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Classical entropy of quantum states of light
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Classical-like, Wehrl s entropies of various quantum states of light are calculated and investigated as
functions of the average value of the photon-number operator. Qualitatively similar behavior of the
Wehrl entropies, corresponding to quantum states with quite different properties, is observed. A type of
damping of the Wehrl entropies for states with high coherent components is pointed out and discussed.
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I. INTRODUCTION

Since the first mathematically consistent formulation of
the Heisenberg uncertainty relations by Robertson [1],
the standard deviation of an observable is commonly con-
sidered to be the most natural measure of the fundamen-
tal uncertainty connected with quantum Auctuations. In
quantum optics such important effects as squeezing and
antibunching are also defined using standard deviations
of quadrature and photon-number operators [2]. Using
standard deviations, we can also build various complex
measures of the quantum uncertainty such as total noise
[3] or uncertainty radius, surface, and volume [4]. Other
moments are also useful, e.g., in the description of
higher-order squeezing [5]. However in many cases stan-
dard deviations are not appropriate measures of the un-
certainty, and some serious problems connected with us-
ing this quantity have been pointed out and discussed [6].
It is no wonder that alternative approaches based, e.g., on
the concept of entropy have been intensively developed.
It is worthwhile noticing in this context the entropic un-
certainty relations [7]. Recently, statistical properties of
light emitted from a two-level atom (in the framework of
the Jaynes-Cummings model) have been studied using the
Shannon and the von Neumann entropies [8].

It is known that the standard von Neumann definition
of the quantum-mechanical entropy [9] gives zero for all
pure states. Thus this entropy does not differentiate be-
tween various pure states (it is, rather, the measure of the
"purity" of states). A diff'erent definition of "classical"
entropy associated with a quantum state of the system
under consideration has been proposed by Wehrl [10].
The definition exploits the notion of the Glauber
coherent states and the Q representation [11]of the densi-
ty operator. This entropy has many interesting proper-
ties and has stimulated very deep theoretical investiga-
tions. However, quantum optics applications of this con-
cept seem to be very restricted. Marginal Wehrl's entro-
pies of two-photon coherent states are considered in Ref.
[12], but the Wehrl entropy itself is not calculated for
these states therein. Very recently the Wehrl entropy of
squeezed states has also been calculated in the context of
entropic uncertainty relations [13]. In fact, we know a

great deal about general properties of the Wehrl entropy,
but we know its explicit value only for coherent states
(for which it is equal to 1) and for squeezed states.

The main purpose of the present paper is to investigate
whether the Wehrl entropy (which clearly displays the
unique character of the coherent states) can provide a
reasonable classification of states with respect to their
nonclassical behavior. To check such a possibility we cal-
culate analytically (once numerically) the explicit values
of the Wehrl entropies for various quantum states of
light. Let us note that the existence of a proper
classification is a very important and nontrivial problem
of modern quantum optics [14]. It is remarkable that in
spite of evident differences between the considered states,
their Wehrl entropies exhibit qualitatively very similar
behavior if written as functions of the average value of
the photon number operator (A'). Nevertheless, we ob-
serve that the Wehrl entropy is a good measure of the
strength of the coherent component. In other words, it
measures how "close" a given state is to the coherent
states.

This paper is organized as follows. Section II contains
the definition and the basic properties of the Wehrl entro-
py, including the Wehrl conjecture. In Sec. III, examples
of the Wehrl entropies for two-photon coherent states
(squeezed states), photon-number states, ideal laser light,
chaotic (thermal) radiation, and displaced photon-
number states (semicoherent states) are given. We finish
with some comments and concluding remarks.

II. WEHRL'S ENTROPY

The standard von Neumann definition of the
quantum-mechanical entropy reads [9]

S = —Tr(p lnp),

where p is the density operator describing a given quan-
tum state and the Boltzmann constant is taken to be
k = 1 for simplicity. Let us note that the above definition
gives zero for all pure states p=p . Being the measure of
the "purity" of states, this entropy does not differentiate
between pure states. A different definition, which clearly
exhibits the unique character of coherent states, has been
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proposed by Wehrl [10]. It reads

S = ——f d a Q (a)lng(a),1

—f d a Q(a)=l .
1

(4)

In contrast to other quasiprobability functions (such as
the Wigner function or the P representation), this quanti-
ty is always positive and uniquely definite. However, it
does not possess correct marginal properties, so it cannot
be considered as a true probability distribution over the
quantum-mechanical phase space (it is still only a quasi-
distribution). By I

a ) we denote Glauber's coherent
states as usual,

where

g(a)=&alpla&,

is the so-called Q representation of the density operator
that satisfies the normalization condition

After straightforward but strenuous calculations we ob-
tain

s=»lp I+1 . (10)

Let us note that S does not depend on the coherent com-
ponent P. Written as a function of the average number of
photons (8') it takes the form

S =1+—,
' in(1+(8') —IPI ) . (11)

Thus the Wehrl entropy of squeezed states with nonzero
coherent component is smaller than the value obtained
for the squeezed vacuum with the same average photon
number (see Fig. 1). Moreover, in the limiting case of a
coherent state (I@I=1), we immediately obtain the
correct value S =1. Let us note that the independence
from the coherent component is not accidental, and its
origin lies in an invariance property of the Wehrl entro-
py, which will be briefly discussed in Sec. III E, which is
devoted to displaced photon-number states.

la) =D(a)lo) =exp(aa —a"8)IO) . (5) B. Photon-number states

It was conjectured by Wehrl [10], and indeed proved by
Lich [15],that we always have

S~1,
and equality holds only for coherent states, i.e.,

p=lP&&PI=D(P)lo&&olD'(P) .

It is easy to calculate that for coherent states we have
S =1, but the proof that it is really a global minimum is
very complicated [15].

III. EXAMPLES

In this section we calculate the Wehrl entropy for vari-
ous quantum states of interest in quantum optics and its
applications. To provide a sound basis for comparisons
we rewrite (where necessary) obtained results as functions
of the average nuinber of photons (8') in a given state.

For these states, the Q representation is given by the
Foisson distribution

2)iQ(a)=, exp( —lal ) . (12)

As expected, it does not depend on the phase of a.
Direct integration in polar coordinates immediately gives

S =1+n +1nn!—nest(n+1),

where we have f(n +1)=—y+pl", , 1/k and

y =0.577 215 664 9 is the well-known Euler constant.
Also in this case we have the correct limiting behavior of
the Wehrl entropy for n =0. It is seen from Fig. 2 that
the qualitative behavior of S as a function of n is very
similar to that of squeezed states but values of the Wehrl

A. Two-photon coherent states

Two-photon coherent states form the most important
class of squeezed states. Introduced by Stoler [16]as gen-
eralized coherent states, they were studied in details by
Yuen [17] as two-photon coherent states (see also [2] for
equivalent definitions, applications, and references). Let
us consider the Bogoliubov transformation [18] of the an-
nihilation and creation operators b=p&+vQ', where
Ip, l

—lvl =1. Following Yuen we define these states as
eigenstates of b with a complex eigenvalue P,

blp, v;P&=Ply, v;P& . (8)

We have (8') = lvl + IPI in these states. Their Q repre-
sentation reads

Q(a)= exp( —Ial —IPI )
1

I@I

Xexp — a* + P +—a*P+c.c.
2p 2p p

Q 3:
0

Cg~ 2

0 20 40 60 80 100
Average Photon Num, bex

FIG. 1. Wehrl's entropy of the squeezed vacuum (solid line)
and the squeezed state with the coherent coinponent IPI =10
(dashed line).
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FIG. 2. Wehrl's entropy of photon-number states. FIG. 3. Wehrl's entropy of the ideal laser light.

C. Ideal laser light

It is commonly assumed that as the output of the mod-
el laser we obtain coherent states B t t

now precisely the absolute phase of the oscillating polar-
ization generating the laser radiation. When 1 k
knowled ge of the polarization phase we should f
an avera e

e s ou per orm

den sit
g of coherent states over phase to et th

'ty operator describing the laser light [19],
o ge e proper

-= 1p=
2 J dg lexp~WIPI && IPlexp~pl . (14)

As a result of thi's integration, we obtain a mixed state 7

entro for h
the s

py p oton-number states are greater th S f
e squeezed states corresponding to the same avera e

number of photons.
o e same average

D. Thermal radiation

tern erature
For lig t emitted by a source in thermal 1'b '

a equi i num at
ernperature T we have the Q representation [22]

Q(a) =(1—g')exp[ —(1—g')lal ],
where /=exp( AcolkT) =—(8') ll (A') +1 . Also in t»s
case it is convenient to perform the integration in polar
coordinates. The Wehrl entropy is then equa1 to

S =1+in(1+ (8) ) . (20)

For (8') =0 which corresponds to the zero temperature
T, we have again S =1, as expected. Graphical resenta-
tion is iven in Fi .g' in ig. ~. Making comparisons among inves-

rap ica presenta-

tigated states we see that for a given average number of
photons, the Wehrl entropy takes the maximum value
just for thermal radiation.

p= g p(n)ln)(nl,
n=0

(15)

where the probability of finding of n photons in the state
is still given by the Poisson distribution

p(n)= exp( —IPI ), (16)

Q(~) =exp( —I~I' —IPI') g„=0 (n!)

It can be written
'

functions [21]:

'
ten in a compact form using modified Bo i e essel

Q (~)=exp( I
~ I' —IPI')+0(21 ~

I I@I ) (18)

anal ticall bu
In this case the Wehrl entropy cannot be c 1 1 d

y
'

y ut can be easily evaluated numericall Th
e cacu ate

results of nnumerical calculations are given in Fig. 3
erica y. e

state is
and is t e average number of photons. Th' k' dns. is in of

e co erent statea so known as a "random-phas " h
e Q representation of these states is given b'ven y

6
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FIG. 4.. Wehrl's entropy of the thermal radiation.
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E. Displaced photon-number states

These states are defined as a result of action of the dis-
placement operator D (P) on a photon-number state
different from the vacuum,

~13, n ) =exp(P& t 13—"8 )
~
n } . (21)

(P, n~a) =exp[t lm( aP')](n~D( a—P)~0) .

Thus for the Q representation we get the formula

Q(a)= exp( —~a —
P~ ) .la —Pl'"

n!

(22)

(23)

In this case, the integral defining the Wehrl entropy has
the form of a convolution on the complex plane and does
not depend on the parameter P. So the Wehrl entropy is
the same as calculated above for photon-number states
but the average number of photons is now equal to
n + ~P~ . Of course, this observation is generally valid.
For arbitrary states of the form

D (P)pD '(P), (24)

the Wehrl entropy does not depend on the coherent com-
ponent )t3. It is connected with the above-mentioned in-
variance property of the Wehrl entropy under the above
transformation of states. However, it should be noted
that it is not true for a general unitary transformation but
only for the displacement operators [10].

The idea of such states can be found in early work of
Cahill and Glauber [23]. They are also known as semi-
coherent states [24] or generalized coherent states [25].
Recently, various properties of these states have been ex-
tensively studied [26] in the context of nonclassical
behavior. It can be easily shown that their Wehrl entro-

py is the same as that for the corresponding photon-
number states, but with a different value of the average
photon number. Indeed, we have

IV. REMARKS

We have calculated analytically the Wehrl entropies of
various quantum states of light. We have seen that
despite the apparent differences in the quantum proper-
ties of the considered states, the Wehrl entropies of them
exhibit qualitatively very similar behavior. But we have
also observed that Wehrl entropies of coherently dis-
placed states are smaller than Wehrl entropies of original
states if written as functions of (8). Having the same
shape, they are displaced with respect to the (8') axis.
Thus the Wehrl entropy can be considered as a good
measure of the strength of the coherent component and,
in this specific sense, also the classical properties of
states. Similar qualitative behavior of the Wehrl entro-
pies of states under consideration is obviously connected
with the similar shape of their Q representations (Gauss-
ian or modified Gaussian shapes). But why do such
different states have so similar Q representations? The
answer to this question is beyond the scope of this paper.

Finally, let us remark about possible connections of the
Wehrl entropy with another measure of nonclassical
properties, namely, the total noise [3]. There are some
interesting similarities. First, the total noise is also in-
variant under the state transformation (24). Second, it
also takes the minimum value for the coherent states.
However, for a given average photon number, the total
noise has the same value for the squeezed vacuum, the
photon-number state, and all mixed states, including our
examples of the thermal radiation and the ideal laser
light. Thus the Wehrl entropy is the more sensitive mea-
sure, in the sense that it can distinguish between these
states.
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