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Antiphase dynamics of mnltimode intracavity second-harmonic generation
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We study analytically the properties of second-harmonic generation in a laser cavity. We determine
the general criterion of stability for stable steady-state multimode operation. When this condition is not
verified we construct analytically the emerging periodic solutions and show that they display antiphase
dynamics. When the steady state is stable, we prove that there are four internal frequencies irrespective
of the mode number. We show that in this case antiphase dynamics occurs in the transient relaxation to
the stable steady state and in the response to noise. Transient antiphase dynamics is shown to imply the
disappearance of low-frequency features in the total intensity whose power and noise spectra display a
single maximum.

PACS number(s): 42.60.Mi, 42.60.Lh, 42.55.Rz

I. INTRODUCTION

The purpose of this paper is to study analytically the
antiphase dynamics that occurs in multimode lasers with
intracavity frequency-doubling crystals. Antiphase states
were first reported as such by Hadley and Beasly [1] in
their study of Josephson junctions. Similar states were
then identified in more formal models [2]. Initially, anti-
phase dynamics was defined as a property of multimode
systems (optical or not) in which all modes are in the
same periodic state, each mode being shifted from the
previous mode by 1/X of the period if X is the mode
number. This dynamics was found experimentally [3] in
the output of a diode-pumped laser with intracavity dou-
bling crystal. A similar dynamics was predicted by Otsu-
ka [4] for deeply modulated multimode Fabry-Perot
lasers; he also investigated its consequence for signal pro-
cessing. It was progressively realized that the mathemat-
ical properties that lie behind antiphase dynamics also ac-
count for the fact that in the same systems, the total in-
tensity may have a much smoother behavior than the
separate modes. This was verified in the chaotic regime
[5,6], in the transient relaxation to steady state [7,8] and
in the noise spectrum of multimode Fabry-Perot lasers
[91.

Intracavity nonlinear processes were suggested already
since the early days of laser physics by Kroll [10]. The
early theory of intracavity parametric oscillation (cover-
ing both subharmonic and second harmonic generations)
was proposed by Oshman and Harris [11]. However, this
problem remained mostly academic until Baer [12] suc-
ceeded in operating a diode-pumped YAG laser with in-
tracavity doubling crystals in steady state. His numerical
modeling showed the importance of sum-frequency gen-
eration in the nonlinear crystal as a source to the "green
problem", i.e., irregular amplitude fluctuations in the
output. This effect was shown by James, Harrell, and
Roy [13] to be a manifestation of chaotic dynamics. The
next step was the realization by Oka and Kubota [14]
that the electric field polarization was an important in-
gredient to explain the observed resu1ts, in particular the

occurrence of chaos in some configurations. The final
touch in the modeling of the Baer setup was brought by
James et al. [15] who included in the model the
birefringence of both the YAG and the doubling crystal
and the angle between the optical fast axes of the two
crystals. A review of this modeling has been given re-
cently by Roy, Bracikowski, and James [16]. An alterna-
tive model has been proposed by Victorov and co-
workers [17,18] in which the spatial grating in the lasing
cavity is included (as in the Tang, Statz, and deMars rate
equations) but the birefringence and the two directions of
polarizations are not taken into account. This model
seems to describe adequately the chaotic dynamics and
the role of the phase-sensitive interactions in destabilizing
the laser.

In this paper, we analyze in a systematic way the rate
equations derived by Roy, Bracikowski, and James [16]
to find an analytic explanation to the properties displayed
by intracavity second-harmonic generation. In particu-
lar, our purpose is to understand the origin of the anti-
phase dynamics in the periodic regime. Although this
goal is far too ambitious at present, we shall show that a
perturbation analysis leads to information that begins to
clarify this type of dynamics. In particular, we shall
show that we can construct antiphase states, though their
stability is not proved. Their unicity is also an open ques-
tion to which we do not bring any clarification.

This paper is organized as follows. In Sec. II we recall
the model equations and derive the general expression for
the linear stability of a steady state consisting of M modes
polarized in one direction and P modes polarized in the
orthogonal direction (M and P arbitrary). In Sec. III we
study the case in which all modes oscillate with the same
polarization (P =0) and construct analytically, by pertur-
bation, the antiphase solution. In Sec. IV we study the
case where an equal number of modes oscillate in each
polarization (M=P). The main results are derived in
Sec. V, where the general case is solved asymptotically,
exploiting different scales that are suggested by the exper-
imental data. Here again, we derive the condition of sta-
bility for the steady-state operation and construct the
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periodic solutions that emerge when the steady state be-
comes unstable. We show that antiphase states are a sub-
set of the solutions to this problem. Finally, in Sec. VI
we study the steady-state regime and characterize it by
means of two oscillation frequencies that appear either in
the noise spectrum or in the power spectrum associated
with the relaxation to the steady state.

II. RATE EQUATIONS AND LINEAR STABILITY

Practically all experiments on intracavity second-
harmonic generation have been performed on diode
laser-pumped Nd:YAG laser with a frequency-doubling
crystal placed inside the lasing cavity. As shown by Roy,
Bracikowski, and James [16],the following rate equations
account fairly well for the observed phenomena:

dIk
C Gk —ak geIk 2—e g —pjkIJ Ik,

j wk

dGk
=yk —(1+Ik+p g I )Gk,

j Wk
(2)

where ~, and ~f are the cavity round-trip time and
fiuorescence lifetime, respectively, Ik and Gk are, respec-
tively, the intensity and gain associated with the kth lon-
gitudinal mode, ak is the cavity-loss parameter for the
kth mode, yk is the small signal gain which is related to
the pump rate, Pk is the cross-saturation parameter, and
g is a geometrical factor whose value depends on the
phase delays of the amplifying and doubling crystals and
on the angle between the fast axes of these two crystals.
The electric-field modes can oscillate in one of two or-

G, =a+(2M —1 )geI, +2@(1 g)PJ, , —

y —6,[1+I, + (M —1)PI, +PPJ, ]=0,
and the steady-state equations for the last P modes are

H, =a+(2P —1)geJ, +2@(1 g)MI, ,
—

y H, [1+J,—+(P —1)PJ, +PMI, ]=0 .

(4)

(6)

A linear stability analysis of this steady state yields an ex-
pression for the stability matrix whose determinant is
given by

thogonal polarizations. In Eq. (1), pjk =g if modes j and
k have the same polarization while p k=1 —g if the
modes have orthogonal polarizations. e is a nonlinear
coefficient whose value depends on the properties of the
KTP crystal; it describes the conversion efficiency of the
fundamental intensity into the doubled intensity. Finally,
following Roy, Bracikowski, and James [16], we simplify
the rate equations (1}and (2) by assuming that the cavity
loss ak and the small signal gain yk are mode indepen-
dent: a& =a and y&

=y.
By convention, we shall consider that the first M

modes are polarized in the x direction and that the last P
modes are polarized in the y direction. Because the
coefficient p varies with the polarization, there is in gen-
eral no solution with all modes having the same intensi-
ties. However, there is a class of solutions for which all
modes in a given polarization have the same gain and in-
tensity. Let the common steady state be (I,G)=(I„G,)

for the first M modes and (I,G) =(J„H, ) for the last P
modes. The steady-state equations for the first M modes
are

M —1
I

(r, A, geJ, ) rfA,—+ +(1 13)J,H, —
S

P —1

X . (r, A+geI, ) rfA, + +I,G, (r, A, +geJ, ) rfA+ +J,H,
S 8,

+(P —1) (r,X+g eI, ) rf A, + +I,G,
S

2geJ, rf k+ +PJ,H,
H,

+(M —1) '(r, A+geJ, ) ~fA+ +J H, 2geI, rfA+ +13I G,s f G

+(M —1)(P —1) 2geI, rf A, + +I3I,G,
S

2geJ, rf A. + +pJ,H,
S

MP 2(1 g)eI, —rfA, + —+pI, G,
S

2(1 g)eJ, rf A, + +13J,—H,
S

The steady solutions are stable if the roots of the equation 2)(A, ) =0 have a negative real part; one or more positive real
parts implies an instability.

Although expression (7) is quite heavy, its structure is simple: 2)(A.)=[R(2,A, )] '[R'(2, A, )] 'R(4, A, ), where
R (n, A)and R'(n, A, , ) are real polynomials of degree n in A, . In particular, this limits the number of oscillation frequen-
cies to four if M and P are arbitrary.
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III. M & 1 AND P =0

The first case we can anal ze in detail is thy
' ' '

e regime where all modes osc&11ate with the same polarization. In that
case, the determinant (7) of the general stability inatrix assumes the simpler form

M —1

2)=( —1) (r, A, ge—I, ) rfA+ y +(1 P)—I,G,
S

X (r, A+g,eI, ) mfa', + +I,G, +(M —1) 2geI r A, + +PI 6
G S S S f S S

S S

From the characteristic equation 2)(A, ) =0, we can easilcan easi y
deduce that all roots have a negative real part provided
the following two conditions are verified:

Dg Ggrf /rp r Eg Hgrf /rp 0 yp yrf /rg

cxP Qr f /7& & gP g E1f /'r~ (13)

and

(9)
g, =(1 g)er—f/r„r=t/rf .

In the vicinity of the Hopf bifurcation, we seek solutions
of Eqs. (1) and (2) of the form

G21 —P 6,
(10)

I„(5,T, o ) =IH+5I„,(T, cr )+O(5 ),
Dk(5, T, a ) =D~+5DI„(T,a )+O(5 ),

(14)

Note that if we expand I, and 6, in powers of e,
I, =p/[1+(M —1)P]+O(e) and 6, =y/(1+@)+O(e)
with Ii =—(y —a)/a, Eq. (9) reduces to the result (3a) of
James et al. [15]. However, this expansion also implies
that G, =a, which is a rather crude approximation. Fur-
thermore, the second condition, Eq. (10), was overlooked
in Ref. [15]. For the parameter values corresponding to
the experiments reported in [15], it can be verified that
g, (g2, so that the omission of condition (10) was of no
practical consequence. An important result that also
derives from the characteristic equation 2)(A, )=0 is the
nature of the instabilities that can develop from the
steady state M & 1, I' =0. There are two possible mecha-
nisms of destabilization. The first one is a Hopf bifurca-
tion towards periodic solutions. It occurs at the critical
intensity

where the small parameter 5, the fast time T, and the
slow time o. are defined by

0 YH+5, T= 607

o =5 r, cp =IHDH(1 P) gpIay~/—DH—.
(15)

In these definitions yH is obtained as the solution of the
implicit equation IH(y ) =I,(y ). More precisely, we seek
2M amplitudes Ik and Dk that are 2~ periodic functions
of T in the long-time limit T~ ~. An explicit solution
of this problem is not available, but the following partial
result can be derived. The first-order deviations Ik, (T, cr )

and Dk i( T, o ) verify the evolution equations

r, /rf
IH

g e —[1+(M —1 )P]r, /rf

provided the geometrical factor verifies the inequality

g&
'rc 1+(M —1)P

(12)

4-
M=2 '&' 4

A second instability point can occur. It is a steada y
bifurcation point at IC = [ —1+&y(1—p)/ge]/
[1+(M —1)p]. However, we can show that for p & 1 and
e &&1, we have I& & IH and the emerging steady solution
is always unstable. Therefore, we shall not study it.
When the inequality (12) is not verified, the steady state
(3) and (4) is stable and there is no instability point. Fig-
ure 1 displays the dependence of the Hopf bifurcation
point on the geometrical factor g.

Although we could not construct completely the
periodic solutions that emerge from the Hopf bifurcation
point, a number of properties of these solutions can be
derived. We first introduce scaled variables

SS

0 I I I I I ~ 1 I I I I 1 I I I I ~ ~ l i ~ I I I ~ ~ ~ I I I I I ~ I I I I I I

0.2
g

FIR. 1. Dependence of the threshold for destabilization of
the steady state in the case where M & 1 and P =0. The steady
state is stable below the critical curves. Parameters are
e=SX10 ', r, /rf =2X10,andP=0. 6.
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BIk M
=IH Dki go ki

—2go X I, iaT j—
1

jWk
T

BDk M
co = yH—Dk, /DH DH—Ik, +p g I&clT

jWk

(16)

(17)

BSD
to = yHSD—/DH DttSr—

l
1+p(M —1)],aT

+
aT2

g0 H I H+ j [1+p(M —1 )]DH

+(2M —1)goI~ ]St=0 .

(18)

(19)

From these equations, it follows that in the long-time lim-
it both sums Sz and SD vanish. Using this property, we
can verify that in the long-time limit the equation for Ik]
reduces to r) I&&/BT +Ik, =0. Therefore, the first-order
modal solutions must have the asymptotic form

Let us construct the sum of the erst-order corrections to
the Hopf intensity and gain: S~ =gk, Ik &

and
So =gk, Dk, . From the first-order equations (16) and
(17) we obtain for the sum functions the evolution equa-
tions

(r, A, geI, ) rf—A, + +(1 P)I, G, =—0,
S

(21)

perturbative result. If we analyze numerically Eqs. (1)
and (2), we find that the total intensity should be a 2m /M
periodic function, i.e., it should
have a dominant contribution of the form
exp(+iMT). In the frame of the perturbation expansion
(14), such a function cannot appear before the order 5
It is therefore consistent that the sum vanishes at order
one in 5. It is also clear that the perturbative approach
we have used to analyze the modal intensities is not ade-
quate to study the total intensity, for which a global ap-
proach is needed. In the case of the laser rate equations,
we have been able to describe such an approach [19].
However, we have not been able to apply the same tech-
nique here.

IV. M=P) 1

Another case that can be considered in detail is the
equipartition of modes in both directions of polarization.
In this case, the symmetry between the two sets of modes
suggests that we seek solutions with equal intensity and
gain in all modes: (I„G,)=(J„H,). In this case, the
characteristic equation that determines the stability fac-
tors into two quadratic equations:

I , =aiA(o. )e' +. c.c,

lS +f
D~, = —ge aid(o )e' +c.c. ,

IH

(20a) r, rfA, + r, +rfeI, [(4M —1)g —2M]
S

+(1 P)I, G, +e—I, [(4M —1)g —2M ] =0 .
s

(22)

ak =exp(2m. ikm/M), (20b)

where k = 1,2, . . . ,M and m =0, 1,2, . .. ,M —1. Using the
identity

with the constraint gk, ak =0 expressing the fact that
SD and Sz vanish. A nontrivial solution of this constraint
equation is y

~f eI, G,

1 —p G,g(

Cg(

From Eq. (21), we derive the stability conditions

(23)

(24)

M (1 M)

1 —xk=1

it is easy to verify with x =exp(2~im/M) that (20b) is a
solution of the constraint equation. The solutions (20a)
and (20b) form an antiphase state if mXO. Indeed, we
have in this way a periodic solution in which all modal
intensities have the same period and amplitude, each
mode being shifted from another by 1/M of the period.
This is precisely the property associated with antiphase
dynamics for periodic solutions [1,2]. Another property
of these solutions which is evident from (20b) is the high
degree of degeneracy. There are (M —I )! equivalent anti-
phase states and one in-phase state (associated with
m =0). A complete analysis of these solutions would re-
quire that we construct the amplitudes A (o ). This task
will not be carried out here because of the amount of
algebra involved in this construction which requires the
derivation of the solvability condition from the O(5 )

equations. Another point that needs elucidation is the
behavior of the total intensity. Although we have shown
that Sz tends to zero in the long-time limit, this is only a

whereas from Eq. (22) the stability conditions are

2M
4M —1

2M
4M —1

1 ~c y
4M 1 Sf E'Is Gs

1 —p G,'
4M —1 e y

(25)

(26)

Here again, an expansion in powers of e gives the results
previously obtained by James et al. [15], but only with
the conditions (23) and (25). Conditions (24) and (26) are
missing in [15]. We can combine the stability conditions
(23) with (25), and the stability conditions (24) with (26)
to get the following inequalities:

C

zf eI, G,
2

1 —p Gs )—

(27)

(28)

Each of the equations (21) and (22) may lead to either a
steady bifurcation or to a Hopf bifurcation. They occur
at the critical intensities:



48 ANTIPHASE DYNAMICS OF MULTIMODE INTRACAVITY. . . 675

Ici=

Ic2

r, /rf
ge —[1+(2M —1)P]r, /rf

r, /rf
@[2M—(4M —1 )g] —[1+(2M —1)P]r, /rf

—1+&y(1—P)/ge
1+(2M —1)P

—1+&y(1 —P) /@[2M —(4M —1)g]
1+(2M —1)P

(29)

(30)

(31)

(32)

V. M AND P ARBITRARY

In the general case, a complete analysis of the charac-
teristic equation 2)(A, ) =0 using expression (7) seems to be
out of reach. However, the domain of parameters in
which the experiments of Roy and co-workers were made

0,5 —.

3

0.4 = 2 4 2 4

m0. 3 =

~ 0.2— ~H2

!
C:

0. 1

SSS

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 2. Dependence of the threshold for destabilization of
the steady state in the case where M=P. The steady state is
stable below both critical curves. Parameters are as in Fig. 1.

As in Sec. II, it can be shown that for p& 1 and e((1,
the steady-state bifurcations occur for higher intensities
than the Hopf bifurcations; therefore, we do not consider
them anymore. Figure 2 shows the dependence of the
two Hopf bifurcation points on the geometrical factor g.
By analyzing the four conditions (29) and (30), the follow-
ing classification can be obtained:

(1) If (r, /rf ) [ [1+(2M—1)p]/ej & —,', the steady state
is stable.

(2) If (r, /rf ) [ [1+(2M —1)p]le] (—,', there is at least
one Hopf bifurcation.

(a) If g = —,', IH, =IH2.
(b) If g (—,', the steady state is destabilized at IH2.
(c) If g & —,', the steady state is destabilized at IH, .

When the steady state is destabilized by a Hopf bifurca-
tion, an analysis similar to the analysis presented at the
end of Sec. II leads to the conclusion that antiphase states
are solution of the bifurcation equations. We shall not
present this analysis here since it is a particular case of
the analysis of the general case discussed in the next sec-
tion.

suggest an approximation that leads to analytic results
which are in remarkably good agreement with the exact
results obtained numerically. To obtain these results, we
first note that the complete characteristic equation fac-
tors into three polynomials,

(A, —guI, ) A, + +(1 P)I,—D, =0,7Q
(33)

S

(A, —goJ, ) A, + +(1 p)J, E—, =0,Vo

S

A4+bA3+ci~+dA, +e =0,

(34)

(35)

in terms of the scaled variables (13). The coefficients of
the quartic equation are defined explicitly in the Appen-
dix. In the experiments reported by Roy and co-workers,
there are three classes of dimensionless parameters: (a)
D„E„aoand yo are large ( & 5000); (b) I„J„go,and g&
are O(1); (c) @=5.0X10 and r, /rf =2.0X10 are
the small parameters. We shall use these natural scales to
analyze the roots of the quartic (35). Let us introduce a
parameter K »1 such that D„E„ao,and yo are O(K).
The simplest choice is K=D, . It is then easy (though
lengthy) to verify that J,(K)=I,(K)[1+O(1/K)] and

E, (K)=D, (K)[1+O(1/K)]. The four coefficients of the
quartic, defined in the Appendix, have the following scal-
ing properties:

6 =So, c =ciE +co

d =diE+do e =e2& +eiE+eo
(36)

Seeking roots of the quartic (35) in the form A, , z=u, +iu,
and A, 3 4 uQ+iu2, it is easy to verify that uk =O(1) and

vz =O(&K ). This leads, to dominant order in K, to the
explicit solutions

v, = [[1+(M+P—1)P]I,D, ]'

u~ = [(1 P)I,D, ]'i—
(37)

(3g)

ui = 4MPg, —[M—(2M —1)+P(2P —1)]go yo

2(M +P) 2D,

(39)

4MPg, —[P (2M —1)+M (2P —1)]go yo

2(M +P) 2D,

(40)

Although these results are approximations, the correc-
tions are O(1/K) and are fairly small. To verify this
point, we have plotted in Fig. 3 the approximate frequen-
cies (37) and (38) and the numerical solution of the stabil-
ity equations (33)—(35). As expected, the agreement is
excellent. The same has been done for the damping rates
(39) and (40) compared with the numerical solutions of
the stability equations (33)—(35) (Fig. 4). Here again, the
agreement is very good. This is quite important since the
zeros of u, and u2 will determine the stability domain of
the steady state. From these analytic results, it is now
easy to derive the general stability condition, which is ob-
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40-

exact solution«» o a pproximate solution

0.00

0
C

~ 20-
U
Q)

—0.20
C

U
—0.40

0 ii ~

10
I 1 I I ~ ~ I I I I I ~ ~ I I ~ ~ i I ~ I I I ~ ~ I ~ I ~ I I I I ~ ~ I I I

11 12 x10

—0.60
10

exact solution
o&«& approximate solution

12 x10

FIG. 3. Frequencies derived from the stability analysis. A
comparison between the exact result derived froxn Eqs.
(33)—(35) and the analytic approximation (37) and (38). Param-
eters are M=2, P =1, g =0.52, and a=0.01. The other pa-
rameters are as in Fig. 1.

FIG. 4. Damping rates derived from the stability analysis. A
comparison between the exact result derived from Eqs.
(33)—(35) and the analytic approximation (40). Parameters are
as in Fig. 3.

+c 1 VOg(
wf e ID, (41)

and

tained by requiring that the real part of all the roots of
the quartic and also of the two quadratics (33) and (34) be
negative. This leads to

~c 1 'Vo ) 1

I,D,
(43)

in terms of the variables scaled according to (13). The
pair of conditions (41) and (42) represent the general con-
dition of stability for the multimode steady state opera-
tion. This steady state operation may be destabilized by
Hopf bifurcations leading to periodic solutions. Equa-
tions (33) and (34) have both a Hopf bifurcation at the
same intensity

4MPg) (4M —1)P + (4P —1)M

M+P ~c 1 'Vo

(4M —1)P+(4P —1)M rf e I,D,

1

g Frf /r, —[1+(M+P —1)p]
(44)

Combining these two inequalities yields the restriction:
Furthermore, the quartic (35) also has a Hopf bifurcation
point at

4MP
M+P

SMP —M —P
g rf /r, — 1+(M +P —1)P

+O(1/K) . (45)

The important information is which of the two bifurca-
tion point has the lowest intensity. Analyzing the rela-
tions (44) and (45) leads to the following conclusions:

(1) If (r, /rf ) [[1+(M+P—1)p]/e] )—,', there is no
instability.

(2) If (r, /rf) [[1+(M+P—l)p]/ej & —,', there is at
least one Hopf bifurcation.

(a) If g =
—,', Ia, =IH2.

(b) If g & —,', the steady state is destabilized at IIrz.
(c) if g )—,', the steady state is destabilized at I».

Let us now consider the periodic solutions that emerge
from the steady state at the first Hopf bifurcation point.
In the general case, the evolution equations are

dIk M P
=Ik Dk ao+goI„2go g I„—2g,—g J„

d'r T=1 r=1

dJ P M' =~q Eq ao+goJ, 2go g—J. 2gi X—I.
dv r=l r=1

dDk M P" =),—D„ 1+(1 P)I„+P g I„+P—g J„
d~ r=l r=l

(46)

(47)

(48)
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dE P M=yo E—
q

1+( 1 P—)Jq +P g J„+Pg I„
r=1 r=1

(49)

where k = 1,2, . . . , M indexes the modes in one polariza-
tion direction while q = 1,2, . . . , P indexes the modes in
the orthogonal polarization. As in Sec. III, we seek
periodic solutions of Eqs. (46)—(49) that depend on the
parameters 5 and the times T and o. defined by

~Ikq
co =IH[Dqi, +goI« —2(go+g, )Ii ] ~aT

(58)

However, because D1))I„I, and J, we can approximate
Eq. (56) by coBIi/B)T=IHD&. Combining this equation
with Eq. (57) leads directly to the result that D, and
I, ~exp( —~q)~T) in the limit T~ co.

Next, we consider the evolution equations for the two
functions I« =Ik1+Jq, and Dkq Dk1+Eq1 Using Eqs.
(51)—(54), we easily get

Z (5, T, o )=Z H+6Z, (T, o) +5 Z 2(T, o )+O(5 ), co
~T

= yIID—«/DH DH[—(1 p)Ik—q+2pIi ] . (59)

0 XH+~, T=c07; 0 =5 'T . (50)

BIk M P
co =IH Dk~+gOII, i

—2go g I„i—2gi g J„i
r=1 r=1

aJq P M
JH +qi +go Jqi 2go g J„i—2g| g I„i

r=1 r=1

(51)

(52)

In these definitions Z stands for any of the four sets of
variables that verify Eqs. (46)—(49). If the first Hopf bi-
furcation occurs at IH1, the expression for the unper-
turbed frequency is co =IIIDH(1 P) gpIH—y H

—/DH,
which is an exact result. If the first Hopf bifurcation is at
IH2, then we use the expansion of the frequency in powers
of X given by co =IHDH(1 —p)+O(1). To first order in
5, we obtain the evolution equations

In the long-time limit, we neglect I, in these equations.
This leads to a pair of simple equations whose solution is

Ik =ak A(o )e' +c.c,
Dj,q=( gQ+i~/Iyg—)a«&(o)e' +c.c. ,

(60)

Ik, =a1, A(o )e' +c.c. ,

Jqi=b A(cr)e' +c.c. ,

akq =ak+bq .

(61)

These solutions can be called antiphase states, since the
property I, =0 (in the long-time limit) implies

M P
a+kg b =0, (62)

From this result, it appears that a possible solution for
Eqs. (51)—(54) is

aD„
BT

M

yHDk)/DH DH—(1 p—)Ik)+p Q—I„i

+Pg J„, (53)

and therefore the coefticients ak and b can be of the
form expI [2niml(M+P)]j I, where j =1,2, . . . , M+P
and m =0, 1,2, . . . , M+P —1. As in the case P =0,
these states are highly degenerate except for the in-phase
state corresponding to m =0.

q1
P

co = yHE, /E EH—(1—P)J—)+P Q J„,
r=1

+PQI„i (54)

The structure of these equations suggest that we define
the four partial sums

M P M PI= g I„i, J= g J„„D= g D„„E=g E„, ,

(55)

and the two total sums I1=I+J, D, =D+E. The total
intensity and gain verify the equations

ar,
co =IH[D, +goIi 2(goM+g, P)I—

2(g, M+goP )J], — (56)

aD,
co = yHD, /DH DH [1—p+(M +P)p]I, .—(57)—

VI. TRANSIENT DYNAMICS

co, = [ [1+(M +P —1)P]I,D, I
'

co -co =co =[(1—p)I D ]'

(63)

(64)

In the previous sections we have concentrated our
analysis on the domain of parameters where the mul-
timode steady state is unstable. However, a self-
organized behavior is also possible in the transient relaxa-
tion towards a stable multimode steady state. We have
already analyzed this kind of behavior in a different con-
text [19], and we want to show that the same dynainics
occurs here. In fact, the antiphase dynamics has an ex-
tension, and retains its meaning, in the approach to the
steady state. As explained just after Eq. (7), there can be
at most four frequencies for the damped oscillations
characterizing the relaxation of the system towards its
steady state. I-et co1, co2, co3, and co4 be the frequencies as-
sociated with Eqs. (37), (33), (34), and (38), respectively.
In the limit E ))1, suggested by the experiments and
used in Sec. V, there remain only two distinct frequen-
cies:
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FIG. 5. Transient behavior of the modal intensities with
M=3 and P =0. Parameters are g =0.9, y=0.05, P=0.6,
a =0.01, e= 10, and v, /v& =2 X 10 . Initial condition:
I, =6, I, =1, I, =8, D, =5015, D, =5010, D, =5005. The di-

mensionless time is ~= t /~& in this and the following figures.

FIG. 7. Transient behavior of the modal intensities with
M=2 and P =1. Parameters are g =0.9, y=0.024, P=0.6,
a =0.01, e=10, and ~, /v& =2 X 10 . Initial condition:
Il =4 I~ =0.5q J& = 1 Dj =5020 D~ =5010 E& =5005.

Note that these two frequencies cannot be ascribed to
specific directions of polarization. However, if we linear-
ize Eqs. (1) and (2) around the steady state, we can easily
derive a pair of equations for the total intensity and gain
I=gk =+& Ik, G =gk =+& Gk. This pair of equations leads
to a single damped oscillation frequency which is precise-
ly co& in the same large-E limit. Hence we expect that the
total intensity dynamics will be characterized by the sin-
gle oscillation frequency ~&, which is the larger of the
two frequencies (63) and (64), while each modal intensity
(whatever its number) will be characterized by the two
frequencies m& and co&. This was verified numerically in
two ways.

First, we consider the relaxation dynamics. Initially,
the system is prepared in an arbitrary state. The tran-
sient evolution is recorded for each separate mode and
for the total intensity. This is displayed in Fig. 5 for

M=3 and P =0. The antiphase dynamics is quite evi-
dent when we compare the modal intensities with the to-
tal intensity. In Fig. 6 we display the corresponding
power spectra. They confirm the expectation that the to-
tal intensity relaxes with a single frequency while the
modal intensities relax with two frequencies. For the
sake of comparison, Figs. 7 and 8 display the same func-
tions but for a different partition, M =2 and P = 1.

Second, we consider the noise spectrum. If there are
only two internal frequencies, they will also characterize
the damping of the random fluctuations that naturally
occur in the cavity fields. We write formally Eqs. (1) and

(2) as d A/dt = f( A, p), where A is a vector whose com-
ponents are the modal intensities and gains, while p
stands for all the parameters. Let B=B(p ) be the
steady-state solution. We have solved numerically the
equation d A/dt=f( A, p) +0 05$(t)B. , where g(t) is a
random noise uniformly distributed over the interval

[ —1, + 1] and the initial condition A(0) =B. This

ltotal

'-, l
0 40

ilL II iR II
0 40 0 40

frequency
0 40 0 40 0 40 0 40

frequency
0 40

FIG. 6. Power spectrum of the intensities displayed in Fig. 5.
Units on the vertical axis are arbitrary but identical for all four
spectra.

FIG. 8. Power spectrum of the intensities displayed in Fig. 7.
Units on the vertical axis are arbitrary but identical for all four
spectra.
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FIG. 9. Noise spectrum in the case where M =3 and P =0.
Same parameters as in Fig. 5.

FIG. 10. Noise spectrum in the case where M =2 and P = 1.
Same parameters as in Fig. 7.

amounts to starting with the steady state and to adding a
noise equal to S%%uo of the steady-state values. For Figs. 9
and 10 we have taken the same parameters as in Figs. 5
and 7, respectively. Here again, the modal intensities
display two peaks (though one of them is usually quite
small) while the total intensity displays a single peak at
the highest of the two frequencies. In Figs. 9 and 10, it is
the peak associated with the lowest frequency that has a
large maximum in the modal intensities, while in the re-
laxation dynamics it is the contrary. This is not a general
property and we have verified, e.g. , that with four and
five modes this rule no longer holds: there is usually a
dominant frequency but it can be any of the two internal
frequencies.

VII. CONCLUSION

We have shown that it is possible to give an analytic
description of the multimode operation of intracavity
second-harmonic generation. The salient fact is that the
coupling between the active lasing cavity and the dou-
bling crystal induced a new kind of dynamics, the anti-
phase dynamics, which results from a temporal collective
self-organization. This can be traced to the fact that this
coupling enables multimode steady solutions to exist. In
the domain of stability of the multimode steady state, the
antiphase dynamics manifests itself in the transient relax-
ation dynamics and in the response to noise. In both
cases, the total intensity displays a power spectrum with

a single peak, while each modal intensity has as many
peaks as there are damped oscillation frequencies. When
the steady state is not stable, periodic solutions emerge,
and we have shown that they display the classic type of
antiphase dynamics, i.e., all modes have the same fre-
quency and amplitude, each mode being shifted from
another one by a 1/N of a period where N is the total
number of modes.

A surprising result that we also obtained is the number
of damped frequencies. Intuitively, one would expect
that number to increase with the number of modes. In
fact, for the model of Roy and co-workers it turns out
that there are only four internal frequencies, out of which
only two can be distinguished in the domain of the pa-
rameter where the experiments are conducted: three fre-
quencies differ only by an amount which is O(1/K). A
closer look at the determinant (7) indicates that these
four frequencies are highly degenerate. Two of them
have degeneracy M —1 and the other two have degenera-
cy P —1. Thus we recover the expected M+P frequen-
cies.
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APPENDIX

The coefficients of the quartic (35) are

b =(2M —1)goI, +(2P —1)goJ, +yo(D, +E, )/D, E, ,

c =(1 13+MI3)I,D, +(1 13+P—I3)J,E, +(2M —1)—(2P —1)g+2,I, 4MPg~~I J—
+ [(2M —1)I,+(2P —1)J, ]goya(D, +E, )/D, E, +y~q/D, E, ,
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d = (2P —1)[1+(M —1)p]goI,J,D, + (2M —1)[1+(P —1)p]goI,J,E,
2—MPPg, I,J,(D, +E, )+ [1+(M—1)P]yoI, D, /E, + [1+(P—1)P]yoJ,E, /D,

+(2M —1)(2P —1)yogoI, J,(D, +E, )/D, E, 4—MPyog, I,J,(D, +E, )/D, E,

+ [(2M —1)I,+(2P —1)J, ]goya/D, E, ,

e =(1—P)[1+(M+P —1)P]I,D,J,E, +(2P —1)[1+(M—1)P]goyoI, J,D, /E,

+(2M —1)[1+(P—1)P]goyoI, J,E, /D, 2M—PPg, I,J,yo(D, +E, )/D, E,

+(2M —1)(2P —1)goy Io, J, /D, E, 4MP—g, yoI, J, /D, E, .
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