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A theoretical study is presented of the gain and the noise spectra of laser amplifiers at pumping rates
both above and below the oscillation threshold. The theory is valid for both class-A and class-8 laser
systems, where the decay rate of the collective atomic dipole moment greatly exceeds the decay rates of
the atomic population inversion and the laser cavity. The gain and the noise properties are shown to be
strongly influenced by a four-wave mixing of the signal and image frequencies via a modulation of the
population inversion. Particular attention is paid to the residual noise Aux that persists in the laser out-

put above threshold and to the typical characteristics of a second-order phase transition displayed by the
gain in the threshold region. The results for the above-threshold laser amplifier are compared with ex-

perimental measurements of both gain and noise for the argon-ion (class-3) and CO& (class-B) lasers.
The signal-to-noise ratios for both heterodyne and direct-detection measurements are evaluated, and the
conditions are determined under which optical amplification can lead to an enhancement of sensitivity.

PACS number(s): 42.60.Lh, 42.60.Mi, 42.79.Qx

I. INTRODUCTION

The laser has been the subject of extensive research and
development for more than 30 years. The physical prin-
ciples of its operation and many of its basic properties
were elucidated in the late 1950s and in the 1960s. Its
reputation at that time of being a solution in search of a
problem is now dificult to reconcile with the wealth of its
applications, not only as a tool in many fields of research,
but also as an important component in equipment used in
surgery and more generally in commerce and industry, in
the once and in the home. The device is widely regarded
as well understood, and current fundamental research on
lasers is mainly focused on the development of novel
varieties and on the understanding of its more esoteric
features.

It has recently been shown, however, that even the
most basic properties of one of the most commonplace of
lasers, the argon-ion (Ar+ ) laser, can be further explored
by means of some experiments that are quite simple in
concept. Thus the gain profile of the laser, whose farm
provides an essential component of any model of the
workings of the device, has been determined for the first
time by measurements of the amplification of an injected
signal [l]. Furthermore, the noise spectrum of the laser
has been studied experimentally [2,3], and it shows
dramatic noise-cancellation effects that were apparently
overlooked in previous work. The purpose of the present
paper is to provide more complete details of the measure-
ments and to interpret their results in terms of a
comprehensive theory of laser gain and noise.

Continuous-wave lasers fall into three main classes
defined by the relative magnitudes of the relaxation rates
associated with the coupled atom-cavity system. The de-

cay rate of the collective atomic dipole moment (which
determines the spectral linewidth of the lasing transition)
is here denoted by y~, that of the atomic population in-
version (equal to the inverse of the atomic lifetime) by y~~,

and that of the empty laser cavity (determined by the cav-
ity length and loss) by y, . The time scales of the equa-
tions of motion of the atomic dipole moment, atomic in-
version, and optical field are governed, respectively, by
these three decay rates. The Ar+ laser belongs to class
A, specified by the condition y~ &&y~~ &&y, . In this case
the atomic variables respond to the value of the optical
field essentially instantaneously, and adiabatic or quasi-
static approximations can be made in the two atomic
equations of motion. Thus only the equation for the opti-
cal field retains its differential form, and this is straight-
forwardly solved to the level of approximation needed in
the present work. The well-known Scully-Lamb model
[4,5] is valid for class-A lasers. The simplicity of both
theoretical and experimental results for class A greatly
facilitates the understanding of basic laser physics.

Although most of our work is concerned with the Ar+
laser, we have also made some rneasurernents on the CO2
laser, which belongs to class B, specified by the condition
y~)&y~~=y, . In this case only the equation of motion
for the atomic dipole moment can be solved in an adia-
batic approximation, leaving simultaneous differential
equations for the atomic inversion and the optical field.
These can again be solved to the required level of approx-
irnation without too much difficulty. The results are naw
more complicated than those for the class-3 laser, to
which they reduce when the further assumption y~I &)y,
is made. Semiconductor lasers also belong to class B, al-
though their behavior shows additional complexity on ac-
count of the significant coupling of phase and intensity
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fluctuations [6]. Nevertheless, our results for the class-B
noise spectrum, derived with the CO2 laser in mind, can
be compared with expressions derived for semiconductor
lasers [7].

The final category of laser, class C, has three decay
rates of comparable magnitude, y, =

y~~ =y„and all three
of the equations of motion must be retained in differential
form. The existence of three active degrees of freedom is
a requirement for the onset of chaotic behavior in laser
systems [8], and class-C lasers have been much studied
for the instabilities and chaos that occur for suitable
ranges of the parameters. Class-C lasers are excluded
from the analysis and experiments reported here.

The main body of the paper begins in Sec. II with a
description of the laser model. In addition to the restric-
tion to classes A and 8, the laser is also assumed to have
a "good" cavity, whose modes are sufficiently well
separated in frequency for the experiments to excite only
a single internal mode. The laser generally emits light
into free space from both ends of the cavity, and we use
the now well-established technique for matching a
discrete internal-mode field to the continuous-mode
external fields [7,9]. Both the Ar+ ion and the CO2 mole-
cule move suKciently rapidly to inhibit any spatial hole
burning on the scale of the laser wavelengths. The lasing
media are accordingly assumed to be homogeneous. The
laser variables are treated as classical quantities, and the
effects of the quantum noise sources are represented by
Langevin forces. The laser dynamics are therefore de-
scribed by the usual Maxwell-Bloch equations [5,10,11].
The equation of motion for the optical field is augmented
for calculations of the gain by the driving force from an
injected signal. The equation for the atomic dipole mo-
ment can be solved immediately with the exclusion from
consideration of class-C lasers. The steady-state proper-
ties of the free-running laser are briefly derived in Sec.
III.

The main calculations of the paper are presented in
Secs. IV and V for the below-threshold and above-
threshold lasers, respectively. The associated experimen-
tal results for gain and noise, obtained above threshold,
are presented in Sec. VI. The gain determined by the
amplification of an injected signal is considered in Secs.
IV A and V A. Studies of the laser with an injected sig-
nal have a lengthy history, and it is necessary to place our
contribution in the context of earlier research. We as-
sume, and verify experimentally, that our injected signal
is sui5ciently weak for only Iinear amplification to occur.
The measurements can thus be modeled by a theory that
determines the linear part of the relation between output
and input signal amplitudes. The linear gain, equivalent
to a linear susceptibility, was considered by DeGiorgio
and Scully [12] in their analogy between the laser thresh-
old region and a second-order phase transition. One of
our aims here is to present a more detailed account of the
changes in linear gain that occur at threshold. The
above-threshold linear gain has been considered previous-
ly by Pantell [13]. More generally, he and later authors
[11,14—16] have treated the effects of stronger input sig-
nals that significantly modify the characteristics of the
free-running laser by injection locking. The calculations

need to be taken to second order in the signal amplitude
in order to model injection locking, and this effect is ex-
cluded by the first-order treatment given here. The injec-
tion of stronger input signals also produces interesting in-
stabilities [16],which again are not included here.

A major conclusion of the present work is the impor-
tance for the gain mechanism above threshold of four-
wave mixing between the optical field at the frequency of
the input signal and a field at the image frequency on the
other side of the laser line. The four-wave mixing is
driven by the strong laser field in the cavity via modula-
tion of the population inversion. This modulation is
closely related to the phenomenon of population pulsa-
tions [5] in a two-mode laser. As a consequence of this
nonlinear coupling, signal and image fields of comparable
magnitude but of approximately opposite phase are excit-
ed to first order in the amplitude of the input signal.
Such four-wave-mixing processes have been considered
before [17], with applications to the production of non-
classical light [18] and to the dynamics of semiconductor
lasers [19]. However, the important cancellation effects
in the observed heterodyne gain, produced by the result-
ing anticorrelation between the signal and image contri-
butions, seem not to have been recognized previously.

Expressions for the laser noise spectra below and above
threshold are derived in Secs. IV 8 and V B. The calcula-
tions make heavy use of we11-established methods and re-
sults [10,20]. However, we make an identification of the
important role played by anticorrelations between the
noise contributions at signal and image frequencies on
opposite sides of the laser line. The resulting partial can-
cellation of the noise observed in heterodyne detection
parallels the gain cancellation mentioned above. This
similarity in behavior confirms the close relationship be-
tween gain and noise expected for a linear amplifier [21].

The aim of the work outlined above is a better under-
standing of the gain and noise processes that underlie the
operation of ordinary gas lasers. However, the experi-
mental arrangement used in our measurements of the
laser gain closely resembles that of the self-aligning (so-
called "autodyne") laser radar [22,23]. A further motiva-
tion of the work is the desire to understand such systems.
The detuned input signal is now obtained from a
Doppler-shifted return beam produced by scattering of
the laser output beam by a moving object. The velocity
of the object may then be inferred from the modulation of
the laser intensity from the opposite end of the cavity,
caused by the beating of the amplified return signal and
its image with the free-running laser beam. Signal-to-
noise ratios for the laser amplifier below and above
threshold are derived in Secs. IV C and V C, respectively.
The more important above-threshold results can be used
to assess the potential advantages of laser amplification
for the performance of autodyne lidar systems.

II. LASER-AMPLIFIER MODEL

Figure 1 shows a representation of the laser cavity,
with two mirrors of intensity transmission coefficients T&

and T2 separated by a distance L. The intensity damping
rates associated with the two mirrors are given by
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FIG. 1. Schematic arrangement of the amplifier cavity show-
ing the notation for field amplitude components.

y, =cT, /2L and y2=cT2/2L, (2.1)

and the total damping rate of the internal field in the cav-
ity is denoted

y. =-,'(yi+y» . (2.2)

The full width of the cavity mode intensity spectrum in
angular frequency units (the empty-cavity bandwidth) is

I 0=2@,=y)+@2 . (2.3)

a,„,=y& cz (2.4)

In the presence of an inverted atomic population in the
cavity, it is assumed that laser action occurs for a single
mode of frequency co& in resonance with the atomic tran-
sition.

We seek the amplification characteristics of the laser
for an input signal of complex amplitude P;„whose fre-
quency is detuned from the laser frequency co~ by a vari-
able amount co. Such an input excites a field a in the cav-
ity, and for a cavity with highly rejecting mirrors, the
output fields have complex amplitudes given by [9]

terms on the right-hand side represent, respectively, the
laser pump expressed in terms of the mean population in-
version D~ that would be obtained in the absence of any
cavity field, the driving force from the coupling of field
and dipole moment, and a quantum-noise-induced
Langevin force I ~ for the population inversion. The
equation of motion for the population inversion takes the
simple form (2.7) only for laser transitions in which the
lower-level population is negligible, and many of the re-
sults that follow are valid only when this perfect-
inversion assumption is satisfied. The effects of
significant lower-level population are discussed in the Ap-
pendix. The third and final Maxwell-Bloch equation is
the equation of motion for the atomic dipole moment d in
the form

d+(yi+i cot )d =gaD+I d, (2.8)

and hence the Maxwell-Bloch equations can be simphfied
by removal of the Langevin forces for the gain calcula-
tion. It is convenient to express the input signal field in
the form

where yz is the dipole-moment decay rate. The forces on
the right-hand side represent, respectively, the effects of
coupling between the atomic population inversion and
the cavity field, and the quantum-noise Langevin force
for the dipole moment. Note that the variables a, D, and
d, the input signal P;„, and the Langevin forces I are all
functions of the time, but for reasons of simplicity this is
not shown explicitly in the equations of motion.

Calculations of the laser gain and noise are presented
in later sections of the paper. For linear amplification, it
is necessary to obtain solutions of the equations of motion
for the mean-field amplitudes correct to first order in P;„.
The random forces have zero-mean values,

(2.9)

and

1/2 (2.5)
P;„=Psexp[ i(cot +—co)tj, (2.10)

The relations between these two output fields and the in-
put field P;„determine the amplifier gains in transmission
and re6ection, respectively.

The laser-amplifier dynamics are described by the usual
Maxwell-Bloch equations [24]. The first of these is the
equation of motion for the cavity field a in the form

where the detuning ~ can be positive or negative. It will
be shown that to first order in Ps, there are contributions
to the internal field a at frequencies cot +co (signal) and
cot —co (image) in addition to the zero-order free-running
laser field at frequency co&. The average internal field
thus has the form

a+(y, +icot )a=gd+yz~ P;„+I (2.6)
a =at exp( i cot t)+as e—xp[ i (cot +co)—t]

where the terms that occur on the right-hand side
represent the forces that drive the field. These result, re-
spectively, from the interaction of the collective atomic
dipole moment d and the cavity field with coupling con-
stant g, the input signal P;„ that enters the cavity through
the mirror whose transmission is described by yz, and a
random Langevin force I that represents the effect on
the cavity field of quantum noise sources. The equation
of motion for the atomic population inversion D is

+at exp[ —i(cot —co)t] . (2.1 1)

+dt exp[ i(cot co)—t] . — (2.12)

There are also three terms in the mean population inver-
sion

The mean collective atomic dipole moment has the simi-
lar form

d =dr exp( i cot t)+ ds ex—p[ i (cot +co)t—]

D+y~~D =y~~D g(a "d+ad )+I'— (2.7) D =Do+D, exp( icot )+D; ex—p(icot), (2.13)

where
y~~

is the population-inversion decay rate. The where Do is the constant population inversion of the
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r.=o, (2.14)

since any contributions from this force are negligibly
small [10].

If class-C lasers are excluded from consideration, y~
can be assumed much larger than the detuning co and the
cavity decay rate y„and the resultant homogeneous
broadening thus dominates the inhomogeneous Doppler
broadening. Under this condition, spectral hole burning
effects may be assumed to be negligible. Then (2.8) is well
approximated by

free-running laser and D& is of first order in the input sig-
nal amplitude. The occurrence of both signal and image
field amplitudes, as and al, to first order in Ps is a signa-
ture of the nondegenerate four-wave-mixing process that
controls the amplification. These amplitudes are coupled
by the D, modulation ("population pulsation" [5]) terms
in the population inversion (2.13).

For calculations of the noise, it is necessary to consider
the fiuctuations of the field variables around their mean
values. The noise spectra are determined by averages of
products of pairs of the Langevin forces, and the I must
now be retained in the Maxwell-Bloch equations. The in-
put field P;„can, however, be removed from (2.6) in calcu-
lations of the basic laser noise. In addition, for tempera-
tures sufficiently low that there is no significant thermal
excitation at frequency coI, we may put

amplitude given by

Do )y
~()

&2y

where the population inversion

Do =g p~/g

(3.6)

(3.7)

is independent of the laser pumping rate. The internal
field intensity or mean photon number (3.6) can be writ-
ten in the compact form

~a ~

=(C—1)n (3.8)

where

+s ~~~
II

(3.9)

P =Ps(C —1),
with Ps given by

Ps =Acogy)ns .

(3.10)

(3.11)

is called the saturation photon number; that is, the num-
ber of photons stored in the laser cavity at twice-
threshold pumping rate. Correspondingly, the laser out-
put at this pumping rate is called the saturation power
Ps. The laser power from the a,„,end may conveniently
be expressed as

yid =gaD+I d . (2.15) IV. BELOW-THRESHOLD LASER AMPLIFIER

Thus d can be eliminated from (2.6) and (2.7), leaving
only two equations of motion for solution.

III. FREE-RUNNING LASER

When there is no input signal, P;„=0, and the
Langevin forces are neglected, the quantities as, aI, ds,
dI, and D, in the solutions (2.11), (2.12), and (2.13) all
vanish, and the Maxwell-Bloch equations (2.6), (2.7), and
(2.15) reduce to

Fcal. gdg

yiDo=yiDp g(al dk +a—l. dl ) ~

yqdl. =gaqDo

(3.1)

(3.2)

(3.3)

These equations determine the mean values of the laser
variables.

There are two forms of solution, one of which is

aI =0, dl =0, Do=D (3.4)

This corresponds to the laser below threshold, with a
zero mean-field amplitude and a population inversion
proportional to the pumping rate. It can be shown that
(3.4) is the stable solution when the cooperation parame-
ter or normalized pumping rate defined by

C=g D /y, y~ (3.5)

has a value smaller than unity, C ( 1.
The other form of solution corresponds to the laser

above threshold, and it is stable for C & 1. It has a field

The theory of an inverted-population cavity amplifier
operated below its laser threshold has been extensively
treated by Mander, Loudon, and Shepherd [25] (this pa-
per and its equations are identified by the abbreviation
MLS). The treatment of MLS was based on quantum
Langevin equations and the results were expressed in
terms of relations between the input and output field
operators of the amplifier. The theory presented here
uses c-number field variables and the model of the

amplifier is somewhat more versatile than that of MLS,
although it is valid only for classical fields. The main
properties of the below-threshold laser amplifier are
rederived in the present section for the purposes of com-
pleteness and comparison with the above-threshold re-
sults given in the following section.

A. Gain

The laser variables below threshold are given by (3.4).
In addition, in the absence of any strong coherent laser
line with frequency col, there is no mean excitation of the
image-frequency field and no modulation of the popula-
tion inversion, so that

aI=O, d1=0~ Di=O (4.1)

(yc i~)~s gds+y2 ~s (4.2)

Thus, only the signal-frequency contribution survives in
the internal field (2.11) and the collective dipole moment
(2.12). The mean internal signal-field amplitude is thus
determined by the Maxwell-Bloch equations (2.6) and
(2.15), which reduce to
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and

~i~s =«sa
The solution is

y 1/2P

y, (1—C) —iso

(4.3)

(4.4)

stant. Similar results for the bandwidth and the gain
profile were found in MLS(2. 13) and MLS(3.5).

The below-threshold gains in reAection are defined
analogously by

(4.10)

where the cooperation parameter C defined in (3.5) is
smaller than unity.

We define the below-threshold complex amplitude gain
in transmission by

where (2.5) has been used, and

4' + [ —y i+ye+(yi+y2)C]
4' +( +y2) (1 —C)

~out (y y )1/2

y, ( 1 —C) i co—
(4.5)

where (4.4) has been used. Note that

(4.11)

where (2.4) has been used, and the corresponding intensi-
ty transmission gain is

Gz(co)=1 for C=y, /(yi+y2), (4.12)

and the gain is greater than unity for larger values of C.

GT(co)= gT
rir2—gTI —,+,(1 C),

. (4.6)
B. Noise

The peak gain is accordingly

GT(o) =y iy2/y', ( 1 C)'—

and this is greater than unity for

C&(y', —y' ) /(y, +y ) .

(4 7)

(4.8)

In order to calculate the laser-amplifier noise spectrum,
we use the Maxwell-Bloch equations (2.6), (2.7), and
(2.15) with the forces I D and I"z retained but the signal
input amplitude P;„set equal to zero. The mean laser
field aL continues to vanish, as in (3.4), but we look for
zero-mean Auctuations in the field by setting

The lower part of the shaded region in Fig. 2 shows the
ranges of values of C and y, /y2 for which the peak gain
exceeds unity. The full width of the gain profile at half-
maximum height is

I =2y, (1—C)=ID(1 —C), (4.9)

where the empty-cavity bandwidth I 0 is defined in (2.3).
It is seen that the peak gain increases while the gain
bandwidth diminishes as the normalized pumping rate C
is increased towards its threshold value of unity. From
(4.7) and (4.9) it is easily shown that the product of the
bandwidth and the square root of the peak gain is a con-

a(t) =5a(t)exp( ical t—), (4.13)

D(t)=D, +5D(t) . (4.14)

These trial solutions are now substituted into the
Maxwell-Bloch equations, and the terms of first order in
the fluctuating variables and forces give

5a( t)+ y, (1—C)5u(t) = (g /yi )I z(t)exp(it0L t)

and

(4.15)

where the time dependence of variables is now shown ex-
plicitly to distinguish them from their Fourier trans-
forms. The population inversion is also assigned a Quc-
tuating contribution,
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5D(t)+yii5D(t) =I D(t) (4.16)

(g/y, )l ~(~L, +~)
5a(co) =

i to+ y, (1——C)
(4.18)

where the definition (3.5) of the cooperation parameter C
has been used again.

We define Fourier transforms of the time-dependent
quantities according to

5a(co) =(2n )
'/ Idt exp(icot)5a(t), (4.17)

where in view of (4.13) co is measured with respect to the
laser frequency toL. The equations of motion (4.15) and
(4.16) are readily solved to obtain

FICx. 2. The shaded area shows the values of cooperation pa-
rameter C and cavity-mirror decay rates for which the amplifier
gain exceeds unity for zero detuning. The dashed curves show
the parameter values that maximize the heterodyne signal-to-
noise ratio for different values of the detection eKciency g.

and

I D(co)
5D(co) =

t co+ yll

(4.19)
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The power spectra of the fluctuations are then obtained
by evaluation of the averages

(g/y, )'& I „*(~,+~)r, (~, +~') &

5a*(co )5a( co' )
[ico+y, (1—C) ][ i co—'+ y, ( I —C) ]

(4.20)

This quantity represents the dimensionless mean output
Aux of noise photons per unit angular frequency band-
width at frequency co& +co per unit time [27]. It resem-
bles a result given in MLS(3.6). The full width of the
noise spectrum at half-maximum height is the same as
that of the gain profile, given by I in (4.9). The total out-
put noise Aux on the transmission side of the amplifier is

and

&r( )r(')&
& 5D(co)5D(co') &=, . (4.21)

( ico+y~~)( ico +y~[)

dcoXT co =y& n

C. Heterodyne signal-to-noise ratio

(4.31)

& I d(coL+co)l d(coL +co') & =2y D 5(co co')—(4.22)

and

&r ( )r ( ')&=2y~~D 5( + '), (4.23)

where 5 denotes the Dirac 5 function. The required noise
power spectra are therefore

2y, C
& 5a*(co)5a(co') &

= 5(co —co')
co +y, (1—C)

(4.24)

2y~D
&5D(co)5D{co')&

= 5(co+co') .'+r' (4.25)

The Langevin force correlation functions that occur in
these expressions can be obtained by straightforward
adaptation of results given by Louisell [10],in the forms

The effect of the below-threshold laser ampli6er on a
coherent input signal is to increase the signal intensity by
a gain factor 6+{co) in transmission, but also to increase
the noise by the chaotic contribution 27rNz(co). The
change in signal-to-noise ratio (SNR) is conveniently de-
scribed by an "enhancement" factor

OI1
R (co)=

os'
(4.32)

which can be larger or smaller than unity, where

%,„(%,z) is the SNR with the amplifier on (off).
In order to calculate the signal-to-noise ratios it is

necessary to consider the signal measurement process in
some detail. For heterodyne detection with a coherent
local oscillator of frequency col whose intensity far
exceeds that of the amplified signal, it can be shown [28]
that the enhancement factor is given by

The time-dependent field correlation function obtained by
Fourier transformation of (4.24) is

GT(co)
R (co)= 1+2g2~NT(co )

(4.33)

&n &=C/(1 —C), (4.27)

in agreement with the standard result for a laser below
threshold [5,26]. In terms of this intracavity photon
number, the bandwidth (4.9) can be written as

r=2y, C/&n &, (4.28)

and the correlation function (4.26) is

&a*(t)a(t') &
=

& n &exp[icoL (t —t')

Cy, ~t —t'~/&n &]—. {4.29)

The above properties refer to the chaotic light inside
the below-threshold laser cavity. With use of the relation
(2.4) between internal and output field amplitudes, and
the expression (4.24) for the intracavity noise power spec-
trum, it is convenient to de6ne the output noise power
spectrum on the transmission side of the ampli6er as

&a*(t)a(t') &
= exp[icol (t t')—

1 —C
—y, (1—C)~t —t ~] .

This has the well-known form characteristic of purely
chaotic light [26] with mean photon number

Gz (co)8 (co)= 1+rt2m. Nz (co)
(4.34)

Here the 1 in the denominator arises from shot noise in
the detection process, and this contribution remains the
same whether the amplifier is on or off. The factor of 2 in
the second term appears because both signal and image
frequencies of chaotic noise are picked up in ordinary
heterodyne detection. The g factor represents the
effective quantum efficiency of the detection system, and
it takes values between 0 and 1. The factor q must in-
clude the intrinsic detector efficiency, and also the effect
of any optical losses before the light reaches the detector
[28]. (In general terms, g enters the above expressions in
the following manner: the efficiency g appears as a linear
multiplier in the signal amplitude, and thus reduces sig-
nal intensities and their associated gains by a factor of q .
In the expression for the noise, a factor of g multiplies
the shot-noise term, while the additive excess-noise term
acquires a factor of g .)

It is in principle possible to improve the SNR with the
ampli6er on by optically filtering out the image frequen-
cies before detection. It is assumed in what follows that
this has been done, and the enhancement factor (4.33)
then becomes

y, (1—C)/m
Nz. (co) =y, & n & 2

co +y, (1—C)
(4.30) With insertion of the expressions for the gain and the

noise from (4.6) and (4.30), the enhancement factor be-
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(4.35)

comes

(4.36)
r
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where the pairwise factorization property of the fourth-
order correlation function for Gaussian chaotic light has
been assumed. The calculation is now easily completed
to give an intensity noise spectrum

y ("&
&T(~)= (4.43)2'

2y, (1—C)/~
+y) n

co +4y, (1—C)

2r=4y, (1—C), (4.44)

in agreement with I30]. The second term on the right
arises from self-beating of the chaotic field fluctuations
whose Lorentzian spectrum is given by (4.30). The self-
beating produces a doubled full width at half maximum
height of

D) = —(2g /yi)

X
I Ia~ I'Di+«L, as+aL a&*)Dp]/(yII —ice) .

(5.3)

rlly (C 1)yz Psexp( —2iPL )/(ironed, „), (5.5)

D =2r. rz"aiPs/&d. . (5.6)

We therefore have three equations for the three un-
knowns, which are conveniently taken to be nz, az, and
D, . The solutions are

as (co +icoyIIC —
yIIy, (C —1)]yz ps/(icoWd, „),

(5.4)

where 1" is defined in (4.9). The first term on the right
represents the shot noise produced by the total output
photon fiux given by (4.31).

V. ABOVE-THRESHOLD LASER AMPLIFIER

with a denominator

+i~yIIC —2rIIr, (C —1»
where Pz is the phase of the laser field so that

aL = IaL Iexp(iPL ) .

(5.7)

(5.8)
The theory and the results of measurements on the

gain of the above-threshold laser amplifier have been
briefiy reported in an earlier paper Il]. There has been
much previous work on the corresponding noise proper-
ties, with experimental and theoretical studies of the
noise dating back to the early years of the laser. Much of
this work was concerned with the variation in noise prop-
erties with laser pumping rate close to threshold. By con-
trast, the treatment given in the present section avoids
the immediate threshold region. We present a unified
theory of the gain and the noise that emphasizes the im-
portance of correlations between signal and image fre-
quencies, apparently overlooked in earlier work. The re-
sults for gain and noise are then combined to determine
the e6'ect of above-threshold amplification on the signal-
to-noise ratio.

A. Gain

The linear amplification of an input signal by an
above-threshold laser may be determined by solution of
the Maxwell-Bloch equations (2.6), (2.7), and (2.15) for
the mean fields in the absence of the Langevin forces I .
The laser variables Iar I

and Do are given by (3.6) and
(3.7), while the remaining amplitudes that occur in the
trial solutions (2.11), (2.12), and (2.13) all have contribu-
tions linear in the input signal field ps.

Consider first the Maxwell-Bloch equation (2.6) for the
internal field. The components of this equation that os-
cillate at the signal and image frequencies, respectively,
give

The dynamics of the laser in the presence of an input
signal are those of a nondegenerate four-wave-mixing
process, with the laser excitation of frequency co~ acting
as pump. Thus the coupling of the input signal with the
pump produces a modulation of frequency co in the popu-
lation inversion (population pulsations I5]). Further cou-
pling between the modulation and the pump generates an
optical excitation at the image frequency cuL

—co. It is
seen from (5.4) and (5.5) that in the degenerate limit of
co 0, aL a& and aL nz are nearly equal in magnitude but
opposite in sign. The signal and image amplitudes
remain comparable in magnitude as the detuning in-
creases from zero until co is greater than y, and/or

y~~

when the signal amplitude exceeds that of the image.
The signal excitation is completely dominant for detun-
ings much greater than the decay rates.

The definition of the gain for the above-threshold laser
amplifier depends upon the extent to which both signal
and image frequencies are detected in the amplifier out-
puts. Suppose first that the signal and image frequencies
can be observed separately. These arrangements corre-
spond, respectively, to phase-preserving and phase-
conjugating linear amplification I21]. The intensity gains
in transmission obtained with the use of (5.4) and (5.5) are

as rir2 ~'rIIC'+I~' —rIIr, « —1)]'
GTs(~) =r i

s CO den

(5.9)

as =
I. «'/r )«LDi+asDo)+r2"Ps]/(y.

(5 1)

as irrriIIy, (C —1)
Grr(oi) =r i

s CO den
(5.10)

aq=(g /yi)(aLD f +arDO)/(y, +icy), (5.2)

where (2.15) has been used. The component of the popu-
lation inversion at the detuning frequency co in the
Maxwell-Bloch equation (2.7) is

where the common denominator is

+ I.~ (5.11)

Some representative gain profiles are shown in Fig. 4 with
the common divergent forms
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GTs(a))=GT, (to) =y,y, /4'', co «y„y„ (5.12) la...l'=yglal'

=y, [laL l +(ai as+aL al )exp( —idiot)+c. c.],
clearly visible at small detunings. The divergent gains are
consistent with the expectation from injection-locking
studies [11].

These separate gains are not in fact ordinarily observed
in the straightforward arrangement where the amplifier
output light falls on a photodetector without any inter-
mediate filtering. The measured output Aux in this case is
obtained from (2.4) and (2.11) in the form

(5.13)

correct to first order in Pz. The experiment thus observes
simultaneously the self-heterodyne beats between the
strong laser beam, acting as local oscillator, and the sig-
nal and image beams. The signal and image contribu-
tions are indistinguishable in this arrangement. The cor-
responding heterodyne beat obtained by superposition of
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the laser beam with the unamplified input signal is

y', aLI3s exp( i—cot)+ c c. (5.14)

The complex amplitude gain in transmission for the ex-
periment considered here is therefore

gT y 1 (+L+S++L+I )/+L~S (5.15)

gT ~ (yly2) (~+ty~~C)/+den ~ (5.16)

where the denominator is given by (5.7). The correspond-
ing intensity transmission gain is

The explicit form of the gain is now easily obtained by
substitution of (5.4) and (5.5) into (5.15) with the result

values greater than unity persist even at high pumping
rates (C »1). The corresponding signal and image gains
(GTs and GTI) from (5.9) and (5.10) are equal, and they
each take values of one quarter of GT. Hence, their con-
tributions must add in phase to produce the combined
heterodyne gain GT. In this case, the signal and image
sidebands lead to pure amplitude modulation; in other
words, the input resonantly excites the natural relaxation
oscillation of the laser.

The above discussion refers to the gains measured in
transmission through the laser amplifier. The corre-
sponding amplitude gain measured in reAection, when
both signal and image frequencies are detected, is defined
by

( 2+y2C2)

y, [ —2 „,(C —1)]
'Y2 (uL Lts+ ctL cti ) —1.

+Lf S
(5.23)

with the denominator from (5.11) written out in full. The
zero-detuning gain is accordingly

The explicit form obtained by substitution from (5.4) and
(5.5) is

G (0)=y,y C /4y, (C —1)

and this is greater than unity for

(5.18) t y 2(co+ t y i~aC) —1,
den

(5.24)

(y i+y2)/I y i
—(y iy2) + Y2] (5.19)

The upper part of the shaded region in Fig. 2 shows the
parameter values corresponding to gains greater than
unity. An expression for the gain has been derived by
Pantell [13]using a theory that neglected from the outset
any excitation of image frequencies. His expression
differs from (5.17) by the factor of 2 in the denominator.

Examples of the heterodyne gain profile (5.17) are in-
cluded in Fig. 4. It is seen that the cancellation of the
divergent parts of the separate signal and image gains at
small detunings leaves a well-behaved composite gain
profile GT(co). The gain function always has a turning
point at co=0, but this can be either a maximum or
minimum depending on the values of the laser parame-
ters. It is found by differentiation of (5.17) that the gain
is a minimum at co =0 when

y„2(1+2'"y, {C—1 /C (5.20)

and peak gain then appears at a nonzero detuning given
by

Lo'-= —y(~C'+2y)~[y, (C —1)[y~~C'+y, (C —1)]]'"

[icoC y, (C —l—)]y2 Ps
ia)[icoC 2y, (C——1)]

(5.25)

y, (C —1)y2 psexp( 2i pL)—
ico[icoC —2y, (C —1)]

(5.26)

The intensity transmission gains for measurements on the
signal and image frequencies alone thus simplify from the
expressions (5.9) and (5.10) to

where the denominator is defined in (5.7).
The results derived so far apply to both class-3 and

class-B lasers, and we shall show that they provide a good
description of gain measurements made on Co& lasers in
the B category. We also present measurements on Ar+
lasers, which belong to the A category with y, «y~~.
Most of the theoretical results simplify considerably in
this case, and we conclude the section with a discussion
of the class-A gain characteristics.

Taking then y, «y~~ for the remainder of the section,
the field amplitudes (5.4) and (5.5) simplify to

~ ..=+ [ y~~y, (C—)]'"=+ y, ~~L ~
Do", (5.22)

(5.21)

This somewhat-complicated expression simplifies in the
limit where the laser parameters satisfy the condition

y~~ &&y, when

and

y, y2 co C +y, (C —1)
GTs(co) =

co to C +4y (C —1)

yiy2
GTt(ro) =

2 ~2C2+4y2 (C 1 )2

(5.27)

(5.28)

where (3.7) to (3.9) have been used. These frequencies of
peak gain are the same as the frequencies that occur in
theories of the relaxation oscillations associated with the
spiking behavior found in most solid-state and some gas
lasers [11]. The gain at the frequency co,„, obtained by
substitution of (5.22) into (5.17), is GT(co~„)
=y, y2/y~~C . Note that this gain is high, and that

The forms of these separate gain profiles are shown in
Fig. 4(a).

The understanding of the amplifier characteristics for
measurements in which the signal and image contribu-
tions are detected simultaneously is helped by a con-
sideration of the two complex components in the ampli-
tude transmission gain (5.15). These are illustrated in
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Fig. 5 together with their sum. The relative phase P of
the signal and image components is given b 100

I ASER POWER (mW)
5 10

I

15 20
I

tang = —coC /y, ( C —1 ), (5.29)

(5.30)

and the various transmission gains are therefore related
y

GT(ro) =6'(co) GTI(co)—

7 172

co + [2y, (C —1)/C]

(5.31)

The zero-detuning gain given by (5.18) is now the peak
value and the condition (5.19) must be satisfied for
amplification to occur. The full width of the gain profile
at half maximum height is

and this angle varies between ~ and m. /2 as the detuning
co increases from a value much smaller than y, to a value
much larger than y, . It follows by the theorem of
Pythagoras from the geometry of Fig. 5 that

1aLas+at al I

= laL, as I

10
O

Oz

1
C9

0.1
0 2 3

NORM. PUMPING RATE C

FIG. 6. Above-threshold amplifier gain and bandwidth as
functions of laser pumping rate C for the Ar+ laser class A)
0, peak gain measurement; &, gain bandwidth measurement; 0,
noise bandwidth measurement. Solid curves below threshold:
theory (Sec. IV). Curves above threshold: theory (Sec. V).

I =4y, (C —1)/C=2I (C —1)/C . (5.32)

(5.33)

The corresponding intensity gain is

The form of the gain profile (5.31) and its relation to the
signal and image contributions is illustrated in Fig. 4(a).

below
The expressions (4.6) and (5.31) for the amplifie amp i er gains

e ow and above threshold conform with the
identification of the laser threshold as the analog of a
second-order phase transition [5,12,31]. Thus the zero-
detuning gains (4.7) and (5.18) have exactly the forms ex-
pected for the squares of the zero-field susceptibilities
below and above threshold, with strong similarities to the
squares of the zero-field susceptibilities of a ferromagnet
above and below its Curie temperature. The bandwidths
(4.9) and (5.32) are related by the replacement C~1/C
and the insertion of an additional factor of 2 above
threshold. The bandwidths tend to zero as threshold is
approached from below or above, analogous to the criti-
cal slowing down at a second-order phase transition. The
variations of the zero-detuning gain and the gain band-
width with cooperation parameter C are shown in Fig. 6.

The amplitude gain in reflection given by (5.24)
simplifies in the limit y ((y toc ll

(iso y, )C+2y-,gR=
(iso —2y, )C+2y,

ro C +(2y, —yiC)
G~(co)=

ro C +4y, (C —1)

y2C [2( Y i+'Y2) —(2l i+ Y2)C]

co C +4y, (C —1)
(5.34)

which is of the form 1 + (a Lorentzian function). Note
that

Gz(co)=1 for C=2(yi+y2)/(2yi+y2), (5.35)

y, C(4—3C)
G~ ro =1+

ro C +4y, (C —1)
(5.36)

Some examples of this function are plotted in Fig. 7.
Two special cases are notable: when C= 4 the response3 0

is Aat and the gain is unity. For C=2, the gain at zero
detuning Gtt(0)=0. Note that this does not imply that
no light is reAected; rather, that signal and image contri-
butions precisely cancel.

B. Noise

and the reAection gain is greater than unity for smaller
values of C. For a symmetrical cavity (y = 2=, ), th2 y, e
gain may be written as

&s QL Qs + ChL

(5.37)

We use again the Maxwell-Bloch equations (2.6), (2.7),
and (2.15) with the forces I D and I d retained but the sig-
nal amplitude P;„set equal to zero. The mean laser field
amplitude is given by (3.6) but its undetermined phase an-
gle is subjected to the usual diffusion process. Thus in
contrast to the below-threshold ansatz (4.13), we look for
zero-mean Auctuations in the field by setting

a(t) = [ ~aL ~
+5a(t) ]exp[i5$(t) —iroL t ],

FIG. 5. Com lexp vector diagram of signal and image fields
showing relative phase angle P.

where $a(t) and $p(t) are real and dimensionless ampli-
tude and phase Quctuations, respectively. The population
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FIG. 7. Theoretical profiles for reAection gain of an Ar+
laser (class 3) at different levels of laser power for a symmetri-
cal cavity (y( =y~).

inversion is assigned a fluctuating contribution in addi-
tion to its mean value Do given by (3.7),

D(t)=Do+5D(t) . (5.38)

These trial solutions are now substituted into the
Maxwell-Bloch equations, and the terms of the first order
in the fluctuating variables and forces give

ico5 (co)+yl~iC5D(co)+4y, lac l5a(co)

=(g
l ai I /ri) [rd(~L+~)+ rd(~i —~)l+ rD(~) .

(5.43)

These are three simultaneous equations for the three
kinds of fluctuation variable and their solutions are

and

5a(co) = I(g!2yi)(ico y—~~)[rd(coL +co)+I d(coL —co)]

—(g'laL, l/r, )rD(co) j /a„„, (S.44)

5$(co) =(g/2coy,
l aL l )[rd(coL +co) r~—(coL co)—],

(5.45)

5D(co)= [
—(g la~ i lyi)(ico 2y—, )[I d(coL +co)

+I d(coL —co)]

+icoI D(co) j /Zd, „, (5.46)

where the denominator is given by (S.7).
The Lang evin force correlation functions that are

needed to evaluate the power spectra of the three kinds of
fluctuation are again obtained from the results of Louisell
[10]. The only force correlations of significant magnitude
are given by

5a(t)+ilat l5$(t) —(g lat l /yi)5D(t)

=(g/y )I d(t) exp[ i5$(t)+—ico t] (S.39) and

(rd( I, + )I d(coL +co')) =2y D 5( co')—(5.47)

and

5D(t)+y„C5D(t)+4y, lal. l5a(t)

= —(g laL /yi)I I d(t) exp[ —i5$(t)+icoL t]

+c.c. j+r (t) . (S.40)

(rD(co)rD(co ) & =2r ~~D05(co+ co')

The required noise power spectra are therefore

(5a(co)5a(co') ) =y, (co +y(~C)5(co+co')/&d, „,
(5$(co)5$(co') ) =(y, /co'la l')5(co+co'),

(5.48)

(5.49)

(s.s0)

It will transpire that the force I d(t) contributes to the
final results only in correlation with its complex conju-
gate. In addition, the phase fluctuations represented by
5$(t) vary on a time scale that is usually very long com-
pared to the time scale of the randomly Auctuating force
I d(t), except very close to threshold. It is therefore an
excellent approximation to remove the phase fluctuation
from the right-hand sides of (S.39) and (S.40).

With this approximation, and with Fourier transforms
defined in the manner of (4.17), the real and imaginary
parts of (S.39) produce the pair of transformed equations

ico5a(co—) (g laL l—/yi)5D(co)

(,5D(co)5D(co')) =2yiy y [co C+4y (C —1)]

X 5(co+ co') /(g Xld,„), (S.S1)

where the denominator is given by (S.l 1). Note that each
of these spectra involves correlations between pairs of fre-
quencies with equal and opposite detuning from the laser
frequency

The time-dependent field correlation function is ob-
tained from (S.37) in the form

=(g/2y )[rd(coL +co)+ rd(co~ —cd)]

ico5$(co) = —i(g/2yilaL l )[I d(c—oL +co)

(5.41) (a*(t)a(t') ) =
[ laL l'+ (5a(t)5a(t') ) j

X( expIi[5$(t') —5$(t)]j )

X exp[icoL (t —t')] . (s.s2)

while (S.40) transforms to

—I d(COL
—co)], (5.42)

Consider first the phase angle average, which is evaluated
by a standard procedure according to
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I

( expfi[6pi(t ) —'5$(t)]j ) =(exp i I dv6$(v)
t

'2
=exp —

—,
' I dr5$(r)

=exp —,' I—drI 1 r&5$( r)5$( r')& (5.53)

The required correlation function is obtained by Fourier
transformation of (5.50) as

(5.54)

and the phase angle average is therefore

& expIi[5$(t') 5$(t)]—] & =exp( —y, It t'I/2Ia—L I ) .

(5.55)

The amplitude average in (5.52) is similarly evaluated by
Fourier transformation of (5.49). The average is some-
what complicated in general, and we consider here only
the result for class-A lasers where y, ((y~~ and (5.49)
reduces to

y, 2y, (C —1)/m. C
Nz(to) =

4(C —1) co +[2y, (C—1)/C]
(5.61)

represents the weak

amplitude-fluctuation

noise Aux,
with a much broader bandwidth

I

Schawlow-Townes linewidth [11,20,33)]. It is seen by
comparison with (4.28) that, as a function of the inverse
intracavity photon number, the bandwidth is reduced by
a factor of 2 as the laser is taken from just below to just
above threshold at C=1. Evidence in support of this
factor-of-2 reduction in bandwidth has been obtained
from measurements with a Michelson interferometer
[34]. The second contribution,

I =4y, (C —1)/C . (5.62)

& 5a(co)5a(co') & =, , ', , 5(co+co') .
to C +4y, (C —1)

(5.56)

The Fourier transform is now readily evaluated to give

exp[ —2y, (C 1)lt —t'I/C]
& 5a(t)5a(t') &

= (5.57)

&a'(t)a(t') &
= laL, I'exp( —y, lt —t'I/2lag I')

exp[ —2y, (C —1)lt t'I /C]+
4(C —1)

These amplitude fluctuations decay with a much shorter
time scale than do the phase fluctuations, and the field
correlation function (5.52) can be written as

The noise bandwidth is thus identical to the gain band-
width (5.32) for an above-threshold class-A laser. It is
seen by comparison of (5.61) with (4.30) that, in addition
to the replacement of C by 1/C, the noise bandwidth is
increased by a factor of 2 as the laser is taken from below
to above threshold.

The noise flux (5.61) is usually very much smaller than
the coherent laser flux (5.59), and it can be neglected in
calculations of the laser output intensity. The
amplitude-fluctuation noise must, however, be retained
for calculations of the intensity-fluctuation spectrum,
where it provides the main addition to the shot-noise
component. Note that this small amplitude-fluctuation
noise contribution differs from the below-threshold
chaotic noise, which suffers both large phase and ampli-
tude Quctuations.

X exp[t'to& (t t')]— (5.58)
C. Direct-detection signal-to-noise ratio

y, /2~la, I'
~T(~o ) =y i I aL, I'

co +(y, /2 aL )
(S.59)

where co is the detuning from the laser frequency uL.
This represents the intense laser Aux, with a very narrow
bandwidth

(5.60)

caused by the phase difFusion effect (the well-known

to a very good approximation.
The field correlation function (5.58) has a form similar

to a result derived by Risken [32]. It represents an intra-
cavity excitation of IaL I

laser photons plus a much
smaller noise contribution of mean photon number
1/4(C —1). The corresponding output spectrum on the
transmission side of the laser amplifier in units of photon
Aux per unit angular frequency bandwidth can be written
as a sum of two contributions. The first contribution is

The effect of the above-threshold laser amplifier on a
coherent input signal is to increase the signal intensity by
a gain factor Gz. (co) in transmission, but to increase the
noise by the amplitude-fluctuation component in NT(co).
The change in signal-to-noise ratio is again conveniently
described by the enhancement factor R (co) defined in
(4.32).

In our treatment of the below-threshold laser amplifier,
we considered the SNR in heterodyne detection in Sec.
IV C and the intensity noise spectrum for direct detection
in Sec. EV D. These two kinds of detection lose their dis-
tinction for the above-threshold laser amplifier. Thus in
direct detection of the amplifier output the intense laser
light, represented by (5.59), acts as a local oscillator for
detection of the amplified signal and the amplitude Auc-
tuation noise represented by (5.61). Direct detection is
therefore equivalent to a form of self-heterodyne-
detection. In the present section we first derive the
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intensity-fluctuation noise spectrum and then use the re-
sult to evaluate the SNR enhancement factor.

The intensity noise spectrum is obtained from (4.40)
with substitution of the form of the internal field from
(5.37). The phase-fluctuation terms cancel, and the spec-
trum correct to first order in the laser intensity is

where g is again the detection quantum efficiency and
enters the gain and noise expressions in an identical
fashion to the below-threshold regime. For given values
of the cavity mirror damping rates y, and y2, the factor
R (co) is maximized for a value of the cooperation param-
eter given by

ST(co)= + 4laI l Idt exp(icot)

X (5a(t)5a(0) ) .

C= 1+
y 1(1 rl)+—y2

when the enhancement factor is

(5.67)

(5.63)

The factor of 4 that appears in the second term
represents a doubling of the contribution of the
amplitude-fluctuation noise compared to the contribution
of an equivalent excitation of ordinary chaotic light. The
integration is readily performed with the use of (5.49) to
give

ST(co)=

y ila~ I' yila~ I' 2y, (C —1)/~C
ST(co)= +2' C —1 co +[2y (C —1)/C]

2' +4y, laL I NT(co) (5.65)

in agreement with [30]. The enhancement factor R (co)
from (4.32) is calculated on the assumption that the
"amplifier-off" measurement refers to heterodyne detec-
tion of the input signal with a local oscillator Aux equal
to y, laLl'. Then

R( )
yly2

co +[2y, (C —1)/C] +(rjy14y, /C)
(5.66)

2y, (co +y~~c)/vr
+yi a~

m y~~c + [m —
2y~~~y, (c—1)]

(5.64)

The first term on the right-hand side is the shot noise and
the second term arises from the beating of the coherent
laser beam with the amplitude-fluctuation noise. It is
seen that this term has the same denominator as the
transmission gain given by (5.17), and hence for
sufficiently small yl~ the noise spectrum likewise has a
minimum at co=0 and a displaced maximum at the relax-
ation oscillation frequency in (5.22). The corresponding
intensity-fluctuation noise spectra are plotted alongside
the gain in Fig. 4. Similar intensity-fluctuation spectra
have been derived and illustrated for application to
solid-state [20] and semiconductor [7] lasers, following
earlier work on more general laser systems [35,36]. The
relaxation-oscillation noise sideb ands are a familiar
feature of semiconductor laser spectra [6].

We now consider the signal-to-noise ratio for the
above-threshold laser amplifier, with the discussion limit-
ed to class-A lasers for which y, &&yll. The transmission
gain is then given by (5.31) and the noise (5.64) reduces to

R( )
yly2

co +1)y,[y, (2—21)+2y2]
(5.68)

Consider first the case of perfectly efficient detection
with g= 1, when the optimization condition (5.67) is
shown by the uppermost dashed line in Fig. 2. It is seen
that the SNR is again maximized when the amplifier cav-
ity is unsymmetrical with the lower-transmission mirror
facing the detector. However, even in these optimum
conditions, the largest value of the enhancement factor,
achieved for zero detuning, is R (0)= —,'. This factor-of-2
degradation in the SNR is the standard result found for
high-gain amplification of coherent light [21].

Improvements in SNR are again possible, however,
when the detection is inefficient with a sufficiently small

Thus the peak value of the enhancement factor (5.68)
can be written as

y2(1 —2n) —ny 1(2—n)
R (0)=1+

n[y 1(2—n)+ 2y2]
(5.69)

R (0)=C /4[C —(2—2))C+1] . (5.70)

Thus for perfectly efficient detection, the enhancement
factor increases from —' at C = 1 to —,

' at C =2.
It was shown in Sec. IVC that degradation in the

heterodyne SNR for the below-threshold amplifier can be
avoided, at least for perfectly efficient detection and small
detunings, by optical filtering of the image frequencies be-
fore detection. It might be thought that such filtering
would also be advantageous for the above-threshold
amplifier, particularly for class-A lasers where the gain
GTs(co) for detection of the signal frequencies alone al-
ways exceeds the combined signal and image gain Gz (co),
as shown in Fig. 4(a). However, image-band filtering un-
fortunately increases not only the gain but also the noise,
since it removes noise-cancellation effects of correlations
between the signal and image fluctuations, analogous to
the gain cancellation described by (5.31). Equivalently,
the noise increases because the filtered detection picks up
a contribution from the phase fluctuations in the laser

and this is plotted in Fig. 3(b). The enhancement is
greater than unity when y2(1 —2'�)) rly, (2—2)). Thus r)
must be less than one half for there to be any possibility
of SNR improvement. The optimum peak gain obtained
from (5.31) and (5.67) is identical to the expression (4.39),
which is therefore valid both below and above threshold.

For an amplifier that has a symmetrical cavity with

y, =y2=y„ the zero-detuning enhancement factor ob-
tained from (5.66) is
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fiux LT(co) given by (5.59), in addition to the contribution
from the amplitude-fiuctuation noise fiux NT(co) given by
(5.61). Observations and interpretation of the noise-
cancellation effect have been reported previously [3] for
the subthreshold modes on either side of a single Ar+
laser mode, where filtering of the image side of the nar-
row lasing mode itself is not possible in practice (see [37]
for related ineasurements on semiconductor lasers). We
conclude the present section with some remarks on the
effects of noise filtering based on these observations and
their detailed theory [38].

y, /2la~ I'«cof «2y, (C —1)/C . (5.71)

The intensity noise spectrum for the resulting detection
of signal frequencies alone for co )cof is given by [38)

Consider an experiment in which the image frequencies
are completely filtered out for detunings greater than ~f,
such that the laser flux Lr(co) almost entirely passes
through but the noise fiux NT(co) is almost entirely re-
moved. The filter cutoff frequency must therefore satisfy

iI~1. I' » y, /2Ir 1 2y, (C 1)/—irC
~TS(~)= +yi ~l. I' ', +

co 4(C 1) co +[2y, (C —1)/C]

yil~g I'

2m'
+y i I ~I. I'[LT(~)+NT(~) ] ~ (5.72)

It is seen by comparison with (5.65) that the first, shot-
noise contribution on the right is unchanged and the am-
plitude noise is reduced by a factor of 4, but there is now
a new phase-noise contribution. The enhancement factor
defined in (4.32) becomes

GTs (co)
R (co}= 1+r)2vr[Lr(co)+NT(co) ]

(5.73)

and this can be written in terms of the laser parameters
with the use of (5.27) and (5.72). The enhancement factor
takes its largest value for small detunings (but with co still
assumed larger than uf ), where it tends to

is a Lexel Model 95, modified for double-ended output,
with both mirrors having approximately 95% refiectivity.
At the relatively low pumping rates studied here, only the
line at 488 nm reaches the lasing threshold, since its gain
is much higher than for the other potentially lasing lines
in the Ar+ discharge. Thus, an intracavity prism is not
required for spectral line selection. A temperature-tuned
intracavity etalon selects a single longitudinal mode. The
laser cavity is approximately 96 cm long, giving a mode
spacing of 156 MHz, our results indicate that the passive
laser cavity has a finesse of 56.3, and hence a passive
mode width I o/2n of 2.77 MHz full width at half max-
imum (FWHM} corresponding to a value of y, ( =I 0/2)

R (0)=y2/2q(y, +y~) . (5.74)

For perfectly efficient detection, this again has a max-
imum value of R (0)= —,', achieved for y, «y2, in accor-
dance with standard amplifier theory [21], but improve-
ments in SNR are possible for sufficiently inefficient
detection, this time when

( )
BET. A

/

LASER

BS
3

3/

)&iy /2(yi+y2} . (5.75) SPEC.
AN. DET. B

These results show that no general improvement in direct
detection SNR can be achieved by image-band filtering.

VI. ABOVE-THRESHOLD LASER AMPLIFIER:
EXPERIMENTAL MEASUREMENTS OF GAIN

AND NOISE

In this section we describe a straightforward but
powerful technique for the experimental measurement of
gain in an above-threshold laser amplifier, discussed
briefiy in [1]. Data have been obtained for class-A
[argon-ion (Ar+)] and class B(CO2) lase-rs, and these re-
sults are compared with the theoretical predictions of the
preceding section. Data have also been obtained for the
intensity-fluctuation noise spectrum of the Ar+ laser, al-
lowing a direct comparison of gain and noise bandwidths.

Figure 8(a) shows the experimental arrangement, used
for study of the Ar+-laser gain characteristics. The laser

(b)
DET. A

NDI"

SPEC.
AN.

LASER

BS

vxso.q —ND I'

L BET. B

FIG. 8. The experimental arrangement. The upper diagram
(a) depicts the system used in our Ar+-laser study, in which a
controllable detuned input is obtained by shifting the laser out-
put with acousto-optic modulators (AOM) and reinjecting back
into the laser cavity. NDF denotes a neutral density filter, BS a
beamsplitter, and SPEC. AN. a spectrum analyzer. In the lower
diagram (b), a Doppler-shifted input is generated by scattering
the laser beam from a rotating wheel. In each case, detectors A

and B are used independently to measure the transmission and
reflection gain, respectively.
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of 8.7X10 s '. The upper-state population decay rate
y

~~

has a value of approximately 4 X 10 s ' [2], and the
atomic dipole decay rate yi, which is found from the
linewidth of the lasing transition, is ) 10' s ' [39]. Rap-
id thermal motion of the excited ions ensures that spatial
inhomogeneities of the gain medium (i.e., hole-burning
effects) are insignificant at our moderate power levels.
Thus, these rapid relaxation rates should ensure that the
Ar+ laser is an excellent approximation to class A (Sec.
I). The laser output power can be varied over two orders
of magnitude by adjustment of the discharge current: our
quoted powers represent the output from one end only,
that nearest the beamsplitter in Fig. 8(a).

The detuned signal for injection into the laser cavity is
derived from the output of the laser itself. This is
achieved by routing one of the output beams through two
acousto-optic modulators (AOM's), which produce, re-
spectively, a fixed shift of —80 MHz and a variable shift
of (80+co/4m. ) MHz in the beam frequency, where co/4m
can be varied over the range 0 to +5 MHz. The beam
then passes again through the modulators after reAection
from the mirror, thus acquiring a frequency shift of co/2m.
before it reenters the laser. The lens between the second
AOM and the mirror ensures that the reAected beam al-
ways retraces its path back into the laser, independent of
the frequency shift. The returning beam is attenuated by
a factor of at least 10 to satisfy the small-signal require-
ments for linear amplification. The experiment thus be-
comes equivalent to one where the signal is produced by
an independent source, but with the problems associated
with frequency jitter significantly reduced. This is be-
cause any fluctuations in laser frequency caused by
vibration-induced changes in cavity length are identical
for both signal and amplifier, provided they occur on a
time scale much slower than the round-trip time from the
laser to the mirror and back ( —10 s). Above-threshold
amplification of the return beam is examined both in
transmission (detector A) and reflection (detector B)
The incident power on the detector is limited with neu-
tral density filters to &2 mW to avoid saturation. Each
detector (Analog Modules type 713A) is exposed to the
strong laser field at angular frequency cur, serving as a lo-
cal oscillator, plus the weak transmitted or rejected
beam, as modified by the above-threshold amplifier. The
spectral response of the detectors and the optical
eSciency of the modulators are uniform to better than
5% over the range 0—10 MHz.

The gain of the above-threshold amplifier is defined as
the ratio of the measured beat signal power to that de-
rived for the same input signal mixed, before reentering
the laser, with an identical strength local oscillator. This
corresponds to a determination of GT [Eq. (5.31)] in
transmission, and Gz [Eq. (5.34)] in reflection. The gains
GT and Gz were measured as functions of detuning co/2m.

by spectral analysis of the detector output at a number of
different values of laser power. The spectrum of this out-
put consists of a single dominant peak at the detuning
frequency, whose width is determined by the instrumen-
tal function of the analyzer, which always has a band-
width & 30 kHz. The gain is assumed to be unity at large
detuning for the rejected beam [Eq. (5.34)], and the cor-

responding signal strength allows accurate calibration of
absolute gains.

An alternative method for generation of a detuned in-

put signal is to scatter the laser radiation from a moving
target, such as a belt sander, or rotating ground glass disk
[Fig. 8(b)]. This is a common technique in laser radar
studies [40], and it was used here in preliminary investi-
gations of the Ar+ laser and also for examination of
CO2-laser gain behavior, as suitable acousto-optic modu-
lators were not available at the 10-pm wavelength. A
disadvantage of this technique is the spectral spread of
the Doppler-shifted signal return, associated with the
light's thermal character [40]. This bandwidth is usually
frequency-shift dependent, and careful analysis must take
this into account in order to determine the true gain
profile. A further problem arises from the reproducibility
of signal strength; this is very sensitive to beam focusing
at the target.

Measurements of the Ar+ intensity-fluctuation noise
spectra are made by illuminating the detector with the
laser output, suitably attenuated to avoid saturation. The
current from the detector is then spectrum analyzed and
averaged: the experiment thus requires only the equip-
ment to the left of the laser in Fig. 8. The noise spectra
are Lorentzian shapes, superimposed on a constant shot-
noise background. The measurements of noise are con-
siderably less accurate than for the gain. There are two
reasons for this: because of the low level of the amplitude
fluctuations the noise is inherently weak in comparison to
shot noise, and any reduction of the effective quantum

efficiency of the measurement, by attenuation, further
reduces the sensitivity. In addition, the effect of acoustic
vibrations and electrical disturbance causes an extra con-
tribution to the low-frequency noise. This so-called
"technical" noise typically lies within about 200 kHz,
and it distorts the profiles from the pure Lorentzian noise
spectra predicted by theory. Examples of technical noise
might arise from any residual 50-Hz mains ripple, or
from optical-table resonances excited by turbulence from
the laser-cooling water. The noise bandwidth measure-
ments here therefore have uncertainties of at least 10%,
increasing at the higher levels of laser power.

A. The Ar+ laser (class A)

Figure 9 shows some typical gain profiles for the
heterodyne beat signal in transmission. The profiles are
well-behaved Lorentzian functions whose widths and
peak gains are strong functions of laser power. This is in
qualitative accord with the predictions of (5.31); there is
further agreement in the invariance of the square root of
the peak gain-bandwidth product.

In Fig. 6 we showed a plot of experimental values of
peak gain and bandwidth of both gain and noise as func-
tions of the laser pumping rate C. Also plotted are the
theoretical predictions both below [(4.7) and (4.9)] and
above [(5.18) and (5.32)] threshold for the symmetric cav-
ity case (yi =yz). The values of cavity loss rate y, and
saturation power Pz, which relates laser power P to
pumping rate C (3.10), have been chosen to optimize the
agreement between experiment and theory: Fig. 6 shows
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FIG. 9. Experimental profiles for heterodyne gain in
transmission GT at different Ar+-laser powers. The Lorentzian
shape, characteristic of class-A lasers, is clearly evident.

B. The CO& laser (class B)

Figure 10 shows a gain profile obtained with an Edin-
burgh Instruments Model CM1000 CO2 waveguide laser,
running at a wavelength of 10.6 pm. The laser pumping
rate is not adjustable, and hence a systematic study can-
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FIG. 10. Heterodyne gain profile for a CO2 laser (class 8).
The double-peaked shape is closely related to the phenomenon
of relaxation oscillations. The dashed curve (right-hand scale) is
a theoretical prediction ignoring lower-level population. The
solid curve (left-hand scale) takes this population into account.

, data points (left-hand scale).

this to be excellent. The optimum value of y, (8.7X 10
s ) is consistent with estimates based on the mirror
reflectivities and cavity length.

Good agreement between theory and experiment is also
obtained for the gain in refiection (Fig. 7). The profiles
have the form shown in Fig. 7 of 1 + (a Lorentzian func-
tion) [Eq. (5.34)]. A quantitative check was made of the
particularly notable features of Fig. 7: the flat frequency
response occurs at an output power P = 1.67 mW
(C=1.3) and zero gain for co~0 is achieved at a three-
times-greater power of P=4.92 mW (C=1.9).

not be carried out as in the case of Ar+; however, the
behavior in Fig. 10 demonstrates the features predicted
for class-B lasers by the general gain expression (5.17).
The double-peaked character is immediately apparent.
The increased gain at a detuning of co/2m. =+0.6 MHz
may be interpreted as a resonant enhancement of the nat-
ural laser relaxation oscillations as discussed in Sec. V A.
Relaxation of the upper-state population in CO2 is dom-
inated by collisional deexcitation [41], with

y~~ ranging
from 10 to 10 s ', depending on the gas pressure. At-
tempts to fit the theoretical expression for the gain (5.17)
to the data with reasonable parameter values (ye=10
s ', y, = 10 s ', C =4) were unsuccessful (dashed curve
of Fig. 10). However, when the possibility of a lower-
level population is included, an acceptable fit can be ob-
tained. The solid curve shows the prediction of Eq. (A16)
from the Appendix, with yl =3X10 s '. This demon-
strates the sensitivity of the gain curves to buildup of
population in the lower lasing level for the class-B laser.

Preliminary experiments with a custom-built CO2 laser
system [42] in which the pressure can be adjusted to
change the value of

y~~
indicate that the gain peaks do

indeed move to higher frequency at larger y~~. The peaks
also behave similarly as the pumping rate C is increased.

VII. CONCLUSIONS

We have presented a unified comprehensive theory for
the gain, noise, and signal-to-noise ratio of a class-2 or
class-8 laser operated below or above its oscillation
threshold. We have also reported measurements, particu-
larly of the gain characteristics, for both classes of 1aser
above threshold. The theory and the measurements are
in excellent agreement.

The properties of a laser amplifier below threshold are
quite well known, and the output light of the free-running
device is purely chaotic noise with a Lorentzian spectrum
whose bandwidth diminishes as threshold is approached.
We have also calculated the corresponding gain profile
for linear amplification of an injected signal and have
shown that it is properly related to the noise spectrum in
the manner demanded by the general theory of phase-
insensitive linear amplifiers [21]. The resulting signal-to-
noise ratio of the laser amplifier below threshold is such
that its use can provide significant enhancement in the
sensitivity of heterodyne detection when photodetectors
of low efficiency are used, but the improvement is negligi-
ble for high-efFiciency photodetectors.

Above the oscillation threshold, we have shown that
the physics of the laser amplification process is consider-
ably more complex. Pulsations in the population inver-
sion lead to four-wave mixing and the correlation of sig-
nal and image components in both the gain and the noise.
These correlations often tend to reduce the gain and the
noise that would occur for observations of the signal or
image frequencies alone, particularly at small detunings
from the laser frequency. Twin-beam noise correlations
are of course well known; they occur in both four-wave
mixing [18] and in parametric oscillation or down-
conversion [43], where the noise correlations have been
used to generate light with sub-Poissonian photon statis-
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ties. We believe, however, that the important effects of
correlations between signal and image frequencies in
determining the gain profile and noise spectrum of the or-
dinary gas laser have not previously been emphasized.

The gain profile of the laser has apparently been nei-
ther calculated nor measured before. For class-A lasers,
where the gain profile has a Lorentzian peak centered on
the laser frequency, gains greater than unity occur only
for values of the cooperation parameter C that lie be-
tween 1 and 2. Our calculations of the gain profile have
been supported by detailed measurements on an argon-
ion laser, which confirm the expected increase in gain
bandwidth and decrease in peak gain with increasing
laser power or cooperation parameter C. For class-8
lasers, where the gain profile generally has two peaks
symmetrically placed on either side of the laser frequen-
cy, gains greater than unity persist in the regions of the
peaks for values of C larger than 2. The occurrence of a
double-peaked gain profile for class-B lasers has been
confirmed by measurements on a CO& laser.

The calculation of the noise spectrum of the laser
above threshold given here parallels previous work
[7,10,35]. The spectrum has a single Lorentzian peak for
class-A lasers and it generally has a double-peaked form
for class-8 lasers, in accordance with the required inti-
mate relationship between gain and noise. A similar
double-peaked noise spectrum occurs for semiconductor
lasers, where a more complicated theory is needed to take
account of additional phase fluctuations that are driven
by modulation of the refractive index by carrier density
fiuctuations [6]. For the class-A laser, we have shown
that, as expected on general grounds [21], the use of an
above-threshold laser preamplifier in direct detection
leads to a factor-of-2 degradation in signal-to-noise ratio
when perfectly eKcient (g= 1) photodetectors are used.
However, amplification can again lead to significant
enhancements in signal-to-noise ratio when the photo-
detector eKciency is su%ciently low.

A noteworthy feature of the laser oscillation threshold
is its close analogy to a second-order thermodynamic
phase transition [12]. The gain profiles calculated and
measured here show all of the properties expected of the
linear susceptibilities associated with a phase transition,
in terms of bandwidths that tend to zero and peak magni-
tudes that tend to infinity as the threshold is approached
from above or below. The noise spectrum of the laser
emission also shows characteristic properties in the
threshold region, which are summarized as follows. The
laser emission below threshold consists entirely of chaotic
noise whose bandwidth

I =2y, (1—C)=2y, C /(n ) (7.1)

(7.2)

from (4.27) and (4.28) is identical to that of the gain
profile. Above threshold, it is possible to identify two dis-
tinct components in the emission spectrum [20]. The first
coherent component accounts for almost all of the mean
number

~ al ~
of photons excited in the cavity, and its

bandwidth

given by (5.60), is controlled by phase diffusion. This
bandwidth shows a factor-of-2 reduction at threshold
(C= 1 ) in comparison to the below-threshold result when
these are expressed in terms of the mean photon number,
as in the second form of (7.1). The second noise com-
ponent, of mean intracavity photon number 1/4(C —1),
results from the residual amplitude fluctuations above
threshold, and its bandwidth

I =4y, (C —1)/C (7.3)

from (5.62) is identical to that of the gain profile. In com-
parison with the below-threshold result given in the first
form of (7.1), this bandwidth is increased by a factor of 2
and C is replaced by 1/C.

Further consideration needs to be given to the band-
widths that are determined by measurements of the
intensity-fluctuation spectra of the laser emission. Thus
below threshold the intensity fluctuations result from the
beating of the emitted chaotic noise with itself, and the
bandwidth obtained from (7.1) is

2I =4y, (l —C) (7.4)

Above threshold, the phase diffusion plays no role in in-

tensity measurements and the main contribution results
from the beating of the very strong coherent laser com-
ponent with the very weak amplitude-fluctuation noise
component, to give a bandwidth that is unchanged from
(7.3). Thus, in comparing the above-threshold bandwidth
with its below-threshold form (7.4), C is again replaced by
1/C but there is no additional factor of 2 [30].

All of the above discussion refers to determinations of
the gain and the noise in which signal and image frequen-
cies are detected with equal eKciencies. It is possible in

principle to remove the signal or image frequencies by
filtering. We have shown that, although such filtering
can produce large increases in the gain, there are also
correspondingly large increases in the noise, to the extent
that no improvement in signal-to-noise ratio is possible.
We have not been able to back up our calculations of
these effects by measurements, since it is not feasible to
filter out one side of the relatively narrow argon-ion laser
line. However, we have made gain and noise measure-
ments on the subthreshold cavity modes on either side of
the laser mode [2,3]. These show very similar four-wave-
mixing correlations to those considered here for frequen-
cies within the laser mode itself, and the relatively large
spacing of the adjacent modes makes it straightforward
to filter out the signal or image frequency components.
The theory and experiments for the adjacent modes will

be presented separately [38].
Finally, our study of the gain and noise of the above-

threshold laser clarifies the physical processes that under-
lie the operation of so-called "autodyne" lidar systems.
Such lidars have been in existence for over 20 years [22];
this work represents a comprehensive study of their
behavior. The results presented in Sec. V may be used to
assess the optimum conditions under which to run an au-

todyne system. The laser parameters chosen to optimize
performance will depend upon the precise application.
Of particular importance are considerations such as sig-
nal bandwidth, photodetector sensitivity, and maximum
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detector incident power level. Thus, the expressions in
Sec. V demonstrate that bandwidth, gain, output power,
and SNR are all sensitive to adjustments in pumping rate
C, total cavity loss rate y„ front-to-back mirror asym-
metry ratio y2/y„as well as the population inversion re-
laxation parameter y~~. A detailed analysis of autodyne
behavior and optimization will be presented later [44].
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APPENDIX: NONZERO LOWER-LEVEL
POPULATION

The calculations in the paper are all based on a model
in which the population of the lower level of the laser
transition is assumed to be negligible. In this appendix
we summarize the results that are obtained when the
laser model is generalized to allow a nonzero lower-level
population.

Let the populations of the upper and lower laser levels
be denoted U and L„respectively, so that the population
inversion is

D =U —I. =U —I. =D
s (A6)

The cooperation parameter C is still defined by (3.5).
The expressions (3.6)—(3.9) remain valid for the laser

above threshold, where the upper-level population is now

R, +R„y,y,Uo= +
'Vi g

(A7)

D =2y II(D,
—»—(y —2yII)(L, —L)

—2g(a*d+ad*)+ I „—I I (AS)

and

L = y II(D,
—»+(y—t y

II
)(L,—L)—

+g(a"I+ad*)+I
&

. (A9)

The forms of solution of the equations of motion (2.6),
(2.15), (AS), and (A9) are as given in (2.11)—(2.13), with a
mean lower-level population given by

and the lower-level population is again given by (A5). It
is readily verified that the upper-level populations given
by (A4) below threshold and (A7) above threshold are
equal at C=1.

The population equations of motion (A2) and (A3) are
conveniently rewritten in terms of the population inver-
sion D defined in (A 1) instead of the upper-level popula-
tion U. With the pumping rates also expressed in terms
of the populations D& and I. obtained in the absence of
laser action, (A2) and (A3) give

(Al) L =Lo+L, exp( idiot)+—L i exp(icot) . (A10)
Suppose that the two levels are pumped at rates R„and
R&, respectively, and that the decay rate of the lower-level
population is y&. The equations of motion (2.6) and (2.S)
for the cavity field and atomic dipole moment remain the
same in the more general model, but the equation of
motion (2.7) for the population inversion is replaced by
equations for the individual laser levels,

U+yIIU R g(a*d+ad*)+I „,
L+y,L =R&+yIIU+g (a'd+ad*)+I &,

(A2)

(A3)

where I „and I
&

are Langevin forces for the two levels.
With class-C lasers again excluded from consideration,
the atomic dipole equation of motion reduces to (2.15).

1. Free-running laser

U, —R„/yii= U (A4)

Lo =(RI+R„)/yi=L—(A5)

The model parameters are assumed to have values that
ensure the inequality U )L, , and the population inver-
sion is

The calculation generalizes that given in Sec. III. Thus
(3.4) applies below threshold, where the level populations
are

2. Below-threshold gain

The calculation parallels that given in Sec. IV A, with
I., set equal to zero, in addition to the conditions im-
posed in (4.1). It is easily shown that the gain is
unafFected by the presence of a nonzero lower-level popu-
lation, and, for example, the expression (4.6) for the in-
tensity gain in transmission remains valid.

3. Below-threshold noise

The calculation parallels that given in Sec. IV 8 with
zero-mean fluctuations in the field and the population in-
version represented by (4.13) and (4.14), respectively, and
fluctuations in the lower-level population represented by

L (t) =L +5L (t) . (A 1 1)

As far as the fluctuations in cavity field are concerned,
the equation of motion (4.15) is unchanged, and their
power spectrum is still given by (4.20). However, the re-
sult given by Louisell [10]for the required Langevin force
correlation function is modified by the presence of a
nonzero mean lower-level population so that (4.22) is re-
placed by

( I'd'(co~+co)I q(co~+a)') ) =2yi(Do+La)5(co co') . —

(A12)
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I.o=1+
Do

Uo

Uo Lo

The cavity-field noise power spectrum (4.24) is according-
ly multiplied by an additional population factor

GT(~) yly2[~'[yi+yi(2C

+(yiyiic ~ ) j /2)d, „,
where

(A16)

whose occurrence in the noise output of inverted popula-
tion amplifiers is well known (see, for example, [25]). The
same factor occurs in the mean photon number ( n )
given by (4.27), and, for example, the intensity noise spec-
trum (4.43) is correspondingly modified.

4. Above-threshold gain

The method of calculation follows that of Sec. V A.
Thus (5.1) and (5.2) remain valid, but (5.3) is replaced by
the pair of equations obtained from (AS) and (A9)

(2yi
—(4g'/yi)[I&I, l'»+«1.&s+&I.&1»o]

(A14)

2),„= [yiylC+4yly, (C —1}— ]

+ [yici) 2—y/y[~~y, (C —1}

+co y~i(2C —1)] (A17)

This result correctly reduces to the transmission gain de-
rived in (5.17) when the lower-level population is made
negligible by taking y& to be much larger than the other
decay rates. For the class-A laser (yl, y& ))y, ), the gain

GT is unaffected by any lower-level population. In this
case, Eq. (A17) reduces to the earlier expression (5.31).
However, for the class-8 laser, the presence of a lower-
level population leads to broadening of the relaxation os-
cillation peaks as well as their shift to higher frequency.
It is likely that this will be an important factor in deter-
mining the CO2-laser gain profile.

5. Above-threshold noise

=y~~D, +(2g /yi)[ al. I
D i+(crL, as+rrl. col )Do] .

(A15)

There are four equations for the four unknowns az, el,
D&, and I.j, and these can be solved without difficulty.
The resulting expression for the transmission gain defined
in accordance with (5.15) and (5.17) is

L(t)=Lo+5L(t) . (A1S)

The equation of motion (5.39) for the field fiuctuation is
unchanged but (5.40) is replaced by the pair of equations

The calculation parallels that given in Sec. V B with
the fluctuations in field and population inversion
represented by (5.37) and (5.3S), respectively, and fiuctua-
tions in the lower-level population represented by

(t}+ yiic5 (t) (y yl}5 (t'+ y

and

= —(2g~al ~/yi) tI'd(t) exp[ i5$(t)+i' —t]+c.c. j+I „(t)—I i(t) (A19)

5L(t)+(y& y~~)5L (t} ylc5D(t) 4y, lal 5a(t) =(glal. I/yt)t I d(t) exp[ i5$(t)+—ical t]+c.c. j+r, (t) . (A20)

The real and imaginary parts of (5.39) are separated as before, and the calculation of the phase fluctuation power spec-
trum is unchanged except that the Langevin force correlation function (5.47) is replaced by (A12). The phase difFusion
linewidth is accordingly given by the Schawlow-Townes expression (5.60) multiplied by the population factor P from
(A13). This effect of a nonzero lower-level atomic population is well known [11,20,33].

The calculation of the corresponding amplitude fluctuation power spectrum is more difficult, since it entails simul-

taneous solution of the real parts of (5.39), (A19), and (A20). It is found after some algebra that (5.49) is replaced by

&5~(~)5~(~') & =y, I'P[~'+~'yi+~'y~~(2C 1)+~'—yly (cl—1)+yl yacc]
—ca yiyii(C —1)—2co yii(C —1) —yiyiic(C —1)]5(co+co')/I'd, „. (A21)

This result correctly reduces to (5.49) when P is set equal to unity and yt is much larger than the other decay rates.
The class-3 laser limit is obtained as

y~~
~. However, as yI &y~~, we must also allow y& ~, but require that

Lo =(R&+R„)/y& remain finite.
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