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Dynamics by measurement: Aharonov's inverse quantum Zeno effect
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The quantum Zeno effect is known as the inhibition of a system's reversible dynamics by frequent
measurements. Aharonov and Vardi [Phys. Rev. D 21, 2235 (1980)] proposed a scheme intimately relat-
ed to the quantum Zeno effect. They showed that, by performing a dense sequence of measurements
along a presumed path, the system is found to follow this —arbitrarily chosen —trajectory. The proof
was based on the von Neumann projection hypothesis. In this paper we investigate whether this effect
still holds if we model a realistic measurement process instead of the artificial instantaneous von Neu-
mann collapse. We test the orientation of the Bloch vector of a two-level system using a third level and
resonance fluorescence as the measuring apparatus. Therefore we are able to use a dynamical collapse
governed by the three-level master equations. We show that a sequence of orientation measurements
designed to monitor a particular trajectory indeed induces a dynamics exactly along this trajectory.

PACS number(s): 06.20.Dk, 42.50.Wm

I. INTRODUCTION

In classical physics, the notion of an ideal measure-
ment implies the absence of any backaction whatsoever
upon the system due to a measurement. However, in the
von Neumann axiom of quantum mechanics, it is postu-
lated that any measurement will abruptly change the
state of the system under consideration, so that it will be
left in an eigenstate of the measured observable. In this
sense, even an ideal measurement will not leave a system
undisturbed.

It is this measurement-induced projection that is
behind the quantum Zeno effect. From a classical point
of view, such an effect due to ideal measurements must be
regarded as paradoxical. Even from the quantum-
mechanical point of view, it remains obscure what kind
of interaction qualifies a process to be a measurement and
therefore induces such confusing consequences. In order
to shed light on this problem, one must no longer adhere
to the postulate of an instantaneous collapse.

It is the purpose of this paper to replace the instantane-
ous collapse by a detailed treatment of the physical pro-
cess for a particular example. The density operator p and
the state vector

~ g ) are essentially only prognoses about
the possible outcome of a measurement. As van Kampen
clarified in a very pragmatic review, any other properties
assigned to p and ~g) are beyond physics [l]. Thus the
"collapse of the wave function" is nothing but the
measurement-induced update of such a prognosis. For an
observer-independent discussion, we study only nonselec-
tive measurements. Hence, only the nondiagonal matrix
elements of the density matrix are updated, i.e., they col-
lapse during the measurement. The decay of the coher-
ences deprives the system of its capability to jump into
another state, and it is thereby bound to stay in a particu-
lar state. This is the "collapse of the wave function. "

By treating a nonselective measurement, we can avoid
single-particle trajectories. As in classical statistics, it is

not meaningful to investigate one particular trajectory
out of many. Therefore, the approach best suited to the
measurement problem is the density-operator formalism
since we can keep track of all possible outcomes of a mea-
surement. This approach was successful in studying the
quantum Zeno effect (Sec. II A).

In this paper, we examine a related effect proposed by
Aharonov and Vardi [2]. They used a von Neumann col-
lapse. It predicts a dynamical evolution of the object as a
consequence of measurements along a presumed trajecto-
ry. We will describe this inverse quantum Zeno effect in
Sec. II B, and propose a physical system for demonstrat-
ing this effect in Sec. III. The equations of motion are
given in Sec. III A. In Sec. III B, we present a measure-
ment procedure on the basis of the quantum master equa-
tion. We contrast our treatment with a von Neumann
approach in Sec. IIIC. Aharonov and Vardi used the
formal limit of an infinitely dense measurement sequence
to lead the system along the chosen trajectory with cer-
tainty. Using a real physical process, we cannot realize
this ideal limit and thus inevitably observe deviations
(Sec. III D). In Sec. III E, we illustrate the inverse Zeno
effect by numerical solutions of the equations of motion.

II. MEASUREMENT-INDUCED EFFECTS

A. Quantum Zeno effect

The notion of the quantum Zeno effect was first intro-
duced by Misra and Sudarshan [3] in allusion to the para-
doxon stated by Zenon of Elea in the fifth century B.c.
Various aspects of the effect were discussed in a number
of publications [4—10]. Generally, the quantum Zeno
effect means that a system's unitary time evolution from
an eigenstate of the measured observable into a superpo-
sition will be inhibited by the measurement-induced pro-
jection of the system. Furthermore, in the limit of
infinitely frequent measurements, the evolution will stop
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completely. The reason behind the suppression of the
evolution is the absence of odd terms in time in the tran-
sition probability. Thus, if the time between measure-
ments is small, the system will have no way to evolve sub-
stantially out of the initial state.

Cook [11] proposed an experiment to demonstrate the
quantum Zeno effect using a V-level system (cf. Fig. 1).
The advantage of such a system is that it offers the sim-
plest possible object, i.e., the 1-2 transition, as well as the
simplest measuring device, i.e., the 1-3 transition. In the
case the system is in level I, a laser pulse applied to the
1-3 transition will cause the system to emit Quorescence
radiation, thereby indicating that the system occupies
level 1. In the case there is no fluorescence despite the
presence of the laser pulse, the system is in level 2.

When Itano et al. performed the proposed experiment
[12], they found the predicted inhibition of the 1-2 transi-
tion. However, in accordance with Cook, their interpre-
tation of the experiment used the hypothesis of an instan-
taneous collapse induced by the measurement process.
The coherences between levels 1 and 2 were set equal to
zero "by hand. " With vanishing coherence there is no
further evolution until coherence is newly built up by the
external rf field. It is important to note that the collapse
postulate is only a shortcut, roughly modeling an actual
measurement process. However, it still remains open
what exactly qualifies a physical process as a measure-
ment. This can only be determined by a full quantum
treatment of the interaction between system and meter.
All the details of this interaction can be calculated in the
case of the V-level system using the optical Bloch equa-
tions [9,10]. Instead of the collapse, the coherence was
shown to decay on a time scale of order y3/P', where y3
is the lifetime of level 3 and p is the Rabi frequency of the
optical transition.

B. Inverse quantum Xeno effect

lo(t) & =cos lo. =+1)—sin lo, = —1& .cot . cot

The probability of finding the system in its initial state is

P,„,„., = ) & a.=+ 1 ~a(t) & )'=cos' (2)

This system is clearly a candidate for the quantum Zeno
effect, if only the time separation between measurements
is much smaller than 2/co.

In the limit of an indefinitely dense sequence of mea-
surements, i.e., N ~ 00, we find

2 N
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2Xinitial
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An effect intimately related to the quantum Zeno
scheme was put forward by Aharonov and Vardi [2].
They showed that frequency measurement will not only
bring to a halt the dynamics of a system, but also may in-
duce a particular time evolution in a system that other-
wise would stay at rest. While for the original Zeno
effect, repeated measurement on the same state is carried
out, here a sequence of measurements is performed on
states that slightly change from measurement to measure-
ment. This is done in order to monitor and verify a
presumed trajectory. In the limit of a dense sequence of
observations, the system is carried along an arbitrary
continuous path in parameter space.

We may illustrate this using an example given by
Aharonov and Vardi. Consider a spin- —, particle in the in-
itial state ~o„=+1). First, suppose there's a magnetic
field along the z axis, so the spin rotates:

1 coT= lim exp
N 2

2

(3)

Thus the motion is frozen in the spin's initial state.
Let us now define a state ~cr„):

~cr„)=cosa„~o„=+1)—sina„~o„= —1),
QT n

2 1V

(4)

OBJECT APPARATUS

FIG. 1. V-level system. The 1-2 transition is a rf transition;
a, y2 represent the rf Rabi frequency, resp. the natural linewidth
of level 2. The 1-3 transition is driven by an intense laser field; P
and y3 represent the laser Rabi frequency and the natural
linewidth of level 3, respectively. The level separations are
designated by cozen and co3].

~a„) describes the state of the spin after time t„=Tn/N
of free evolution in an appropriate magnetic field. If we
now want to find out if such a field is indeed present, we
may choose to test the spin's corresponding time evolu-
tion. Thus, we calculate the probability for the spin to be
in state ~cr(t)) [Eq. (1)] at time t„by projecting ~cr(t))
onto ~cr„). If—as we conjecture —0=co, then the spin
is always projected onto itself. Therefore we do not inter-
fere with the spin's free evolution.

Now suppose the magnetic field is switched off. We
still may ask for the probability of finding the spin in
state ~cr„) provided the spin was in state ~o„,) before
this measurement:
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I'„, „=i & o „io „—1)i'=cos' QT

An observer unaware of the absence of the field may still
assume that the spin precesses with Q and there-
fore try to monitor the presumed precession. Thus he
performs an entire sequence of measurements

I lo )(a I J =& . . . z. The conditional probability of
finding the spin in

~
o & ), provided it was initially in

~o„=+1),is a product of the P„'s:
2N

QTP„0&=—g P„= cos
n=0

For large N, we obtain

dard rotating-wave approximation and a transformation
to the rotating frame (e.g. [13]), we perform the usual
transition to irreversible quantum mechanics by eliminat-
ing all degrees of freedom of the heat bath (e.g. [14]).
Thereby we arrive at a master equation containing only
variables of the V-level system.

Instead of formulating the equations of motion for the
object system as p;, i,j= 1,2, it is more illustrative to use
the Bloch vector representation (e.g., [13]):

u =p +p, v= i(p,—p, )—, w=p —p, . (9)

So, finally, the equations of motion read

y2
u = —a sinew —(co~, —co)v — u iP—(p23 p3—2),

1 QTP„p „=exp ——
'2

d y2
dt

v =a cosPw+ (co2, —co)u — v+iP(P23+ p32)2

In the limit of an infinitely dense sequence, we find again

11m P+ —p~~ 1
Pj —+ oo

d
w =a sinPu —a cosPv —y3(w —p33+ 1)

+ t (P13 P31) (10)

This means that the spin, even without any magnetic
field, is found to precess. This rotation, however, is ex-
clusively due to the observer's prejudice in favor of a par-
ticular trajectory and his design of the measurements
along this trajectory. Moreover, the observer can choose
whatever trajectory he conceives to be reasonable and
"verify" it by an appropriate sequence of a„'s in Eq. (4).
From a classical point of view, this is clearly a grotesque
consequence of the standard quantum-mechanical mea-
surement theory. Hence the question arises whether this
is only due to the artificial von Neumann postulate or
whether this effect still holds when a realistic measure-
ment process is considered.

III. PULLING THE BLOCH VECTOR

We would like to combine the inverse quantum Zeno
effect with the idea of a dynamical collapse. A system
demonstrating the inverse quantum Zeno effect must
meet several requirements. First, there has to be a clear
division in object and apparatus. Second, the object must
be described by at least two orthonormal states. Third,
the meter must be sensitive to any chosen superpositions
of the object states. A simple system meeting these re-
quirements is the V-level system in combination with a
particular measurement procedure. As for the quantum
Zeno effect, the 1-3 transition serves as apparatus. How-
ever, this time we are not looking for the population on
the 1-2 transition alone, but we measure an arbitrary
orientation of the corresponding Bloch vector.

A. Equations of motion

The 1-2 transition (the object) is coupled to a rf field,
and the 1-3 transition (the apparatus) is coupled to an in-
tense pulsed laser field with resonant frequency in the op-
tical region. For the present purpose, both fields are clas-
sical. Furthermore, all transitions are coupled to the
quantized multimode vacuum. After employing the stan-

d
dt P33 E~(P13 P31) Y3P33 &

d .p . .a r2+r 3

d P23 ~ (v+iu)+' P13 P23 &dt

P, 3
= i—P33+i—[P33

—
—,
'

( 1 —w ) ]— P

R='(u, v, w),
B='(acosP, asinP, —

(co2&
—co)} .

(12)

(13)

The effective field B depends on the resonance condition
and the phase of the applied rf field. In the following, we
will choose co=co&, (resonance), thus causing the efFective
field B to lie in the u-v plane with angle P to the u axis.

The interaction of the object with the apparatus in Eqs.
(10) will lead to the dynamical collapse of the coherences
of the 1-2 transition, i.e., u, v ~0, if p and y3 are by or-
ders of magnitude greater than a [9,10]. So the dynamics
governed by Eqs. (10) can be summarized as follows:
While the rf field causes a slow reversible rotation of the
Bloch vector on a cone, the laser pulse will irreversibly
project the Bloch vector to the w axis within a very short
time.

Here, co2& is the level splitting between levels 1 and 2, co is
the frequency, P the phase, and a the Rabi frequency of
the rf field. The spontaneous decay rate y2 of level 2 can
safely be neglected for an rf transition. co3& is the reso-
nant laser frequency, P the Rabi frequency of the optical
transition, and y3 the spontaneous decay rate from level
3.

It is useful for the following to recall that the dynamics
of the undisturbed two-level system resembles a spin pre-
cessing in an effective field:

d R=RXB,
dt

with
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B. Realization of phase and inversion measurement

We want to exploit the V-level's dynamics for a com-
bined measurement of phase and inversion of the object
system. Phase and inversion are described by the Bloch
vector's azimuthal and polar angle:

u
$2, = —arctan (14)

0» =arcian ( 2+ 2)1/2
(15)

Pzi = —arctan0 up

Up
0» =arctan0 ( 2+v2)1/2

Wp

L =(u +v +w )'

(The minus sign is due to the angle $2, being taken from
the negative v axis. )

In Cook's original quantum Zeno scheme, the system is
subjected to an intense laser pulse, causing the 1-3 transi-
tion to emit fluorescence photons depending on the inver-
sion of the 1-2 transition. This measurement answers the
question "Is w =+1"or equivalently "02&=0?". If the
answer is "yes," there is no fluorescence, otherwise we
could detect fluorescence photons.

However, we are interested in a more general question:
"Is pz, =p and $2, =8?", where $,8 can be arbitrarily
chosen by the observer. Unfortunately, using the V-level
scheme, it is only possible to measure inversion. Howev-
er, an appropriate rf pulse can bring the Bloch vector
into the w direction, where it can be measured by a laser
pulse according to Cook's scheme. Subsequently, it is ro-
tated back to its initial orientation. Altogether, this re-
quires a 2m rf pulse for measuring purposes. Because the
phase P is kept constant during the rf pulse, a 2~ pulse
will not change the system.

Now, suppose the Bloch vector initially points in the
negative v direction ($2, =0, Ozi =n. /2). If we choose the
effective field to lie in the u direction (/=0), then a m/2
pulse will rotate the Bloch vector into the positive w axis.
Applying a short laser pulse will verify this orientation by
the absence of a fluorescence signal. A subsequent
(3/2)n. pulse will reverse the efFects of the ( I/2)npulse, .
so there are no net effects of the rf field.

However, if the initial orientation slightly differs from
the v direction, the n. /2 pulse will leave the Bloch vector
tilted with respect to the w axis. The laser pulse never-
theless projects the vector into the w axis, and the subse-
quent (3/2)n. pulse rotates it into the v direction no
matter what the initial orientation was. So if we only
guessed the initial orientation and defined the rf-field pa-
rameters correspondingly, we always "verify" this guess.
Given that our initial guess was good but not accurate,
the odds are against a detection of our slight error, be-
cause it is highly improbable that, under these conditions,
fluorescence will occur, indicating the answer "no."

Next we formulate a general procedure for measuring
an arbitrary orientation of the Bloch vector. The initial
parameters are

where I.p is the length of the Bloch vector. This explicit
definition includes the possibility of the measurements
not being the first one, i.e., the length of the Bloch vector
may have been reduced before, i.e, 1.p & 1.

The measurement procedure can be summarized as fol-
lows:

(i) 8 rf pulse: During time 8/a, R rotates on a cone
with aperture 2 arccos I sinOzicos[m /2 —(P —

Pzi ] ] around
B. As defined above, P is the angle between B and the u
axis. This leaves R inclined with respect to the w axis.

(ii) Laser pulse: Due to the interaction with the laser
field, u, v decay to zero very quickly. This projects R to
the w axis and leads to a loss of length.

(iii) 2m. —8 rf pulse: This pulse continues the rotation
of R, now on a disc perpendicular to B. Sirice 8 changed
also in (ii), the rotation will not lead back to Oz, .

As calculated in the Appendix, in the limit of complete
reduction due to the laser pulse, the above procedure
leads to

R=L 0[cos(y —uzi)»nO»n82, +cosOcosO'zi]

sinO sing
X sinO( —cosP )

cosO

(17)

Originally, P was the field's phase, i.e., the angle between
8 and the positive u axis. Since after the above measure-
ment procedure, R and B are perpendicular, Pzi is found
to be P.

The crucial point here is that the Bloch vector points
in the direction given by the observer's first guess (i.e., ar-
bitrarily chosen P and 8). If we perform a sequence of
measurements on the orientation of the Bloch vector at
times t„, we will find R pointing in the direction given by
functions P(t„) and 8(t„)after each measurement. Hence
R is pulled along whatever trajectory the experimenter
chooses to test. The system's path differs from similar
trajectories due to a reversible evolution (e.g. , adiabatic
following) in one important aspect: Since the measure-
ments "pin" it to (P(t), 8(t}},it is in a sense "classical. "
The system's evolution is not a coherent evolution from
one state into another, as it is for reversible schemes. It is
interrupted by incoherent processes, so that the system's
dynamic —at least in the limit of continuously
monitoring —resembles more an incoherent classical
motion in the sense that the path does not interfere with
neighboring paths.

Since [cos(4 Pzi )s' 8 sinOzi+cosO cosOzi l ( I, the
Bloch vector shrinks slightly by each measurement, i.e.,
the state is turned into a statistical mixture. This means
that we keep track of all possible paths an individual
member of an ensemble may evolve for a given sequence
(P(t„),8(t„)). The loss of length of R is studied more
quantitatively in Sec. IIID. It turns out that, for a
sufBciently dense sequence, essentially one path, namely
the one prescribed by (P(t„),8(t„)), is realized.

The sequence of ineasurements requires P(t) to be a
stepped function, which is constant during the rf pulses
and only varies between the pulses. However, if P(t) is
allowed to change during the rf pulse, an additional re-
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versible effect comes into play, i.e., adiabatic following.
In order not to confuse the issue, we will emphasize the
measurement-induced phenomenon by using a stepped
function instead, where adiabatic following does not
occur. In any case, the effects of adiabatic following are
weak and do not change visibly the outcome.

As was already pointed out in the end of Sec. II B from
the point of view of measurement theory, the dragging of
the Bloch vector by ideal measurements is irritating.
Yet, modeling the measurement by a physical process, we
show that the pulling efFect is a straightforward conse-
quence of the system's irreversible dynamics. It is the
very purpose of this paper to show the simple physics
behind the strange implications of the standard measure-
ment theory.

8 . 821
c&&

=e " sin —sin

8 821+cos —cos
2 2

i(P&&
—P) 8 . 821

&
= —e ' cos —sin

(23)

8 821
+sin —cos

2 2

The density-matrix representation for the initial state in
the base Eqs. (19) is

P I021 821) ((()21 821I

le~el'
C. Using the von Neumann approach

cy —~, ~—/ye

Ic~ .. .I' (24)
cyYy —~, ~—e

Modeling a nonselective measurement, whether the sys-
tem is in state lp, e) or not, we obtain

P =~yeP/ye+ I'y , ePPy ...e----
'I c~e I' 0

(25)
lcq ... el'

I&2&, 82& & =e "sin
I
1 &+i cos I2)

821

2 2
(18) where

For comparison, it is instructive to investigate the mea-
surement process using the von Neumann approach: The
state of the system is reduced in an arbitrary orthonormal
base. The above measurement concept for the V-level
system must yield the same result in the limit of intense
laser Selds and fast decay of level 3.

A Bloch vector of length 1, with azimuthal angle Pz&
and polar angle ez„represents an object state

up to an arbitrary phase. The Hilbert space of possible
states is spanned by, e.g.,

I„=Iy,e)(y, el,
e&&y ~,—~ el, —(26)

Ip, e) =e'~si n+ I1)+i cos —I2),
2 2

n., n. 8)— — (19)

r

=e' ~ 'sin
I
I &+i cos I2) .m —8 m. —8

2 2

u p sln82 ~ sin/2 „vp
=sin82, ( —cosg2, )0 0 0 0

wp =cos82)0
(20)

or, equivalently,

This base represents two Bloch vectors of length 1, one
pointing in direction ($,8), the other in the opposite
direction. The initial conditions before the measurement
are

i.e., the nondiagonal elements in the measurement base
are collapsed. To illustrate the effects of the measure-
ment on the Bloch vector representation, we transform
back to u, v, w. This yields

u =a sinesing, v=a sine( —cosP), a=a cose,

with

a =
I cos(P —

P2, ) sine sine~, +cose cos~, ] .

(27)

(28)

Thus the measurement-induced collapse leads to a Bloch
vector pointing in the $, 8 direction. Comparison of this
result with Eq. (17) shows complete agreement, indicating
that the procedure presented in Sec. III B perfectly mod-
els an ideal measurement. On the other hand, since a ~ 1,
the length of the Bloch vector shrinks due to the contri-
bution of IP

—m. , m —8) to the initial state. However, as is
shown in Sec. IIID, if (Pz&

—P) and (ez, —8) are small
enough, a is essentially 1.

p p ttI' . 821 . 821
0 0

Igz&, ez& ) =e "sin
I 1 ) +i cos I2) .

In the base of Eqs. (19), the initial state reads

(21)
D. Shrinking of the Bloch vector

Geometrical considerations yield

a =cosh, P coshe+O(b, g ), (29)

with

IyP2&, 82'& =cpely, e&+cp ... el' ~,~ 8&, (22)—instead of Eq. (28). Here, b,P=Pz, —P, but b,e=e'z, —8,
where 8'2, is the projection of 821 on a plane perpendicu-
lar to B, since only 8'2, and 8 refer to the same meridian
of the Bloch sphere. Although a =cosh, P cosh 8 is
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geometrically more appealing, it is only approximately
valid [Eq. (29)], since projection in a two-dimensional
Hilbert space does not correspond exactly to projection
in the three-dimensional Bloch sphere.

Loss of length may be as small as desired by simply
taking P(t) and 8(t) as functions that hardly change from
pulse to pulse. Let ~ be the time between each pair of
measurements. Clearly, r&2m/a must be valid. For in-
stance, suppose we set

0.8
0.6
0.4
0.2

0
-0.2
-0.4

-0.8
0 0.01 0.02

1

0.03

t(s)

I

0.04
I

0.05 0.06

ttp(t) =u~rn, 8(t) =usrn, t H [(n —l)r, nr] . (30)

Thus b,P=v&r and b,8=vsse. Choosing appropriate

FIG. 3. Evolution of the u component for high vq, u& for an
entire measurement sequence. The parameters were as in Figs.
2, except for u =40~ rad/s and v& =20m rad/s. Note the high
losses in the deviation from the nominal curve.

5
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values for u& and vs renders 5$,68«1. When we per-
form a sequence of X measurements during time Nv. , we
drag the Bloch vector over ranges b,&=HA/ and
6&=Nb 0; meanwhile, the Bloch vector shrinks by

a =cos Eicos b, 8=exp — (b, +6 ) . (31)
1
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FIG. 2. (a) First four pulses of a measurement sequence. At
times t = (2n —1)w, n = 1,...,X, v= 5.5 X 10 s, a rf pulse is
started. This rf pulse is interrupted at t=(2n —1)r+r,f8/2m,
v&=0.9&. During ht =0.1&, an intense laser pulse sets in. At
t=(2n —1)r+r+/2rr+ht, the laser pulse stops and the rf
pulse continues until t =2n~. The solid lines in (b), (c), and (d)
show the u, v, and m components, respectively; the dashed line
in each panel shows a nominal curve for the case of loss-free
evolution. The parameters used were v =100m rad/s, v& =50m.
rad/s, y3=10 s ', @=5X106 Hz, a=12566 Hz.

t(s)

FIG. 4. (a) As Fig. 3, except for v&=10~ rad/s and v&=5m
rad/s. The losses are smaller than in Fig. 3, but the total time is
longer. (b) The dotted line shows P2&= —arctan(u/u), the re-
sulting azimuthal angle of the Bloch vector. Each dot
represents the angle after the measurement. The angle neatly
follows the deterministic sequence (v&(t„)). (c) The polar angle
8z&=arctan[(u +u )'~ /tu] is shown. It follows the deter-
ministic sequence (vz(t„)). In all figures, the same parameters
were used as in Fig. 2.
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there is a small but nonvanishing probability that the sys-
tem resists fitting in the observer's prejudice. In the case
of the V-level system, the rare event of a deviation from
the prescribed trajectory would be indicated by the ernis-
sion of fluorescence radiation from the 1-3 transition.

0.5

0

-0.5

E. Numerical solution

In the following, we show and comment on results of a
numerical study of Eqs. (10). The measurement sequence
is governed by the two functions Eqs. (30). In principle,
any other function of t will do; however, we choose
stepped functions in order to logically separate
measurement-induced effects from all other possible drag-
ging influences.

In the present examples, we always choose a ratio
vs/v& =2. The initial conditions is R='(0,0, 1).

The pulses are shown in Fig. 2(a). Note how the laser
pulse is advancing slowly within the rf pulse from pulse
to pulse. In Fig. 2(b), the evolution of the u component

FIG. 5. Trajectory of the tip within the Bloch sphere. The
drag velocities were van = 10m rad/s and v& =5m rad/s.

The total loss (1—a ) is monotonically decreasing with
N, the number of measurements, while the total measure-
ment time T=N~ is increasing linearly with N. The limit
N —+ 00, a —+1 is practically impossible, since this would
take infinite measurement time. This means that, for the
actual experimental realization of the inverse Zeno effect,
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FICx. 6. As Fig. 5, but for vz =40~ rad/s and v& =20m. rad/s.
Since this is much faster than in Fig. 5, the losses are higher,
and total time is shorter.

FIG. 7. Lines of small laser Rabi frequency (P= 1.1 X 10 Hz,
v&=20m rad/s), v&=10m rad/s. (a) The solid line shows the
evolution of the u component with almost no reduction at all.
The nominal line represents the completely reduced, loss-free
case. (b) and (c) show!!(2& and Hz& and their nominal values for
complete reduction. Note that ((!z& is less sensitive to the incom-
pleteness of the reduction, while 8» is almost not dragged at all.
This shows that a phase is changed more easily by external fields
than by an inversion, because changing the inversion requires
energy exchange.
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of the Bloch vector is displayed. Note the oscillatory de-
cay to u =0 during the laser pulse. The dashed line
designates a nominal curve, which should be followed by
the components of R in the case of an infinitely dense se-
quence. In Figs. 2(c) and 2(d), the corresponding evolu-
tion of v and w are shown as solid lines. Since in Figs.
2(a —c), v& =50m rad/s and v&=100m rad/s were chosen
rather fast, there are high losses. Approximately, the loss
per pulse is (1—cosv&2r cosve2r) =7.3%%uo.

In the following figures, the rapid evolution during the
pulses is suppressed and we only show the orientation of
the Bloch vector between measurements. This is done for
graphical clarity.

a = [cos(vs2r) cos(v&2')]

1=exp
2X

2
3 3—7T +
4 2

2

Figures 3 and 4(a) display the evolution of the u com-
ponent for two difFerent "velocities" ve and v&. The
range of 8 and P is sotnewhat more than (0...2n. ) [respec-
tively (0. . .~)]. Note that the smaller vs and v& are, the
smaller is the loss after the entire sequence, but the
longer the total time. For example, consider the situation
at 8=3m. /2 [respectively, /=3m. /4]: The total loss up to
this point is (1—a ), a given by Eq. (31):
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FICr. 8. Regime of partial reduction (P=6X10 Hz, vq=20m
rad/s, v&=10m rad/s). (a) shows the u component's evolution
and its nominal values (complete reduction, loss-free). (b) and
(c) show Pz& and ez& and their nominal values. There is drag-
ging, but it is retarded and incomplete. (d) displays the length
of the Bloch vector in the course of measurements. As was
pointed out in the text, the loss is greatest when the Bloch vec-
tor reaches the equatorial plane and is smallest when it ap-
proaches the polar regions [cf. (c)].

This yields, in Fig. 3, a =0.66 (N=34), and in Fig.
4(a), a =0.90 (N=136). The loss for each component
of the Bloch vector is the same.

Figures 4(b) and 4(c) show the polar angles of R, which
are newly set by each measurement process. Obviously
Pz&=arctan(u/v) and 82&=arctan[(u +v )'~ /w] neat-
ly follow the prescribed trajectory. Figures S and 6 show
the trajectory in a three-dimensional plot of the Bloch
sphere for slow (Fig. 5) and fast dragging (Fig. 6).

The very success of a measurement depends crucially
on the degree of reduction of u and v during the laser
pulse. For a complete reduction, a minimal Rabi fre-
quency for the laser light is necessary. To obtain com-
plete reduction, we have used P=5 X 10 Hz for all exam-
ples. Now we want to vary p to see the effects of a partial
reduction. In the limit of a very small or vanishing Rabi
frequency, the Bloch vector will rotate during the rf
pulse, but there will be neither losses nor dragging. If ob-
served only between the pulses, the Bloch vector will not
move on average; there will be only a slight trembling of
the tip around its initial position. An example in this re-
gime is shown in Figs. 7(a)—7(c).

With increasing p, the regime of partial reduction is
reached. Poor dragging and high losses are the main
features [Figs. 8(a)—8(d)]. This is somewhat surprising
since the losses are much higher than for an example with
the same dragging velocity but complete reduction. The
explanation is as follows. Partial reduction means that
u, v do not decay to zero during the laser pulse, but stop
before. Thus, the subsequent rf pulse cannot rotate the
Bloch vector in the desired nominal direction. So the
dragging is incomplete. The next rf pulse rotates the
Bloch vector into the vicinity of the w axis, only if the
previous collapse has led to complete dragging. Since
this was not the case, the Bloch vector's tip is farther
from the w axis. Because the loss is proportional to the
distance from tip to m axis, it is greater than in the case
of complete reduction. The distance is equal to
(u +v )'~ IX:sin(92&. So, for the Bloch vector in the equa-
torial plane, the losses are maximum; in the polar re-
gions, they are minimum; see Figs. 8(c) and 8(d).
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IV. CONCLUSION

In classical mechanics, measurement or observation
does not interfere with the particle's dynamic evolution
in space and time. A measurement merely extracts infor-
mation on position and momentum without disturbing
the system's path in any way. In quantum mechanics,
observation is a much more subtle phenomenon, since the
measurement inevitably leaves a trace on the system's dy-
namic evolution, as delicate and weak as the interaction
may be. The concept of the Zeno effect, and more so, the
inverse effect discussed here, demonstrates that in the
case of frequently repeated measurements, results are
produced that must be considered absurd from a classical
point of view. While the measurement procedure of the
normal Zeno effect brings the dynamics to a complete
halt when a particular physical property is measured in
rapid succession, the inverse effect seems even more ob-
scure. When the meters are positioned and timed in such
a way to monitor a particle along a presumed path, the
experimenter will inevitably find the particle on any path
he chooses to test, although otherwise, without such a
test, the particle would remain undisturbed in its initial
state.

In this paper we have demonstrated that such a star-
tling phenomenon is not a mere illusion brought about by

I

an overidealized measurement concept, but can be ob-
served experimentally. By tracing the wave-function col-
lapse back to its physical origin, i.e., the interaction of
the object with a realistic quantum-mechanical meter, the
collapse becomes a natural and continuous part of the
systems dynamics. To illustrate how this effect can be
seen in a laboratory experiment, we show in detail how
the tip of the Bloch vector is dragged along an arbitrary
path on the surface of the Bloch sphere by performing a
sequence of measurements on the Bloch vector orienta-
tion. By abandoning the collapse hypothesis and replac-
ing it by an irreversible physical interaction, it becomes
possible to describe the time evolution of the observed
system in quantitative detail, which only in a limiting
case agrees with the results of the artificial collapse pro-
cedure.

APPENDIX

It is a simple task to calculate the dynamics of the V-
level system from Eqs. (10},when one takes advantage of
the very fast decay of the u and U due to the intense laser
pulse. In this case, Eqs. (10) simplify to Eqs. (11). Solv-
ing these equations for a general initial condition
Ro='(uo, uo, wo) gives

uo(cos /+ sin P cosat ) +vosing cosP( 1 —cosat ) =wosing sinat

U(t) = uosingcosg(1 —c soat) +v (0isnP+cos Pcosat)+tUocosgsinat
~(&) uosing sinat —Uocosg sinat +wocosat

(Al)

Now we perform the measurement procedure proposed in Sec. III B. The initial condition before the measurement is

sin 8p|singe i

Ro=LO sin82, ( —cosPz, )

cos82 i
0

(A2)

Since in step (ii) u, v ~0, we only need w(t =8/u), so that we get a new initial condition for the second part of the rf
pulse [step (iii)]:

R=1.0 0

sin/2, sin8~, sing sin8+ cosP~, sin8~, cosg sin 8+cos8~, cos8
(A3)

In step (iii), a 2m —8 pulse is applied. This yields
r —w(t =8/a)sin/sin(2m. —8)

R=L0 w(t =8/a}cosg sin(2n. —8}
w(t =8/a)cos(2m —8)

sing sin8
=Loa ( —cosg)sin8

cosO

(A4)

with

a = (sin/2, sin82, sing sin8+ cos$2, sin8~, cosg sin8

+cos82, cos8 }

=cosh, P sin8~, sin8+ cos8~,cos8 . (A5)
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