be calculated with the aid of the Green's
operator 6 according to

Tr {a'aPss]

To find the correlation function we shall use two different
strategies. In the first approach we get the Green's
operator explicitly in terms of the eigenvalues and eigen-
states (left and right) of the Liouville operator L. In the
second strategy we calculate y(t) by integrating Eq. (1)
directly with a generalized state P.

B——s [o o+P+Po o+ 2o+P—o ]

2C —B
[P o,Po—,),

III. NUMERICAL METHODS

A. The damping basis

describes incoherent pumping and decay processes of the
atom. In (3) and (4) the constants A, 8, and C are the re-
laxation rates of the mean photon number, the atomic in-
version, and the atomic polarization, respectively, under
the sole action of their reservoirs. The parameter s, rang-
ing from 0 to 1, characterizes the nature of the atomic
reservoir. If s =0, the terms model processes such as in-
coherent transitions from the upper to the lower level due
to spontaneous emission of photons into modes other
than the privileged cavity mode. The last term accounts
for atomic dephasing; it does not change the level popula-
tion. When s &0, there are also transitions from the
lower to the upper level. In particular, when s & —,', the
atomic reservoir acts like a pump which inverts the atom-
ic population. In the sequel we call s the pump parame-
ter of the model. The steady-state behavior of a similar
model is discussed in [6] and a treatment of this problem,
with the help of the positive P representation, is given in
[7].

To find the stationary as well as the dynamical proper-
ties of this model, it is expedient to know the Green s
operator G(t+r~t) of Eq. (1). This operator G(t+r~t) is
formally given by

For the explicit construction of 6 it is expedient to
solve the corresponding eigenvalue equations for the left
and right eigenstates:

and

LP„=A,„P„ (8)

The time development of the combined system, subject to
an arbitrary initial condition, reads

P„L=LP„=A,„P„.
Here L is the dual conjugate operator to L, whose
defining property is

Tr{O(LP)]=Tr{(LO)P],
for all states P and all observables O. As already antici-
pated in (9), the P„can be regarded as left eigenstates of
L, dual to the right eigenstates P„. Suppose we have
solved (8) and (9) and found all eigenvalues A,„and the
corresponding left and right eigenstates P„and P„, then
the Green's operator G(t ~t =0) is known:

G(r~t=0)( ~ )=pe "P„Tr{P„.] . (11)

G(r+~~r) =e~ (5) P(t) =G(t ~t =0)P(t =0)=g e " P„Tr{P„P(t=0)],
Once 6 is known explicitly, all quantities of interest can
be computed. For instance, important stationary aspects
of the model can be calculated as exemplified by the mean
photon number ( n ):
(n }= lim Tr{a aG(t ~t =0)P(t =0)J =Tr{ataPss],

and all relevant correlation functions, such as

(a (t) (ta=0))=Tr a ge "P„Tr{P„aPss]

(12)

(13)

where P(t =0) is an arbitrary initial state of the system,
and Pss is its stationary state.

More interesting than stationary aspects are dynamical
properties of the system, such as the linewidth. The
power spectrum, for instance, is the Fourier transform of
the field correlation function

are available, too. To obtain the Green's operator by this
method requires, in principle, the knowledge of infimtely
many eigenvalues and eigenstates, but, since the conver-
gence of the series in Eq. (13) is very rapid, the knowledge
of a few eigenstates suftices for an extremely good ap-
proximation in most practical cases.

In order to solve the eigenvalue problem (8), we first
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P (t)= y y y g„k (t. )p'„"'Cr„,
IM

= 1 n =0 k = —oo

with the spin operators

cr, =—,
' [1+(2s —1)o,],

(14)

02 0z ~

expand P into eigenstates of the nonunitary parts of the
master equation:

expansion coefficients and are acted upon by the same
matrices that appear in (17).

In the special case where v=0 and s =0, (17) and (19)
reduce to a two-term recurrence relation and can there-
fore be solved analytically [5]. In the general situation,
s ~ 0 and v ~ 0, one is left with a truly three-term recur-
sion which can be solved numerically with the method of
matrix continued fraction [9]. To see this, let us intro-
duce matrices R„' ' which couple columns X„k with
different indices n,

0 3=CT )

H4 —0+
which are the eigenstates of L, and the photon opera-
tors (k ~ 0)

(k)"
Xn +1,k Rn Xn, k

Then (17) is solved if

(M'"' —A, )R'"' +G' 'R'"'R' ', +F =0

(20)

(21)

(k) (
—k)t

Pn Pn

gt .L(k)
)k+1

afa a a
exp1+v 1+v

(16)

which are the eigenstates of L, ; for details [5] should be
consulted.

Expansion (14) transforms the master equation (1) into
a system of differential equations for the coefficients g„k.„.
When properly arranged, the corresponding eigenvalue
equation (8) acquires the form of a three-term recurrence
relation

or

R (k) 1

(g M(k)) G(k)R (k) (22)

and

det[A, —Mo —Ko(A, )]=0 (23)

det[A, —M'"', E' ', (A, )]=0 —for k = 1,2, 3, . . . ,

with

(24)

holds, which gives a continued-fraction expansion for the
matrices R„'"1. To find the eigenvalues we insert (20) into
(17) for n =0 and n = —1, respectively. This leads to the
quantization conditions

~Xn, k ™nXn, k + Gn Xn+1, k +Fn Xn —1,k (17)

which is Eq. (3.8) in [5]. Here, coefficients with difFerent
indices p for the atomic degree of freedom make up the
four-entry columns

kn + 1,k;1

Xn k=
n, k;2

kn1k; +3' ,

(18)

1-
~ kn +1,k —1;4

~Xn k Xn k~n +Xn —1 kon —1+Xn+1 kFn+1 (19)

Where fOur-entry rOWS Xn k COmpriSe the COrreSpOnding

(for k )0 and similarly for k =0 [8]), and M„'"', G„'"' as
well as Fn are 4 X4 matrices.

Note that in (17) only columns with the same index k
are coupled. So, with this expansion, Eq. (8) has decayed
into decoupled subsets of equations with different indices
k. This simplifies the further numerical treatment sub-
stantially. The stationary state, for instance, belongs to
the subset with k=0, whereas the subset with the index
k = 1 is needed for the calculation of the correlation func-
tion y(t).

The left eigenstates of Eq. (9) are found by employing a
similar expansion as in (14), now using the left eigenstates
of I and L, as a basis for P. This leads to a recursion

(k) — (k)K(~)=G
1k1 1k1

F +1
A, —M„+1—EC„+1

(25)

where n =0, 1,2, . . . if k=O, and n = —1,0, 1,2, . . . if
k=1,2, . . . . Equations (23) and (24) together with the
steady-state value X=O provide us with all eigenvalues of
the master equation (1) in the form of a continued-
fraction expansion. The corresponding eigenstates are
then obtained from (22) and (20). This supplies the gen-
eral solution of the master equation and gives the explicit
form of the Green's propagator G according to (11).

The eigenvalues and eigenstates for k =0 determine the
dynamics of the field intensity and the atomic inversion.
It is worth mentioning that the corresponding k =0
recursions (17) and (19) for the columns X„D and rows

Xn o can be reduced to three-term recursions for one
coe%cient only. These can be solved with the aid of ordi-
nary continued fractions.

B. Direct integration

In contrast to the preceding section where we found
the Green's operator explicitly we are now trying to cal-
culate the properties of the system without an explicit
form of the Green's operator. For stationary properties,
such as the mean photon number (n ), it is easy to see
how this works. From Eq. (6) one can see that it is
sufficient to take an arbitrary initial state of the system,
propagate this state for some time —that means just in-
tegrate Eq. (1) with this arbitrary state as a starting
point —until the steady state is reached, and then per-
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n,, m =0, 1,2, . . . ;i,j=+,— (27)

For the sake of simplicity, we choose 6=0 in this sec-
tion, because that allows us to do all the calculations with
real numbers only, provided that we also use a slightly
different, but unitarily equivalent, form for the interac-
tion Hamiltonian,

H= fig(a o. ——ao ) .
2 +

The equations of motion thus obtained are

(28)

P„' =g(&n P„+, +Vm P„'+, )+B(1 s)P„+ +—
Bs+ [n+m+2(n+m+1)v] P„'

+A(v+1)+n+1&m +1P„+,
+ Av nmP„

P„++, =g(+n +1P„+'+—&m +1P„+(~+) )

C+ [n+1+m+2(n+m+2)v] P„++,

+ 3 ( +v1)V n +2v m + IPSE+2

+ A v&(n +1)m P„'+, ,

P+ ~( ——g( Vn +1P„+,—+, +Pm + IP„+' )

(30)

C+ [n+m+1+2(n+m+2)v]

+ 3 (v+1)Vn+ iv'm+2P„++, ~+2

+ A v&n (m + 1)P„+',

P„+~ =g( Vn +1—P„+&

—+m + 1P„+~+,)+BsP„'
r

(31)

B(1—s)+ [n+m+2(n+m+1)v] P„+'+

+ A (v+ 1)&n + 1&m + 1P

+ A v&nm P„+'+, (32)

Similar sets of equations have been used by Savage and
Carmichael [10] in their treatment of single-atom bista-
bility. The most serious problem encountered with the
integration of these equations is their enormous number.
If one follows the method suggested in this paper, a large
number of variables have to be handled even if Eqs.

form the trace with the number operator a ta.
To perform the integration one has to use a basis in the

product space of the mode and the atom. A convenient
choice is given by the following basis states:

in, +), n=0, 1,2, . . . ,

where n labels the nth Fock state of the mode and ~+)
stand for the upper and lower atomic levels. The matrix
elements of the state P then carry four indices:

P„'~:= ( n, i IP 1m, j),

(29)—(32) are truncated for moderate photon numbers X
(typically 20 000 variables for X= 100).

But this is not necessary. In our situation we need to
deal with not more than 400 variables, which is only four
times the photon number %=100 at which we typically
truncate our Eqs. (29)—(32). This can be seen as follows.
The decoupling that is mentioned at Eq. (17) occurs here,
too. Consider the four variables P„', P„++, , P„+' +„
P„+'+ as a set P„.Then one immediately observes that
Eqs. (29)—(32) involve only P„'s with a common
difference m —n =k. This number k is identical with the
k in Eqs. (17) and (19).

In the steady state all P„with num (or k&0) van-
ish, and this reduces the number of relevant equations,
which superficially appears to be proportional to N, to a
number that is proportional to N. Even if the master
equation is supplemented by additional terms that lead to
the phenomenon of bistability and introduce a coupling
of P„with differing k values, most of the k%0 variables
will be very close to zero, the more so the larger ~k~.
Therefore neglecting these variables does not change the
results. This is a straightforward way to reduce the com-
plexity of the problem. And, in addition, it enables one
to control the quality of the calculation rather easily by
taking more and more off-diagonal elements into account.
More about this is planned to be reported in a forthcom-
ing paper [11].

To calculate the field correlation function a similar
idea can be applied. As one can see from Eq. (7) all one
has to change is the state P that has to be propagated in
time. In contrast to the stationary case where P is an ar-
bitrary density operator (of unit trace, positive
semidefinite, and therefore Hermitian), now one has to
propagate the operator aPss (traceless and not Hermitian
anymore). Again this propagation is done by integrating
Eqs. (29)—(32) with the starting point P(t=0)=aPss,
where Pss is the stationary state of the system. Thus, at
the initial time, only those P„are nonzero for which
m —n =k =1 holds, and this remains so in the course of
time. Consequently, again the number of the relevant
variables is proportional to N, and not to N . Obviously
this method can be extended to compute more complicat-
ed correlation functions.

IV. NUMERICAL RESULTS

When computing the basic results by these two in-
dependent methods we are in a position to test the accu-
racy of the calculations, and find that the agreement is al-
ways to five digits, at least. Both methods are therefore
very reliable and the results are actual properties of the
investigated system and not artifacts of the numerical
treatment.

In Figs. 1 and 2 we concentrate on the stationary as-
pects of the one-atom laser. We have taken g as the natu-
ral unit of frequency and 1/g as the unit of time. The
values of the other parameters A, B, C, v,
b (A/g=1/20, B/g=2, C/g= 1, v=O, b, =O) are
chosen such that for s = 1 the model exhibits laser
behavior. In Figs. 1(a)—1(d), the stationary reduced state
p=Tr„, tPssI for the mode is plotted for various pump
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. 6

4 V

0.0
0. 0 , 2 . 4 . 6

pump parameter s

0. 0
1.0

FIG. 3. Smallest real eigenvalue k (—) and the linewidth fac-
tor A, ( n ) (

———
) as a function of the pump parameter s.

(c)

1.0 20

FIG. 1. Stationary Q function Q(a, a ) of the mode for
diferent pump parameters s, (a) s=0.4, (b) s=0.6, (c) s=0.8,
(d) s =1.0.

parameters s. The density operator p is here represented
with the help of the corresponding Q function. Please
note that this Q function serves pedagogical purposes
only; it is calculated after we already know p in terms of
the coeKcients g„k.„or in terms of the matrix elements
P„and P„++. The plots show that even the one-atom
laser exhibits typical laser behavior, which justifies the
use of this name. Figure 2 shows the mean photon num-
ber and the parameter h (defined by ( b n )= (n )+h (n ) ). Here the familiar aspects of the laser
transition are confirmed as well. For small values of s the
laser behaves like a thermal light source (h =1) but for
maximum pumping the emitted light follows a Poissonian
distribution (h =0). This result is in contrast to what
Smith and Gardiner [7] found in their treatment of the
one-atom laser for a similar set of parameters. Indeed,
they have in effect A /B =0.0001 which should favor las-
ing more than our value A /B = 1/40 does. Inasmuch as
we get our result by two independent methods, we are
quite confident that the one-atom laser does actually
show laser behavior.

In Figs. 3—6 we are concerned with dynamical aspects
of the system. In Fig. 3 the s dependence of the smallest
real eigenvalue of the Liouville operator and the so-called
linewidth factor A, ( n ) are plotted. As one can see in Fig.
4, the correlation function for large s is given by a single
exponential. This means that only one single pair of left

15 1.0-

0.0
0.0 . 2 . 4 . 6

pump parameter s
, 8

0
1.0 10

FIG. 2. Mean photon number (—) and h parameter
( ———) as a function of the pump parameter s.

FIG. 4. Correlation function y for s = 1 {———),
s=0.5 ( ~ —~ —), ands=0. 05 (—).
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2. 0

1.0-

t

j

f

I

l

I

0, 0

(a) /4 Q

lN Q

FIG. 5. Power spectrum S for s = 1 ( ———),
s=0.5 ( ~ —~ —), ands=0. 05 (—).

and right eigenstates determines the Green's operator.
The Fourier transform of this exponentially decaying
function is a Lorentz curve (cf. Fig. 5) with the width
given by the first eigenvalue A, . Figure 3 shows the s
dependence of this smallest real eigenvalue and therefore,
at least for large s, the s dependence of the linewidth.
The linewidth factor A, (n ) now shows that the linewidth
of the one-atom laser is proportional to the inverse of the
mean photon number for large pumping, a familiar as-
pect of laser theory. But Figs. 4 and 5 also demonstrate
that for small values of s the field correlation function is
not a pure exponential anymore. More eigenstates and
eigenvalues must be taken into account and these eigen-
values may have nonvanishing imaginary parts, which
give rise to the oscillations in the correlation function.
As a consequence the power spectrum S(co) is not a
Lorentz curve. This is clearly visible in Fig. 5. The
imaginary parts of the eigenvalues lead to sidebands that
broaden the spectrum. These imaginary parts are rem-
nants of the familiar Rabi splitting that survive the effects
of damping and pumping for the parameters given. Note
that ~ is the frequency in the interaction picture; the
physical frequency is coo+co.

Figure 6 presents the pair of complex left and right
eigenfunctions that determines the Green's operator for
s =0.05. Please note, in particular, the somewhat funny
shape of the left eigenstates in Figs. 6(c) and 6(d), reminis-
cent of a snail's shell. We emphasize that the knowledge
of the left eigenstate is inevitable, if one calculates the
correlation function with the aid of an eigenvalue ap-
proach. If one tries to obtain the correlation function
with the help of a quasiprobability distribution it is far
from easy to get the corresponding left eigenfunction of
the partial differential operator that governs the time evo-
lution [12]. For our second method this problem does
not arise. One automatically obtains the effect of all
eigenstates and therefore this method is a good check
whether one has taken enough eigenstates.

The last figures (Figs. 7 and 8) demonstrate the effects
of the detuning. In Fig. 7 the mean photon number is
plotted as a function of the detuning for two different
values of the parameter C ( C =B and 8 /2 for the solid
and the dashed curve, respectively). Please note that the

20

15 .

V 10

FIG. 6. Relevant complex eigenstate of the quantum master
equation with the eigenvalue A, /g=0. 56—i0.89. (a) Real part
of the right eigenstate, (b) imaginary part of the right eigenstate,
(c) real part of the left eigenstate, (d) imaginary part of the left
eigenstate [(c) and (d) are plotted over the same domain as (a)
and (b)].

10—5 0 5

a/g
FICx. 7. Mean number of photons as a function of the detun-

ing 5 for C=B/2 (—) and C=B ( ———).
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10

Q3

CL 3
C3
C3

2

C3
C3

0

—10

FIG. 8. Real (—) and imaginary ( ———) parts of the
smallest eigenvalue as a function of h.

decrease in the photon number brought about by an in-
crease of the detuning 6 can be partly compensated for
by an increase in the parameter C, the decay constant for
the atomic polarization. Figure 8 shows the real and
imaginary parts of the smallest eigenvalue. The power
spectrum S(co) has its maximum for co=ImA, . The linear
dependence of Imi, on 6 near 6=0 is thus consistent
with the well-known prediction of semiclassical laser
theory ("mode pulling" ), according to which

(33)

We have demonstrated that the use of the two numeri-
cal methods presented here enables us to solve a funda-
mental physical problem: the one-atom laser, an open
quantum system with two degrees of freedom (one of
spin- —,

' type, the other a harmonic oscillator) coupled to
two reservoirs, one active, the other passive. Although
both methods are independent and follow completely
different strategies, their results are in excellent agree-
ment. Both are able to treat the quantum master equa-
tion directly. So most of the problems that are connected
with a quasiprobability representation, such as the trun-

wherein the ratio 3 /( A+B) equals 1/41 for the chosen
values. Both figures refer to v=0. 5 and s =1.0. The oth-
er parameters g, A, 8 are as before.

V. CONCLUSION

cation of higher-order derivatives or negative diffusion,
are avoided right from the start. In particular, with the
help of the damping basis the left- and the right-
eigenvalue problems can be treated on equal footing. In
contrast, in the usual way of handling such problems
with a quasiprobability distribution, the left-eigenvalue
problem cannot be solved without serious additional
mathematical difhculties. As a consequence the Green's
operator of the problem cannot be calculated and there-
fore correlation functions cannot be computed systemati-
cally. For this reason the field correlation function is
usually approximated by an exponentially decaying func-
tion and the power spectrum is then given by a Lorentz
curve. But, as shown in Fig. 5, this is not the case in gen-
eral.

The method of integrating the quantum master equa-
tion is a very direct way to get the correlation functions.
It has the advantage that one automatically takes into ac-
count the effects of all the important eigenfunctions.
With the observation that in most situations only a small
fraction of the density matrix elements are different from
zero, even problems that involve fairly large photon num-
bers can be handled with reasonable effort.

In most of our calculations we have used a fixed set of
values for the parameters g, 3, 8, C, v, A. These values
are not chosen judiciously to produce particular features,
such as lasing, but are typical numbers; other sets of pa-
rameters are handled just as easily. Note that in the
model all the parameters have a definite microscopic
meaning, in contrast to the standard approach. We have
shown that the one-atom laser exhibits most of the typi-
cal features of a normal laser. In contrast to what has
been found by Smith and Gardiner [7] we do believe that
even the one-atom laser shows laser action for a set of pa-
rameters that are within the experimental reach. In the
region far below threshold some aspects, among them the
linewidth, are changed due to eigenvalues with nonvan-
ishing imaginary parts. In this regime the complexity of
the eigenvalues of the master equation prominently enters
the dynamical behavior.
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