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The operator algebra of the quantum harmonic oscillator is applied to the description of Gaussian
modes of a laser beam. Higher-order modes of the Hermite-Gaussian or the Laguerre-Gaussian form are
generated from the fundamental mode by ladder operators. This approach allows the description of
both free propagation and refraction by ideal astigmatic lenses. The paraxial optics analog of a coherent
state is shown to be a light beam with a displaced beam axis which is refracted by lenses according to
geometric optics. The expectation value of the orbital angular momentum of a paraxial beam of light is
found to be expressible in terms of a contribution analogous to the angular momentum of the oscillator
plus contributions which arise from the ellipticity of the wave fronts and of the light spot. This clarifies
the process by which a transfer of orbital angular momentum between a light beam and astigmatic lenses

or diaphragms occurs.

PACS number(s): 42.50.Vk, 42.25.Bs

I. INTRODUCTION

It is well known that the analytical form of Gaussian
modes of a laser beam resembles the wave functions of
the stationary states of a two-dimensional quantum-
mechanical harmonic oscillator [1,2]. This suggests that
algebraic treatments of the harmonic oscillator may be
fruitfully applied to wave optics. Such a treatment can
give insight into the structure and the properties of par-
axial modes, and the connection between modes of
different order. Moreover, algebraic methods often great-
ly simplify explicit calculations of physical quantities.
Recently it has been pointed out that a Laguerre-
Gaussian beam carries an orbital angular momentum
along its propagation direction [3]. This angular momen-
tum arises from the transverse momentum density of the
field. It might be expected that the orbital angular
momentum of a beam of light be analogous to the angular
momentum of the harmonic oscillator.

In this paper, operator algebra is applied to describe
Gaussian modes of a laser beam in the presence of ideal,
but possibly, astigmatic lenses. Raising and lowering
operators are introduced, which generate all higher-order
modes from the fundamental one. These operators de-
pend in a simple way on the coordinate in the propaga-
tion direction, and they can be expressed as a unitary
transformation of the real harmonic-oscillator ladder
operators. The ladder operators are characterized by
three z-dependent beam parameter for each transverse di-
mension. These parameters are the radius of curvature,
the spot size, and the phase. The algebraic connection
between modes with different mode indices is the same as
that for the number states of the harmonic oscillator.
The fundamental mode is the eigenvector of the lowering
operator with eigenvalue zero. The connection between
modes of different order, and between Laguerre-Gaussian
and Hermite-Gaussian modes, follows directly. Eigen-
vectors with different eigenvalues, which are analogous to
the coherent states, represent beams with a displaced
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axis. The axis of the beam simply obeys the rules of
geometric optics while leaving unaffected the three beam
parameters, which reflect the wave-optical nature of the
beam. This separation between geometric-optical and
wave-optical aspects of the beam during its propagating
through lens systems follows in a direct fashion from the
algebraic treatment. Finally, we apply the operator alge-
bra to the description of the orbital angular momentum
of a Gaussian beam, the expression for which is found to
separate into a term that is analogous to the orbital angu-
lar momentum of the isotropic two-dimensional harmon-
ic oscillator, a contribution expressing the ellipticity of
the spot size, and a term arising from the ellipticity of the
wave fronts. Only this final term is modified when the
beam passes an astigmatic lens. The torque exerted on
the lens vanishes when the intensity distribution of the
beam is symmetric with respect to one of the axes of the
lens. This explains why a nonastigmatic Laguerre-
Gaussian beam cannot transfer angular momentum to an
astigmatic lens [4]. However, we demonstrate that such a
beam transfers a significant amount of angular momen-
tum to the lens if one applies angular aperturing of the
beam just in front of the lens. Such a transfer depends
only on the radial mode index.

II. OPERATOR ALGEBRA FOR FREE
PARAXIAL MODE

As is well known, a complete set of solutions of the
wave equation of a beam of light in the paraxial approxi-
mation consists of the products of a Gaussian with a Her-
mite polynomial H, [1,2]. For a light beam propagating
in the z direction, and a single transverse dimension x,
these Hermite-Gaussian modes can be expressed as the
normalized functions [2]

2
u,(x,z)= exp 2”;’(‘2) —ix(z)(n +%)]
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Here the functions v, represent the real normalized
eigenfunctions of the harmonic oscillator, defined by the
Hamiltonian

_1|_®
= Y +&° . (2.2)
Their explicit expressions are
Y (E)=[2"n V7] 2 exp(—E2/2)H,(£) . 2.3)

The formal analogy between the Hermite-Gaussian
modes and the harmonic-oscillator eigenstates offers the
possibility of applying the operator algebra of the har-
monic oscillator to paraxial beam optics.

The Hermite-Gaussian mode functions (2.1) depend on
three z-dependent mode parameters ¥, s, and . The ex-
pressions for the spot size ¥ and radius of curvature of
the wave front s can be combined in the single complex
equality

1 ik k

with k the wave number of the light. The parameter b is
the Rayleigh range of the beam, which determines the
size of the focal region. Finally, the phase factor y is
given by

tany=z/b . (2.5)

In the present case of Gaussian beams, this factor de-
scribes the phase jump of 7 that occurs over the focal re-
gion of any spherical converging wave, which was first
recognized by Gouy [5,2]. The basis set (2.1) depends on
the value of the Rayleigh range b and on the location of
the focal plane, which we have chosen at z =0. The spot
size at focus is equal to V'b /k, and it increases as z /V bk
for z>>b. Hence a small spot size at focus implies a
large divergence angle of the beam.

Equation (2.1) displays both the analogy and the
difference between the propagation of a Hermite-
Gaussian mode of light and the evolution of a harmonic
oscillator. The diffraction of the beam is expressed by a
variation of the spot size ¥ and the radius of curvature s
with z. This is absent for the oscillator. As may be noted
in (2.1), the variation of the Gouy phase Y during propa-
gation, which multiplies the level energy n +1, is analo-
gous to the phase Q¢ of the oscillator with frequency ()
during its evolution. In this sense, the free propagation
of a Gaussian beam from — o to o corresponds to half a
cycle of the oscillator.

The Hermite-Gaussian modes (2.1) are solutions of the
paraxial wave equation [1,2,6]

—u(x,z)= —2ik—a—u (x,z) . (2.6)
oz

When the variations of u in the transverse direction x are

small over a wavelength, a solution u of (2.6) determines,

to a good approximation, the electric field E of a mono-

chromatic light wave with frequency o =ck, of the form

E(r,t)=ReEu(r)e*z ~iot 2.7)

The constant transverse vector Ey determines the polar-
ization and the amplitude of the paraxial beam. Equation
(2.6) has the same form as Schrédinger’s equation for a
free particle in one dimension, with the z coordinate re-
placing the time variable [7]. The formalism of quantum
mechanics in terms of a Hilbert state space, and with
linear operators representing observables, can be carried
over directly to a classical light beam in the paraxial ap-
proximation, as has been done by Stoler [8]. In the same
spirit, we introduce state vectors |u(z)), which have
u (x,z) for the mode function. Furthermore, we define
the coordinate operator X, and the momentum operator
P, according to the equalities

Pulx,) =+ 2 u(x,z). (2.8

i Ox
(Operators acting on states vectors are indicated by ro-
man capitals throughout this paper.) Then the propaga-
tion equation (2.6) can be put in the form

Xu(x,z)=xu(x,z),

4 —__l p2
dzlu(z)) YA lu(z)) . 2.9
Equation (2.9) has the formal solution
lu(z))=U(2)lu(0)), (2.10)
with the propagation operator U defined by
- _ i p2
U(z)= exp 2kP z| . (2.11)

To complete the analogy with quantum mechanics, we
assume normalized state vectors obeying the identity

(u(z)lu(z))‘:‘fdx u*(x,2)u(x,z)=1. (2.12)

When |u ) is normalized for one position z, the normali-
zation for all other z values is automatic. For an inner
product defined as in (2.12), the operators X and P are
Hermitian. The expectation value of operators is defined
in the standard way as

(P(z))E(u(z)lPIu(z))=fdx u*(x,z)Pu(x,z) .
(2.13)

It may be shown that with this normalization (2.12)
#(P(z)) is equal to the transverse momentum per pho-
ton in the beam [4].

A. Ladder operators

The expressions (2.1), which are solutions of the parax-
ial wave equation (2.6), can be obtained by operator alge-
bra techniques. Our starting point is the introduction of
z-dependent field operators, which allow a series of solu-
tions to be created from one. For z =0, we define the
operators

1
V' 2bk

1 kx—ip],

kX +ibP], AT0)=
( ibP] (0) V2bk

A(0)=

(2.14)

where b enters as a free parameter. These operators are



658 G. NIENHUIS AND L. ALLEN 48

real: they transform a real function into another real

function. The z dependence of these operators is defined

by the requirement that, for any solution |u (z)) of (2.9),
(z)|u (z)) is also a solution. This implies that

A2)=U) 40Uz, 4'2=Uw)4 00U ).
(2.15)

For free propagation, explicit expressions for these z-
dependent operators follow from the operator identity

_P2

i
— = p2
2k

exp YRl X exp —X—%P . (2.16)

Combining (2.15) and (2.16) gives the simple z depen-
dence

A(z)= \/Zbk [kX +i(b +iz)P],

(2.17)

Af(z)= [kX —i(b —iz)P] .

V2bk Zbk

These operators obey the standard commutation rule
[4(z),47(2)1=1 (2.18)

for boson raising and lowering operators and, as shown in
every quantum mechanics textbook, this commutation
rule is sufficient to prove that the number operator

N(iz)=A4T(2)4(2) (2.19)

has the natural numbers as its eigenvalue spectrum. If we
indicate the eigenstates for z =0 as |u,(0)), and define

their z dependence by
lu,(2))=U(2)|u,(0)), (2.20)

then these states |u,(z)) are solutions of (2.9), obeying
the eigenvalue relation

N(2)|u,(z))

for n =0,1,2,.... Moreover, the phases of these states
can be chosen so that

AT (2)) =V F1|u, +,(2)) ,
DNu,(2))=V'n |u, _(2)) .

Hence, as for the harmonic oscillator, the higher-order
modes can be obtained from the fundamental mode by
applying the raising operator, according to

=nlu,(z)) , (2.21)

(2.22)

=_1 t(p)n
lun(2)) == 1A @)ug(2)) - (2.23)
We have thus proved the existence of a set of normalized

solutions |u,(z)) of (2.9), which are coupled by the

operators A%(z) and 4(2) according to the usual rela-
tions for the ladder operators of the harmonic oscillator.

These results allow the analytic form of the Hermite-
Gaussian modes (2.1) to be explained in terms of the
harmonic-oscillator eigenfunctions. In order to show
this, we rewrite the operators (2.17) as a transformation
of real operators, by using the transformation

ik

2 —X? |Pexp

exp (2.24)

_ ik v
2SX ]

which is fully analogous to (2.16). This allows us to write
(2.17) in the alternative form

=P—-£X ,
N

A (z)=exp {;sz B(z)exp ———I—(-X2 expliy) ,
(2.25)
with B (z) the real operator
1 | X
B(z)=—= | —+i .
(z) Vi |y iyP (2.26)

The conjugate expressions hold for AV and BT, Asis ob-
vious from (2.1), when A4 operates on a mode u,(x,z), the
real operator B acts on the harmonic-oscillator state 1,,.
The z-dependent quantities s, ¥, and Y are given in
(2.4)—(2.6). As the higher-order modes |u,(z)) can be
generated from the fundamental one by repeated action
of AT , it is sufficient to find the analytical form of the
mode function uy(x,z). This is not difficult if one realizes
that the lowering operators A (z) must give zero when
operating on the fundamental mode. For the normalized
mode function, this gives as a solution of (2.6)

1/4

_ | bk 1 _ kx?
Uolx,2) Vbtn | 26+ |0 %P7

which may be rewritten in terms of the ground state of
the harmonic oscillator as

2

ik
uy(x,z)= exp S X | exp %— t/}o (2.28)

The analytical form (2.1) of the higher-order modes fol-
lows directly after applying Eq. (2.23) and the recognition
that the operator BT is the raising operator for the
harmonic-oscillator eigenfunctions with Gaussian width

Y.
B. Coherent states and the Gouy phase

In view of the analogy of the complete set of Hermite-
Gaussian modes with a harmonic oscillator, or
equivalently with a single quantized field mode, it is natu-
ral to consider the analog of a coherent state [9]. Such a
state arises from the ground state after the application of
a displacement in phase space. The displacement opera-
tor

D (0)= exp[igoX —iayP] (2.29)

displaces position over a,;, and momentum over g,, ac-
cording to the relations [10]

D'(0)XD (0)=X +a,, D(O)PD(0)=P+gq,.  (2.30)

We consider the mode which, for z =0, is equivalent to
the displaced ground state

|4 (0))=D(0)|uy(0)) . 2.31)
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This state is an eigenstate of the lowering operator 4 (0)
with complex eigenvalue

— 1
G 2bk

The solution of (2.9), which is given by the coherent state
(2.31) for z =0, can be expressed as

lu(z))=D(2)|luy(z)) ,
with
D(z)=U(z)D(0)U'(z) .

[kag+ibg,] - (2.32)

(2.33)

(2.34)

Obviously, |u(z)) is an eigenvector of A4 (z) with eigen-
value a,. Application of (2.16) shows that D (z) is again a
displacement operator, and takes the form

D(z)= exp[iq(z)X —ia(z)P], (2.35)

with the z-dependent displacements of position and
momentum

a(z)=ay+ -Iz;qo, q(z)=q, . (2.36)
Hence the state |u (z) ), which is the analog of a coherent
state, is simply the fundamental mode |uy(z)), with the
transverse momentum displaced by the constant amount
gy, and the position by a(z), as given by (2.36). This
equation simply describes a ray of light, tilted with
respect to the z axis at an angle g, /k.

In view of the analogy between the Gouy phase } and
the phase of the oscillator, we may expect that the varia-
tion of the displacements (2.36) with z corresponds to a
variation in time of the displacement of a coherent state
of the oscillator during its evolution. This may be illus-
trated by rewriting the displacement operator in the form

D(z)=explayAT(z2)—at 4(2)], (2.37)

with a, given in (2.32). If we substitute the alternative
form (2.25) of 4 and A into (2.37), we obtain an expres-
sion for D in terms of the real field operators

D (z)=exp %Xz exp[a(z)BT(z)—a*(z)B(z)]
_ ik 4
Xexp 2SX , (2.38)
with
alz)=age "X . (2.39)

In Eq. (2.39), the z-dependent displacement is described
by the dimensionless quantity a, which indicates the rela-
tive displacement in units of . In contrast, the displace-
ments in position and momentum in Eq. (2.35) are indi-
cated by a and g on an absolute scale. Hence the Gouy
phase jump over 7 near a focus, which corresponds to an
oscillation over half a cycle of the relative displacement,
corresponds to the rectilinear motion of the light on an
absolute scale.

III. IDEAL LENSES

For the description of experiment, it is necessary to ex-
tend the field-operator description by including optical
elements, such as lenses and diaphragms. An ideal lens is
sufficiently thin so that no propagation occurs in the lens.
Its only effect is to add an x-dependent phase factor to
the field. When a lens with focal length f with its center
on the z axis is located at the position z,, the relation be-
tween the field incident on the lens and the outgoing field
is given [8] by
ik

— =L 52

2f

with z (z_) a position immediately behind (before) the
lens. This local phase jump can be described by writing
for the propagation operator

u(x,z,)=exp u(x,z_), (3.1

_ ik 2
2fX

When the lens at position z, is the only one in the inter-
val [0,z], the propagation operator is equal to

U(z,)=exp U(z_). (3.2)

= _ i py, _dk w2
U(z)= exp 2kP(z z;) | exp 2fX }
i
X exp _EEPZZI , (3.3)

for z 2 z,. In this way, we can compose the propagation
operator for an optical axis with an arbitrary set of
lenses, with free propagation in between lenses.

A. Ladder operators and fundamental mode

If we start with a definition of a lowering operator
A (0), as in Eq. (2.14), then the propagation operator U
defines the field operators for all values of z, according to
(2.15). As the commutation relation (2.18) is unaffected
by the presence of lenses, we still have the fundamental
mode as an eigenstate of A4 (z) with eigenvalue zero, to-
gether with the higher-order modes, which are related by
(2.22). The analytical expressions are modified to account
for the presence of lenses, but the operator algebra
remains the same.

It is important to recognize that the explicit analytical
expressions for all Hermite-Gaussian modes are fully
determined by the radius of curvature s, the spot size vy,
and the phase y. The z dependence of these three param-
eters, which fully describe the fundamental mode for a
given configuration of lenses, defines the framework of
the operator algebra. To understand this, it is sufficient
to note that a field operator A, defined as an arbitrary
linear combination of the operators X and P for a single z
value, keeps a similar form for all positions. This is obvi-
ous from the transformation rules (2.16) and (2.24).
Physically, this reflects the fact that a Gaussian beam
remains Gaussian during free propagation and in passage
through (ideal) lenses.

If an optical axis with an arbitrary number of lenses of
arbitrary focal length is considered, we can define the
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lowering operator A4 at one position as a linear combina-
tion of X and P, and define the z dependence of A4 (z) in
terms of the propagation operator, as in (2.15). Then 4
retains a similar form for all z, and we may write

A(2)= =KX +iB2)P] , (3.4)
with k and 8 complex-valued functions of z. In order that

A and AT obey the commutation rule (2.18), k and B
must be related by the equality

RexpB*=1. (3.5)
Upon inversion, Eq. (3.4) takes the form
— 1 t _ 1 T
X=—F—[B*4A+BA'], P= *A—kA']. 3.6
5B A+BA"), P=—Ts(k4—x4']. (6

In an interval without lenses, where free propagation
occurs, the z dependence of k and B may be determined
using the transformation (2.16). We find that « is con-
stant in such an interval, whereas 3 varies linearly with z.
The derivatives are

dB _ ik

dB _ ik  dk _

dz k’ dz

On the other hand, application of (2.24) shows that a lens
with focal length f does not change 3, but it does cause a
jump in k. The result is

(3.7

Bz, )=Blz_), K(z+)=K(z_)+ik?é.
Hence, B is a continuous function that varies linearly be-
tween lenses with a slope proportional to k. Conversely,
x makes jumps at the lens positions with a jump size that
depends on the local value of B. In the absence of any
lens, we again find the ladder operators to be given by
(2.17).

The z-dependent lowering operator A has an eigenvec-
tor |u0(z)) with eigenvalue zero, which is a solution of
(2.7) with a propagation operator that is modified by the
lenses. This light beam is the fundamental Gaussian
mode for this arbitrary lens configuration, and its nor-
malized wave function is equal to

(3.8)

K.X2

2B

It is important to note that the intensity distribution has
width |B|, whereas the momentum distribution, which is
determined by the Fourier transform of (3.9), has width
|k|. When « and B vary according to the rules (3.6) and
(3.7), this expression obeys the evolution equation (2.6)
between two lens positions and makes the phase jump
(3.1) at the lens positions. This result generalizes that for
which no lenses are present given in (2.27).

uy(x,z)=[BV'm] ?exp . (3.9)

B. Higher-order modes

In order to obtain the analytic form for the higher-
order modes, it is convenient to express the lowering
operator (3.4) and the fundamental mode function (3.9) in
terms of the radius of curvature s, the spot size v, and the

phase Y, as in (2.25) and (2.28). The quantities B and «,
with the normalization (3.5), uniquely determine the
values of the fundamental mode parameters s, ¥, and ¥,
by the relations
-1

, v=IBl, x=argB .

s=—k (3.10)

K
Im—
B

These results generalize (2.4) and (2.5). In the intervals
between lenses, the variation of s, ¥, and Y is determined
by the linear variation of B with z, as expressed in (3.7).
In the region of negative values of s, the beam converges
and y decreases, while the beam diverges where s is posi-
tive. A focus occurs where « has the same argument as /3,
so that s =0. The phase angle y can only increase, and it
varies most rapidly at a focus. Since a lens does not
change B3, both ¥ and )y remain unmodified by the lens.
According to (3.8), k/B changes by ik /f, and the only
effect of the lens is a change of the radius of curvature,
1 1 1

= -, 3.11
s(zy) s(zo) f 3.10)

in accordance with (3.1). This is just the lens formula of
geometric optics. Since the expressions (2.25)-(2.27)
remain valid, we can apply the raising operator to the
fundamental mode repeatedly to obtain the higher-order
modes. We conclude that they are given by the same ex-
pression (2.1) as in the case of free propagation, but with
the behavior of the fundamental mode parameters as
determined in this section. In the presence of lenses, the
spot size y can pass through several foci. Corresponding-
ly, the Gouy phase Y can execute a series of 7 jumps.
This is equivalent to the harmonic oscillator, which is the
analog of the light beam in the presence of lenses, per-
forming a number of cycles. The algebraic connection
between the modes of various orders is completely
unaffected by these changes in the three fundamental
mode parameters.

C. Coherent states and ray optics

The discussion of Sec. II B on displaced fundamental
modes in analogy to coherent states remains largely valid
in the presence of lenses. The displacement of the spot at
z =0, as described by D (0) defined in (2.29), leads to a
displacement for arbitrary z, where the operator D (z) is
still defined in (2.34). The only difference is that now the
propagation operator U(z) is changed. Likewise, the ex-
pression (2.37) for D (z) in terms of the z-dependent field
operators 4 and AT remains valid, and, moreover, these
operators still obey Egs. (2.25) and (2.26), and (2.38) and
(2.39) still hold. Hence the expression for the displace-
ment on the relative scale in units of ¥ remains the same.
The effect of the lenses is completely hidden in the
modified behavior of the fundamental mode parameters s,
v, and .

The refraction by the lenses becomes directly obvious
when we express the displacement on the absolute scale,
by rewriting D (z) in the form (2.35) in terms of a momen-
tum displacement ¢ (z) and a position displacement a (z).
In an interval between two lenses, where free propagation
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occurs, the z dependence of g and a is determined by the
transformation (2.16). One finds that a varies linearly
with z, whereas ¢ is constant. The derivatives are

da_g dq_,
dz k'’ dz

Applying (3.11) shows that the effect of a lens with focal
length f is described by the transformation

(3.12)

ka
-

One should recall that g /k has the significance of the an-
gle of a light ray with the z axis, whereas a is the distance
of the ray from the axis at the position z. Hence Eq.
(3.12) describes the rectilinear motion of a ray of light in
free space, while (3.13) describes the refraction of the ray
by a lens with focal length f.

Hence, the behavior of the axis of a beam in a dis-
placed fundamental mode (the analog of a coherent state)
simply obeys the laws of geometric optics. This behavior
is completely independent of the variation of the funda-
mental beam parameters s, ¥, and Y, which are a
reflection of the wave-optical nature of the beam. The
variation of these beam parameters is governed by the
transformation (3.7) and (3.8) for 8 and «, which strongly
resemble the geometric-optical rules (3.12) and (3.13).
This is no accident, as both pairs of rules follow from the
transformations (2.16) and (2.24). In summary, a Gauss-
ian beam is completely specified by its first and second
moments. The first moments give the average position
and momentum: namely a and ¢q. They determine the
geometric-optical properties of the beam. The second
moments, which are specified by the complex quantities 8
and k, determine the position and momentum widths of
the fundamental mode, and describe the wave aspect of
the beam.

a(zy)=a(z_), qlz )=qlz_)— (3.13)

IV. ORBITAL ANGULAR MOMENTUM

In this section, we apply the operator formalism to de-
scribe the orbital angular momentum of a paraxial beam
of light. This requires the explicit consideration of the
two transverse dimensions. Then we have two momen-
tum operators P, and P, for the x and the y direction,
and two position operators X and Y. We introduce the

operator
L =XP,—YP, , 4.1

in analogy to the quantum operator of orbital angular
momentum. In cylindrical coordinates r and ¢, with

x =rcos¢, y=rsing , 4.2)
L takes the well-known form
19
i3 (4.3)

The total angular momentum of a radiation field is given
by Maxwell’s theory in the form [11]

J=¢, [ dr{rX[E(r)XB(r)]} . 4.4)

This angular momentum can be separated into a term re-
sulting from the derivatives of the amplitudes, and a term
that derives from the polarization of the field. With some
caution, this may be viewed as a separation into orbital
angular momentum and spin of the field [12]. For a
monochromatic field in the paraxial approximation (2.7),
the z component J, is separated as [4)

€o
Jz=%—fdx dy dz |Eg§-Equ*Lu

+%u*u(E3XE0y—E5‘yEOX) . (4.5)
This implies that for an arbitrary normalized mode
|u(z)), the expectation value #{ L ) is equal to that of the
orbital angular momentum in the z direction per photon
[4].

For each transverse dimension, we have independent
values for the fundamental mode parameters s, ¥, and Y,
which we distinguish with suffices x and y. The corre-
sponding lowering operators 4, and A4, are determined
by these parameters, as in (2.25), in terms of the real
operators B, and B,. In the presence of cylindrical
lenses, the operators for the two dimensions can be treat-
ed independently only when the lens axes coincide with
the x and the y axis, which is what will be assumed from
now on. Hence the spot size and the wave front will, in
general, be elliptical and with coinciding axes. We ex-
clude for the moment the general astigmatism that arises
by using cylindrical lenses oriented at oblique angles to
each other [13]. Then the Hermite-Gaussian modes
lu,,,(z)) have mode functions u,,,(r)=u,(x,2)u,,(y,2),
which are products of one-dimensional modes. All
higher-order modes can then be generated by repeated
action of ladder operators on the fundamental mode
lu oo(Z ) ) .

Laguerre-Gaussian modes are the laser mode analog of
the angular-momentum eigenstates of the isotropic two-
dimensional harmonic oscillator. It has been shown that
a higher-order Hermite-Gaussian beam can be converted
into a Laguerre-Gaussian beam by using astigmatic lenses
[14-16]. We wish to demonstrate that this and similar
conversions are conveniently understood by operator
algebra. First, we give the connection between these
modes in an operator form.

A. Hermite-Gaussian, Laguerre-Gaussian, and elliptical
Gaussian modes

Generalizing the algebraic treatment of the two-
dimensional harmonic oscillator [17], we introduce mixed
ladder operators by the definition

1 S i
Ae=>1A4,Fidye”], 4.6)
in terms of a phase 0 that is independent of z. These

operators obey the commutation rules
[44(2), 45(2)]=1, [4.(2), 4% (z)]=0. 4.7)

The operators for the sum and the difference of the num-
ber operators are
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N(z2)=N,(z)+N_(z), M(z2)=N,(z)—N_(z), (4.8
with
N (2)=Al(2)4,(2) . 4.9)

In terms of the field operators 4, and 4, the operators
N and M are

N=Ala,+474

J4,, M=idld.e 0—iala,e”.

(4.10)

Because N and M commute, they have a common basis of
eigenstates |u,, (z)), with eigenvalues n and m. As A
or A_ decrease the eigenvalue of N, and N_ by one
unit, the lowering operators A4, both decrease the total
excitation number n, whereas 4, decreases m and A4 _
increases m by one unit. This is apparent from the com-
mutation rules

[N(2),A.(2)]=—A.(2), [M(2),A,(2)]=F A (2).
(4.11)

With the proper phase convention of the eigenfunctions,
the explicit action of the ladder operators may be given
by

172
+
A:t(z)‘unm(z)>: n;m |un—1,m¢l(z)> ’
(4.12)
+tm +2 12
ATL‘(Z)lunm(z)>= _n___mT__ [ 1, m1(2))

The total mode number n can take all natural values
0,1,2, ..., and for each value of n, m can take the n +1
values —n,—n+2,...,n—2,n. The mode |u,,) is
created from the fundamental mode by applying the rais-
ing operators AL and A1, and one finds

172

1 (AT ()17 4% @) Plug(2) ,

[t (2)) = il

(4.13)

where we introduced the integers p and g, defined by

_ntm _n—m
2 1T
in terms of #n and m. This result allows the expansion of
the eigenfunctions u,,, (r) of N and M in terms of the
Hermite-Gaussian modes. If we substitute the definitions
(4.6) into (4.13), the brackets can be worked out in terms
of the coefficients g, which are defined by the expansion

(4.14)

(I=0)(1+2y= é gt . (4.15)

s=0
As the fundamental mode u, is the product of two one-
dimensional fundamental modes, we may directly apply
(2.23) for each transverse dimension, with the result

172
ptaq ) —s)is!
- s —iso | (p g —s)ls!
unm(r) sgogsl e 2p+qp!q!

Xup+q_s(x,z)us(y,z) . (4.16)

The equalities (4.10)-(4.13) and (4.16) hold for any
beam specified by its fundamental mode parameters. In
the special case of a nonastigmatic region of the beam,
where v, =v,=v and s, =s,=s, the phases y, and ¥,
can only differ by a constant. Then the expression for
A 4+ in terms of the real ladder operators B, and B, takes
the form

I & ik 2 2 _ ik o 2
Ay=e exp{zs(X +Y*) |B4 exp 2s(X +Y4) | .
(4.17)
Here we denote
B.=—=(B,FicB,), (4.18)

SR

where B, and B, are determined by the spot sizes
Yx =Y, =Y, in analogy to (2.26), and where

E=X,~Xx10. 4.19)
As the fundamental mode function takes the form
ikr? i
ug(r)=exp o5 | €XP —5(,\(,c +x,)
1 x y
X — - — |, (4.20)
” Yo » Yo ”

operating on uy, with 4. is equivalent to operating on
the harmonic-oscillator ground state with B, . This
demonstrates that it is the value of { that determines the
nature of the mode |u,,, ) in a nonastigmatic region.
When {=m/2, the operators B are equal to
B

[B,£B,] . (4.21)

=1

V2
Substituting (4.17) and (4.20) in (4.13) then gives for the
higher-order mode functions

_ ik i ,
U, (T)= exp —zsrz—i()(x‘*')(y)_l)(x(P +q)
1 x+y xX—y
X — = = |, (4.22)
Y ¢p 71/2 ¢q 7/\/2

with p and g defined by (4.14). The functions (4.22) are
normalized Hermite-Gaussian modes with their symme-
try axis rotated over 45°. If we combine (4.22) with
(4.16), we obtain the transformation of these rotated
Hermite-Gaussian modes in the nonrotated Hermite-
Gaussian modes. In the special case that y, =Y,, so that
6=C=m/2, this is equivalent to an analytical expansion
of products of Hermite polynomials in (x=+y)/V'2, as
given by Abramochkin and Volostnikov [14].
When =0, we find that
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Bi=71_5[BX FiB,],
which are circular ladder operators. It is easy to verify
that, in this case, the operator M is equal to the angular
momentum L, and the quantum number m =1 is the cor-
responding eigenvalue. The beam carries an orbital angu-
lar momentum #! per photon [3]. For the mode func-
tions, we obtain, after using (4.15),

(4.23)

ik

2s

Xy
’

14

u,(r)=exp , (4.24)

. 1
r’—ix(n +l)l7¢n,

with 1, the wave functions of the isotropic harmonic os-
cillator that are eigenfunctions of both energy and angu-
lar momentum, with quantum numbers n and I. The az-
imuthal dependence of 3,; is given by exp(il¢), and its
radial part has the form [17,2]

exp(-—r2/2y2)r”‘Lli”(r2/7/2) ,

with p =(n —|I|)/2, and L;l” the generalized Laguerre
polynomial. As both the Laguerre-Gaussian and the
Hermite-Gaussian modes form a complete set, a basis
transformation must exist. The analytical derivation of
this transformation is painstaking and not very transpar-
ent [15]. The transformation, obtained by operator alge-
bra, is given by (4.16) in the special case that 6=0. A
similar result has recently been found by group-theoretic
methods by Danakas and Aravind [18].

It is natural to compare the Laguerre-Gaussian modes
to circular polarization and the Hermite-Gaussian modes
to linear polarization. We have seen that they arise as
special cases of the modes |u,,, ) defined by (4.13) with
(4.17) and (4.18), for {=0 and {=w/2, respectively. For
intermediate values of £, the modes |u,,, ) have an ellipti-
cal nature. This is obvious when we rewrite (4.18) in the
form

B,=

& 7
2 4

-‘71—5(BxiiBy)cos

- —‘/‘7(3,( FiB,)sin

& m
2 4

1

X exp (4.25)

&7
2 4

The corresponding creation operators A’:_L acting on the
fundamental mode generate elliptical patterns of the
transverse momentum density, with the axes oriented in
the xy plane along the lines x ==xy. This ellipticity
should not be confused with the elliptic intensity distribu-
tion in the case of an astigmatic beam.

B. Mode conversion

In general, a mode converter is defined as a
configuration of lenses that transforms a nonastigmatic
input beam into a nonastigmatic output beam with an as-
tigmatic region between them. Let us consider a
configuration of astigmatic lenses with their elliptical
axes oriented along the x and the y axis. The lenses are

located between z; and z,. The incoming beam for z <z,
is supposed to be nonastigmatic, so that y,=y,=y and
sy =s,=s. The lens configuration determines the values
of the fundamental mode parameters s, ¥, Xx and s,
¥y, and x,, for all values of z. The output beam for z > z,
is also nonastigmatic, provided that the last lens is locat-
ed at a position where y, =y, and that it has different
focal lengths f, and f, along the two axes that make up
for a possible difference in s, and s, according to

1 1 _ 1 1

) fo szl f,

As the characteristics of the mode |u,,, ) in a nonastig-
matic region are determined by the value of the parame-
ter §, the properties of a converter are fully specified by
the difference between the { values in the output and the
input beam, which is equal to

(4.26)

Agz(g)out_(g)inz(Xx _Xy )out_(Xx _Xy )in . 4.27)
Consider a Hermite-Gaussian input beam with its axes
oriented at 45° with respect to the axes of the lenses, so
that

x+yz
v2 '’

Xy

V2

uin(z)=up 2|, (4.28)

q9

with u, and u, the one-dimensional Hermite-Gaussian
mode functions (2.1). According to (4.22), this input
mode is identical to the mode |u,, ) with {=/2, and
with n =p +¢, and m =p —q. In order that the output
beam be in the Laguerre-Gaussian mode (4.24), we must
have ({),,,=0, or A;=—m/2. The angular-momentum
quantum number is / =p —q. Such a 7 /2 converter has
recently been realized with a system consisting of two
identical cylindrical lenses [16]. Then the Rayleigh range
is the same at input and output. As the Gouy phases Y,
and Y, cannot increase by more than 7 in a region of free
propagation, the value of A{ for a system of only two
lenses must obey the inequality —7 <Af <. For a sys-
tem consisting of more lenses, A{ can be outside this
range and the Rayleigh range can be different at input
and output. Inspection of (4.17) and (4.18) shows that for
&=, the operator M is equal to —L. Hence a lens sys-
tem with A{=1 inverts the azimuthal mode index / of a
Laguerre-Gaussian beam. It cannot, however, be realized
with less than three lenses [4].

Our treatment demonstrates that the conversion prop-
erties of an arbitrary astigmatic lens system with a single
axis with a nonastigmatic input and output is determined
by the single parameter A, which is the difference of the
change in Gouy phase for the two axes of the lens system.
As indicated in (4.18), this phase determines the change
in the ladder operator B, from the input to the output
region. An elliptical Gaussian beam specified by a value
of ¢ is realized by a converter with an appropriately
selected value of A{ when the input beam is Hermite-
Gaussian or Laguerre-Gaussian. The action of the con-
verter results from the modification of the eigenoperator
M, while the eigenvalues n and m remain unchanged.
The propagation of the beam through the lens system is
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fully analogous to the evolution of a two-dimensional
harmonic oscillator, with a modification of the oscillation
frequencies Q, and Q,. The change in the phase x over a
propagation distance plays the role of the oscillator phase
f dt Q(t) over a time interval. In each case, it is the total
phase difference between the two directions that deter-
mines the state change for an arbitrary initial state.
When the mode function is simply the product of one-
dimensional functions for the x and the y direction, this
phase difference does not affect the nature of the mode.
It only plays a role for an entangled state, which is a
linear combination of different products of one-
dimensional eigenstates for the two axes. This explains
why an input Hermite-Gaussian mode must have axes
that do not coincide with the symmetry axes of the
lenses, in order for mode conversion to take place.

C. Angular-momentum transfer

It is informative to derive expressions for the transfer
of orbital angular momentum when a cylindrical lens is
traversed by a possibly astigmatic Gaussian beam that is
an eigenfunction of N. Again, clearly, it is necessary to
consider both transverse directions. The transverse field
amplitude for a given position z of the beam is generally
described by the function u (x,y), that can be separated

as

2

1
—V(, ) .
VY,

We introduced the scaled transverse coordinates and mo-
menta

x>y

u(r)=exp 5 o (4.29)
x Y

1 d 19

E=X/Yx» N=Y/Vy> P§=7¥, P,,=7$ , (4.30)
so that ¥ is the normalized wave function of an energy
eigenstate of a two-dimensional isotropic harmonic oscil-
lator. As we are interested only in the distribution at a
given position z, we suppressed the z dependence in
(4.29). The Gouy phases x, and x, are absorbed in V.
When y, and 7, are different, the Gaussian part of u has
unequal widths along the two axes, whereas the function
¥ is unsqueezed. If we evaluate the orbital angular
momentum per photon #{L )=#{u|L|u) for the beam
(4.29) while using (2.24), we can express (L ) as an expec-
tation value over the wave function ¥ in terms of the
scaled coordinates, with the result

(LY=ky,y, |+-—L [(wignw)
s, Sy
+% Yx_ Yy (W|(EP, +nP,)|W)
y X
x| Y= ¥y (W|(EP,—nPIW) . (4.31)
2 y yx

The first term on the right-hand side of (4.31) results
from the difference in the two radii of curvature. This
reflects the ellipticity of the wave front. The second term
is due to the difference in spot size and results from the

elliptical shape of the light spot. The last term contains
the angular momentum in scaled coordinates. It is the
only surviving term in a nonastigmatic beam. Note that
for a freely propagating astigmatic beam, all three terms
in (4.31) vary with z, whereas their sum remains constant.

If the beam described by u passes a cylindrical lens,
with focal length f in the x direction, the field leaving the
lens is given by u (r)exp(—ikx2/2f). Hence the last two
terms in (4.31) are unaffected and only the first one
changes, due to the change in s,. The net increase of an-
gular momentum per photon passing the lens is

#i(8L >=ﬁ—;‘yxyy(w|gn|w>=%’i
This term determines the torque that the field exerts on
the lens. It vanishes when the intensity distribution |u|?
has the x or the y axis as symmetry axis. In particular,
the torque on the lens vanishes when the input beam is an
astigmatic Hermite-Gaussian mode u, (x,z)u,,,(y,z). This
is understandable, as the lens orientation is at an ex-
tremum of energy. Furthermore, the angular-momentum
transfer (4.32) vanishes for a Laguerre-Gaussian input
mode, and for symmetry reasons [4] it will also vanish
when the beam leaving the lens is Laguerre-Gaussian.
Notice that this angular-momentum transfer is propor-
tional to the wave number k. Therefore, when this ma-
trix element is nonvanishing, it can be as large as many
units 7, even for modes of moderate (nonzero) order.

Culxylu) . (4.32)

D. Angular aperturing and angular momentum

In Sec. IV C, it was argued that a Laguerre-Gaussian
beam cannot transfer angular momentum to an astigmat-
ic lens. However, when angular aperturing is applied just
in front of the lens, an appreciable transfer of angular
momentum can occur. Suppose that the Laguerre-
Gaussian mode (4.24) passes a diaphragm with a
transmittance that depends only on the azimuthal angle
¢, and not on the radial coordinate ». Then the mode
function leaving the diaphragm can be given in polar
coordinates as

- ik 5. 1
u(r)= exp 2" ix(n+1) 7/‘/Eﬂ_Rnl(r/y)
Xe®4(¢), (4.33)

with R, the normalized radial-wave function of the
angular-momentum  eigenstates 1, of the two-
dimensional harmonic oscillator. For an ideal dia-
phragm, the transmittance function A4 (¢) attains only
the value zero or 1. When a cylindrical lens with focal
length f in the x direction is placed immediately after the
diaphragm, so that no propagation occurs between them,
the transfer of angular momentum to the lens is found
after substitution of (4.33) in (4.32). The result is the
product of a radial and an angular average. By using the
well-known fact that the average potential and kinetic en-
ergy are equal in an energy eigenstate of the harmonic os-
cillator, we obtain for the transfer of angular momentum
per incident photon the expression
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_fk > A o 2

#(SL ) 27750 fo dé| 4(¢)|%sin(24) . (4.34)
This result is independent of the azimuthal mode index [,
and it is proportional to a Fourier coefficient of the ¢-
dependent transmission function |4 (#)|%.. The angular
momentum transferred to the lens can be much larger
than the angular momentum per photon #! in the in-
cident beam. The transfer is maximal when | 4 (¢)|? is 1
for 0< ¢ <m/2, and m < ¢ <37 /2, and zero elsewhere.

V. CONCLUSIONS

The propagation of Gaussian laser beams in free space,
and their refraction by ideal astigmatic lenses, are de-
scribed by harmonic-oscillator operator algebra. A mode
is characterized by z-dependent eigenoperators and con-
stant eigenvalues. This explains why the Hermite-
Gaussian form of a beam is conserved during its free
propagation and at refraction by lens systems. Moreover,
it shows that the displacement of the axis of a slightly
misaligned beam follows the rules of geometric optics,
which does not affect the beam diffraction. Such a dis-
placed beam is the analog of a coherent state of the har-
monic oscillator. The relationship between Laguerre-
Gaussian and Hermite-Gaussian modes takes a simple

algebraic form. Conversion from one mode into another
by astigmatic lenses is directly characterized by a single
phase difference. The orbital angular momentum of a
light beam in its propagation direction is separated into a
contribution that resembles the angular momentum of a
harmonic oscillator and terms that originate from the as-
tigmatism of the beam. These latter terms can be consid-
erably larger than the first. The torque of a beam exerted
on an astigmatic lens is expressed in terms of a single ex-
pectation value. When a Laguerre-Gaussian beam, with
angular momentum 7! per photon, traverses an astigmat-
ic lens after passing an angular aperture, it may transfer
more angular momentum to the lens than #! per photon.
Apart from the physical interest of these results, they
demonstrate the advantage of the algebraic method in
terms of ladder operators for paraxial optics.
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