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Strong self-focusing in nematic liquid crystals
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We present an experimental study of strong self-focusing in nematic liquid crystals. In a planar
geometry, a linear dependence of the focal power on the input intensity for 100-pm-thick samples turns
into an exponential one when thicker samples are used. A transverse visualization of the beam structure
is performed in a cylindrical geometry. We observe an undulation and a filamentary structure of the
laser beam for large intensities. Also, multiple focal points appear along the beam axis in this
configuration. Undulation and filamentation of the beam are also observed in a spherical geometry.

PACS number(s): 42.65.Jx, 42.70.Df

I. INTRODUCTION

Optical self-focusing stands among the many phenome-
na caused by a light-matter interaction. It occurs when
light modifies a medium such that it creates an intensity-
dependent focusing lens [1—7]. One can question the
limit of such a nonlinear retroaction, where diffraction
competes against focusing, the latter being a combination
of the input intensity and the material response. The nat-
ural way to study this limit is to push the focusing term
into a regime where nonlinear effects become appreciable.
Due to the small value of the coe%cient of optical non-
linearity in most materials, experiments were performed
using high-power laser pulses [8], introducing an external
time dependence. On the other hand, because of the
large optical nonlinearity in nematic liquid crystals (due
to the reorientation of the director field), a moderate con-
tinuous beam [9—11] can be used. Besides, what makes
liquid crystals unique is their elastic response to align-
rnent: the self-focusing effects depend upon the boundary
conditions and geometry of the system.

We present an experimental study of self-focusing of a
continuous laser beam in nematic liquid crystals. The
simplest configuration consists of a flat sample, thin
enough to be considered as a small perturbation to the in-
cident laser beam (hereafter called the pump beam). Us-
ing a secondary laser beam (hereafter called the probe
beam) to measure the focusing power of the sample, we
then recover the usual linear dependence upon the
pump-beam intensity [10,11]. This happens when the fo-
cal point is outside the sample. However, when this focal
point moves inside the liquid crystal for thick samples,
we observe a deviation from the linear dependence: the
focal power increases exponentially with intensity. At
high intensity, the probe beam breaks into filaments,
rendering our measurement-technique useless.

This led us to adopt a quasi-semi-infinite cylindrical
configuration, where we can look directly at the longitu-
dinal evolution of the pump beam itself inside the liquid
crystal. The laser beam is aligned along the axis of a long
cylindrical sample with forced cooling along its surface,
in order to avoid possible heating effects. At low intensi-
ty, the change in the position of the pump-beam focal

point is consistent with our results in the planar
geometry. A striking result is the observation at high in-
tensity of a steady spatial undulation of the beam inside
the tube. The longitudinal characteristic length of this
oscillation first decreases with intensity, reaches a
minimum, and then increases. In the latter regime, we
encounter another phenomenon: the beam develops an
inner filamentary structure.

These observations suggest a possible separation of the
focusing effect into two aspects, each with its own length
scale: an outer one describing the beam undulation, and
an inner one for the beam structure. The undulation and
the inner filamentary structure can be recovered in a sim-
ple mathematical model where, as opposed to the classi-
cal theory based on a local expansion of the optical index,
the elastic response of the medium plays a crucial role
[12]. In particular, the elastic term appears to be the re-
storing force when the beam undulates. Based on this
elastic effect and on the birefringing nature of the nemat-
ic liquid crystal, we present a simple geometric model for
the beam undulation.

For larger intensities, the beam exhibits a random dy-
namic behavior. Understanding this dynamic behavior
will require a time-dependent model.

The paper is organized as follows: We present in Sec.
II the experimental results for the planar geometry and
discuss the exponential increase of the focal power in
thick samples. In Sec. III we describe the observation of
the beam in the cylindrical geometry at low intensity.
We discuss in Sec. IV the beam undulation, and present
the filamentary structure. Similar observations in a
spherical geometry are described in Sec. V. We surnma-
rize the results in Sec. VI. The Freedericksz transition,
as well as measurements of the intensity threshold, is
presented in the Appendix.

II. SELF-FOCUSING IN PLANAR GEOMETRY

In this section, we restrict ourselves to self-focusing in
a planar geometry. We introduce the Freedericksz tran-
sition and the light-nematic interaction in thin samples.
We then turn to thick samples where we observe a sharp
increase of the focusing effect upon intensity.
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A. Experimental setup
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FICx. 1. Setup for the measurement of the onset of director
deformation and self-focusing in planar geometry: Ar, argon
laser (pump beam); He-Ne, helium neon laser (probe beam);
A, /2, half wave plate; BS, cube beam splitter; CxP, Gian polariz-
er; M, mirror; L, converging lens; S, sample; F, red color filter;
MIC, microscope; CCD, charge-coupled-device camera.

We studied the liquid crystals N-(4'-
methoxybenzylidene)-4-( n-butyl)aniline (MBBA), 4-
cyano-4'-N-hexylbiphenyl (6CB), and E209 in the nernatic
phase [13]. MBBA and 6CB are well-known pure materi-
als, while E209 is a less standard commercial compound
(BDH, Ltd. , Poole, England). The temperature ranges
for the nematic phase are, respectively, from 16 to 46'C,
from 15 to 29'C, and from —50 to 111'C. The experi-
ments are performed at a temperature of 22.0+0.5 'C.

Flat samples are prepared in the following way: a cell
is composed of two glass plates separated by mylar
spacers and sealed with Torr-Seal [14]. The sample
thickness varied from 100 pm to 2000 pm. The two glass
plates are coated with a silane surfactant [15] to achieve
homeotropic alignment of the director (i.e., perpendicular
to the surface). The liquid crystal is then injected inside
the cell. We check the director alignment by the conos-
copy technique [16].

The experimental setup is shown in Fig. 1. A linearly
polarized Argon laser beam (the pump beam), in the
TEMoo Gaussian mode, is applied perpendicular to a
sample that sits on the stage of an inverted microscope.
Our control parameter is the intensity of the pump beam,
which we adjust with a 50-mm converging lens placed
above the sample. Given the total laser power and the
beam spot size at the bottom of the sample (our plane of
reference, which is easily identified with the microscope),
we deduce the beam intensity. This spot size is typically
around 50 pm. A second, weak He-Ne laser beam (the
probe beam) of 3 mW power is combined with the pump
via a cube beam splitter. The two beams are aligned with
an accuracy of a few microns and have the same linear
polarization. They enter directly into the microscope 4X
objective. The measurement itself is done in the follow-
ing way: The pump beam, which excites the medium, is
strongly attenuated by a filter after the sample. We mea-
sure with the inverted microscope the changes in the po-
sition of the waist of the probe beam as a function of the

pump intensity. The distance between this beam waist
and the bottom plate of the sample can be measured with
an accuracy of 10 pm. The bigger this distance, the more
sensitive is our measurement. In order to achieve the
maximum distance within the range of the microscope,
we put a long focal-distance lens on the path of the probe
beam before combining it with the pump one. This al-
lows us to adjust the sensitivity of the measurement
without affecting the control parameter. We also require
the probe spot size at the sample to be close to the one of
the pump beam, so that the two beams explore the same
region of the nematic liquid crystal. Under these condi-
tions, the results obtained are insensitive to the specific
optical setup. By using geometrical optics, the position
change of the beam waist can be translated into an abso-
lute focal length of an equivalent thin lens. Let us turn
now to the onset of the director deformation.

B. Freedericksx transition

When an electric field is applied at optical frequency,
the nematic director tends to align along its direction for
the liquid crystals used in the experiment. Due to the
boundaries which impose the initial director alignment,
an elastic restoring torque is also present. The balance
between these two defines the onset of the Freedericksz
transition at a threshold intensity I„,[16]. The order pa-
rameter of this transition is the director deformation an-
gle. We present in the Appendix measurements of I„,
and of the time scales associated with this transition for
the 100-pm samples. We also give there an estimate of
the director penetration length. We present in the table
the experimental results for the different liquid crystals.

C. Self-focusing

Above the Freedericksz transition, the director defor-
mation modifies the local refractive index, which in turn
affects the propagation of the beam through the sample.
Since a higher intensity in the rniddle of the beam pro-
duces a higher refractive index, the beam focuses as it
propagates through. However, this effect is appreciable
only when the index profile is powerful enough to over-
come diffraction. This leads to a threshold for self-
focusing Isp, which is larger than the threshold for the
nematic director deformation I„,.

In the focusing regime, the position change of the
probe beam waist is measured by the method described
above. The results are shown in Fig. 2 for different sam-
ples. We can clearly identify two distinct behaviors:
Thin samples (100 pm) exhibit a linear dependence of the
focal power on the pump intensity, while thicker ones
( —1000 pm) display an exponential increase. We show
below that these data can be encompassed in one univer-
sal curve.

We follow here a standard derivation for the propaga-
tion equation of light inside a focusing medium [5,17].
We assume a local Kerr expansion for the refractive in-
dex: n =n, +n2I, where n, is the ordinary refractive in-
dex and n2 is the nonlinear coefficient. I is the increase in
the pump-beam intensity above I„,. We consider the
propagation of a Gaussian beam, with a spot size a, an in-
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This defines a characteristic length scale associated with
self-focusing: zf =5C/5z =4n2(I I„,)a—

A sample of thickness d is defined as thin when d «zf.
This leads to a linear dependence of the inverse focal
length on the pump intensity, as has already been ob-
served [17—20]. In this limit we assume a constant spot
size a across the sample, and we integrate Eq. (1) along
the direction of propagation to get C=4n2(I I„,)a —d.
C is the inverse focal length of a thin converging lens
equivalent to the sample. Due to diffraction, the real cur-
vature of the wave front after the sample is
f ' =C —I /ka, where k is the wave vector. The
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threshold for self-focusing Is„corresponds to f '=0, or

IsF =IF,+ [4n2dk ]

We then rewrite f ' as

f '=4n2(I Is—„)da (3)

Fitting the measurements of Fig. 2 for thin samples with
a straight line corresponding to Eq. (3), we obtain n2 and
Is„.The values are reported in Table I. The value ofI„,
is then obtained from Eq. (2), and is consistent with the
measurements described in the Appendix and reported in
the table. The values of n2 are somewhat lower than
those observed previously [9]. Note, however, that we
work in a different intensity regime than in previous pub-
lications.

As opposed to thin samples, thicker ones exhibit a
sharp increase of the focal power as a function of intensi-
ty, best fitted by an exponential. When the thickness is of
the order of the focusing scale, d-zf, let us show that
the focal point moves into the sample. From Eq. (1), C
scales as Ia and as the total beam power Ia is con-
served, it scales as a . Thus one can neglect 1/ka and
write f ' —C. As C is equal to d/zf, one gets d/f -1,
and the focal point moves into the nematic region.

We try next to encompass all the data from Fig. 2 into
a universal curve. The obvious way to do this is to plot
d /f versus the dimensionless curvature acquired by the
wave front across the sample: 4n2(I IsF)(d/—a) . Un-
fortunately, this does not lead to a universal dependence.
We encounter here the complexity of the light-nematic
interaction: the local Kerr expansion that we assumed is
a good approximation as long as d «zf. The change in
the dependence of the focusing power upon intensity
when d-zf clearly shows the limits of this assumption.
If we keep the functional form for the expansion of the
refractive index, we have to allow n2 to be dependent
upon the geometry, size, and boundary conditions of the
specific sample: the nematic liquid crystal is not a Kerr
medium and n2 cannot be considered as a material con-
stant.

On empirical grounds, we find that the universal con-
trol parameter is R =4nz(I —Is„)(d/a ) (d, /d ). The
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FICx. 2. Inverse focal length as a function of the pump inten-
sity for plane samples of (a) MBBA: d = 100 pm (empty
squares), 1000 pm (filled squares), and 2000 pm (crossed
squares). (b) 6CB: 100 pm (empty circles) and 700 pm (filled cir-
cles). (c) E209: 100 pm (empty diamonds) and 940 pm (filled di-
amonds). The dashed lines are best fits to the data; linear fits for
thin samples and exponential fits for thick ones.
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FIG. 3. Dimensionless focal powder d/f vs the control pa-
rameter R (see text for the definition), for MBBA (empty
squares), 6CB (empty circles), and E209 (filled diamonds). All
the experimental points of Fig. 2 are presented in this graph.
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TABLE I. Typical parameters for the different materials studied. X is the director elastic coefficient, y is the director viscosity
coefficient, n, is the ordinary refractive index, n, is the extraordinary refractive index, rd is the characteristic director relaxation
time, y is the director difFusion coefficient, IF, is the threshold for the Freedericksz transition, I» is the threshold for self-focusing,
and n, is the Kerr nonlinear coefficient. K, y, n„and n, are taken from the data sheet provided by British Drug Houses [15]. The
other parameters are from our measurements. ~d, y*, and IF, are measured by the relaxation-rate technique described in the Appen-
dix [see Eq. (Al)]. Is„and n 2 are obtained from a linear fit of the focusing power as a function of the input intensity (see Sec. II).

Sample
X y

(10 dyn) (g cm ' s ') n, ne (s)

y'
(10 cm /s)

IF. ISF n2

(kW/cm ) (kW/cm ) (10 cm /kW)

MBBA
MBBA 100 pm
MBBA 1000 pm

0.77 1.55 1.76
18

184
1.12 1.6 2.5

6CB
6CB 100 pm
6CB 700 pm
6CB drop

0.37 1.53 1.7
6

170
95

2.7

10

0.87 1.25 0.87

E209
E209 100 pm
E209 1000 pm
E209 tube

8to20 0.35 1.51 1.68

70 28

7.72 9.3 5.4

normalization factor (d, /d ) takes into account the thick-
ness dependence of n2, measured only in thin samples
(d, = 100 pm). Note that there is no theoretical
justification for this choice of R. At least, as shown in
Fig. 3, it brings the data for each material onto a single
curve. If each material presents the same qualitative
shape, there is still a factor of 4 between the different
liquid crystals. Our scaling has to include the material
parameters in a more refined way than just n2, in order to
bring all the different liquid crystals into one curve.

Let us note that a break in the curves appears con-
sistently around d If —1, compatible with the previous
analysis. Once the thin sample approximation breaks
down, the focal point being inside the nematic liquid
crystal, the best geometry to study is the semi-infinite
sample. Increasing the thickness of Oat samples does not
help in this respect: for the thickest sample (d=2000
pm), the beam breaks into filaments, rendering our
measurement-technique useless. We have to adopt a new
geometry, described in the next section.
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for the nematic phase (
—50 to 111 'C). A glass capillary

of inner diameter 1.5 mm is coated with the polymer (3-
amino-propyl trimethoxy-silane) (MAP) to ensure tangen-
tial alignment of the director at the surface [see Fig. 4(b)].
The liquid crystal in the nematic phase is then injected
inside, the shear fIow aligning the director parallel to the
surface. The sample can be cooled down to a minimum
temperature of —40'C, using a How of nitrogen gas
around the capillary. A heat exchanger is used to cool

III. SELF-FOCUSING
IN CYLINDRICAL GEOMETRY

LASER
BEAM

C

COOLING

GAS

We studied in the previous section the sample focal
power, i.e., the effect of the beam on the nematic. We
now explore the self-focusing of the beam itself in a cylin-
drical geometry. This configuration allows both visuali-
zation of the beam and local cooling around its axis. We
show that the low-intensity behavior is consistent with
the results of Sec. II.

A. Experimental setup

In order to prevent a possible transition to the iso-
tropic phase at high intensity, we use the liquid crystal
E209, which offers a much wider range in temperature

FIG. 4. (a) Observation setup for samples in cylindrical and
spherical geometries: Ar, Argon laser; k/2, half wave plate;
GP, Gian polarizer; 1., converging lens; S, sample (either a
spherical drop inside a cuvette or a tube); COND, microscope
condenser; P, sheet polarizer; A, analyzer; I', red color filter
(used when looking at the director orientation); OBJ, micro-
scope objective; M, mirror. (b) Details of the tube setup: The
outside cylindrical tube is 1 cm in diameter and serves to cool
the capillary C via Aowing nitrogen gas; H are the supports for
the capillary. The nematic sample X is aligned parallel to the
capillary walls, forming a meniscus at the interface.
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indicating that it is not the correct control parameter.
As in Sec. II (see the definition of R), the length of the ac-
tive nematic region d has to be included.

A measurement of the exponential decrease of 1/f as a
function of time, when rapidly switching the intensity
down, allows the determination of the director diffusion
coeKcient which is reported in the table [I/f is propor-
tional to n2(I Is„—), i.e., the square of the director defor-
mation angle]. Taking the tube diameter as the typical
length, we extract the value for the director diffusion
coefficient y*, as described in the Appendix. This value,
reported in the table, is much higher than in the Aat sam-
ple, because of the bigger elastic constraints in the cylin-
drical geometry.

If the low-intensity behavior is identical to the case of
plane samples, the specific cylindrical geometry of the
system affects self-focusing in an important way, as dis-
cussed in the next section.

40
IV. STRONG SELF-FOCUSING
IN CYLINDRICAL GEOMETRY
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We now explore the strong intensity regime in the cy-
lindrical geometry. By increasing the input intensity we
encounter first a local saturation of the focusing effect,
then an undulation of the beam and the breaking of it
into filaments. The experimental setup is the same as de-
scribed in the previous section.

0
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FIG. 6. Focal power for a tube of E209 vs intensity, for two
diferent initial diverging angles of the laser beam. The beam at
minimum intensity is more diverging in (a) than in (b). 1/f is
known up to an additive constant 1/fo. The lines are best fits
for the data: linear fit in (a), and exponential fit in (b).

A. Saturation

The focal point recedes towards the meniscus when the
input intensity increases, as explained before. This is
shown in Figs. 7(a) and 7(b), the intensity ranging from
1.35 kW/cm to 1.57 kW/cm . It then reaches a stable
position close to the meniscus ( —150 pm), and does not
move any more when the intensity is further increased, as
shown in Figs. 7(c) to 7(f). We refer to this behavior as a
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FIG 7 Onset of beam undu
lation in a tube of E209; the
beam is coming from the left.
The white line in Fig. 5(a)
represents the air —nematic-
phase meniscus, at the same po-
sition for the following pictures.
The tube diameter is 1.5 mm.
The experiment is performed at
room temperature, with a Aow

of Nitrogene around the capil-
lary. The beam intensities are,
respectively, (a) 1.35, (b) 1.57, (c)
1.78, (d) 1.87, (e) 1.98, and (f) 2.4,
in kW/cm .
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local saturation of self-focusing. It is only local because
the focusing is still globally evolving in space: Figs. 7(d)
to 7(f) show a beam undulation growing far from the
meniscus. This undulation is the subject of the next para-
graph. We also observe this local saturation in a spheri-
cal geometry, but not in a planar one; it is geometry
dependent. Saturation occurs when the director keeps an
almost fixed orientation, either because it is already
parallel to the electric field, or because the elastic force is
too important. We do not observe any saturation of the
focusing power in plane samples because the weaker
transverse elastic constraints in this case bring the obser-
vation window for local saturation out of our intensity
range.

B. Undulation

n
I

I

] I

I

I

(

(b)

(c) n
I)

e

Increasing the intensity above the saturation point
leads to a dramatic change in the shape of the beam: it
develops a transverse oscillatory mode, the characteristic
length of which decreases with intensity. We see in Fig.
7(d) such an undulation at an intensity of 1.87 kW/cm .
Figures 7(e) and 7(f) show the decrease of the longitudinal
wavelength of the undulation with intensity: compare
Fig. 7(d) (I= l. 87 kW/cm ), where one observes only one
undulation, to Fig. 7(f) (I=2.4 kW/cm ), where three
wavelengths are visible. The largest length scale observed
was of the order of the tube diameter.

We now present a simple physical model to explain this
beam undulation. In the experiment, the liquid crystal is
a uniaxial birefringing medium; its optical axis is the
director n. Let us first reca11 the usual properties of uni-
axial crystals [21]. Figure 8(a) shows a cross section of

the so-called ellipsoid of wave normals, whose axis of ro-
tation is the director n. If k is the wave vector, the inter-
section of the plane perpendicular to k with this ellipsoid
is an ellipse. The main principal axis is shown in Figs.
8(a) to 8(c) (dashed line). Its length is the optical index
seen by the extraordinary ray. Only the extraordinary
ray responds to a rotation of the optical axis with respect
to k. The ordinary ray, associated with the other princi-
pal axis (pointing out of the page), keeps a fixed direction
inside the medium, and does not exhibit any focusing,
bending, or splitting. The directions of the electric field
E and Poynting vector s are constructed in the usual way.
At the point where the principal semiaxis intersects the
ellipsoid, E is always perpendicular and s tangent to the
ellipsoid.

Let us now follow the beam inside the nematic. At the
air —nematic-phase interface, the orientations of the vec-
tor fields are shown in Fig. 8(a). The wave vector k is
aligned with s and n, and E is perpendicular to k. The
light is still a transverse wave.

Inside the medium, as n tends to align along the direc-
tion of E, the ellipsoid rotates, either up or down. Let us
suppose a positive angle of rotation 0. From Snell's law,
k is fixed in space and perpendicular to the air —nematic-
phase interface, which we suppose vertical. The direction
of s and E will then change according to the rotation of
the ellipsoid [Fig. 8(b)]. Since energy is transported along
s, the beam will bend in the s direction, and moves up
away from the center of the sample.

When the beam is away from the center, the vector
fields are as shown in Fig. 8(c). Because of the boundary
conditions which fix the director at the surface, the effect
of the beam on the nematic phase gets smaller as one ap-
proaches the boundaries. The first effect is that 0 is
smaller than in Fig. 8(b). The second eff'ect is that there
is now a transverse gradient of optical index, pointing to-
wards the center of the tube, because of the asymmetry in
the elastic restoring torque at the beam position: the far-
ther away from the boundary, the weaker the restoring
torque, the bigger the angle 0 for a same beam intensity,
the bigger the refractive index n, . As k is bent towards
the region of high optical index [down in Fig. 8(c)], s fol-
lows it. The beam is attracted back to the center.

In conclusion, s is first deQected away by the director
reorientation and then pulled back by the index gradient
imposed by the boundary conditions on the nematic
phase. We experimentally verified that the undulation
occurs in the plane defined by E and n, in agreement with
the above simple picture. Even though the undulation re-
sults from a nonlocal, nonlinear interaction, the above
heuristic picture captures the main physical mechanism,
related to strong boundary effects.

C. Beam filamentation

FIG. 8. Cross section of the ellipsoid of wave normals and
the vector fields inside a tube of nematic liquid crystal. n is the
director, k is the wave vector, E is the electric field, s is the
Poynting vector, and 0 is the deformation angle. The beam is
(a) at the air-nematic-phase interface, (b) at the center of the
sample, and (c) away from the center.

For larger intensities (I-2 kW/cm ), the beam devel-
ops an inner transverse structure composed of two dis-
tinct filaments undulating in phase opposition. Figures
10(a) to 10(d) show this effect for intensities ranging from
3 kW/cm to 5 kW/cm .

We measure the distance between the crossing points
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of the two filaments [Fig. 9(a)] and the maximum trans-
verse separation between them [Fig. 9(b)] as a function of
intensity. The first distance is characteristic of the longi-
tudinal undulation of the beam, the second one of its
transverse structure. As is shown in Figs. 9(a) and 9(b),
both of these distances increase similarly with intensity.
This is also seen in Figs. 10(a) to 10(d). The two orthogo-
nal structures are connected. A striking point is the in-
crease of the longitudinal beam undulation, as opposed to
a decrease at lower intensity. This means that the spatial
period of the beam undulation first decreases with inten-
sity, reaches a minimum, then increases.

This surprising behavior is easily recovered in the
heuristic picture described in the previous paragraph. As
the intensity is increased close above the Freedericksz
threshold, the director reorientation brings the straight
beam to undulate: the undulation wavelength decreases
from infinity to a finite value. On the other hand, when
the intensity is so high as to rotate the director by m. /2 in
Fig. 8(b), the ellipsoid construction indicates that the ex-
traordinary beam propagates straight parallel to the
beam axis (infinite undulation wavelength). A turn-
around has then to take place between the two asymptot-
ic regimes. A detailed mathematical analysis is con-
sistent with this physical intuition [12].

The last two pictures [Figs. 10(e) and 10(f)] are taken at
high intensity, 24 kW/cm and 36 kW/cm, respectively.
The beam undulation is still observed. However, the two
filaments are now oscillating in parallel around the beam
axis [Fig. 10(e)]. At intensities higher than in Fig. 10(f),
the beam exhibits a random dynamic behavior. We have
thus reached the limit of steady self-focusing in nematic
liquid crystals.

FICx. 9. In a tube of E209 (see Fig. 10), (a) the longitudinal
distance between the crossing points of the two filaments vs the
beam intensity, and (b) the transverse distance between the two
filaments vs the beam intensity.

D. Multiple focal points

Another set of observations was performed at a lower
temperature ( —2'C). Again the beam developed an in-

FIG. 10. High-intensity beam
undulation in a tube of E209; the
beam is coming from the left.
The white line in Fig. 5(a)
represents the air —nematic-
phase meniscus, at the same po-
sition for the following pictures.
The tube diameter is 1.5 mm.
The experiment is performed at
room temperature, with a How

of Nitrogene around the capil-
lary. The beam intensities are,
respectively, (a) 3, (b) 3.36, (c)
3.6, (d) 4.9, (e) 24, and (f) 36, in
kW/cm2.
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FIG. 11. Multiple focal points in a tube of E209; the beam is
coming from the left. The temperature is -2'C. The white line
in Fig. 5(a) represents the air —nematic-phase meniscus, at the
same position for the following pictures. The tube diameter is
1.5 mm. The beam intensities are, respectively, (a) 21, (b) 24, (c)
26, and (d) 31, in kW/cm .

teresting structure which at first glance was different
from the ones described before. As before, a focal point
recedes towards the entrance meniscus until local satura-
tion is achieved. In this case, however, we observe (far
from the meniscus) the appearance of a secondary focal
point along the tube axis, as shown in Fig. 11(a). The ar-
row indicates the position of the focal point. It also re-
cedes in turn, towards the first one as the intensity is in-
creased [Figs. 11(a) to 11(d)]. In Fig. 11(d), a third focal
point appears at the extreme right of the picture. Each of
the secondary focal points recedes backwards and en-
counters a local saturation which causes it to stop at a
fixed distance from the previous one. This saturation dis-
tance is found to be of the order of the oscillatory length
scale previously described. One can see in Fig. 11(c) a
small beam undulation close to the meniscus. These focal
points could be what we previously described as crossing
points, the optical resolution being too low to distinguish
the filaments. Going to even lower temperatures did not
bring any new observation.

nematic liquid crystal in a transparent gel (agarose). The
gel structure compensates for the buoyancy force on the
lighter liquid crystal and holds the drop in place. The
strong surface tension ensures the spherical shape of the
drop. While in the liquid phase, the gel is put into an op-
tically Aat glass cuvette. Drops of liquid crystal in the
isotropic phase are then injected into the hot gel. We
dope the gel with polyethylene glycol to induce a director
tangent to the gel —nematic-phase interface. Upon cool-
ing, two antipodal point defects called boojums [22,23]
appear at the gel —nematic-phase interface and give a
directionality to the drop. A typical drop is shown under
crosspolarized illumination in Fig. 12. The visible boojum
at the top of the drop is the point of convergence of the
dark lines. The antipodal one is not in focus and hence
does not appear in the picture.

The experimental setup is the same as in Fig. 4. The
linearly polarized argon beam is aligned perpendicular to
the line connecting the boojums, with its polarization
perpendicular to it. The beam is focused from the side
onto a drop of nematic liquid crystal, which sits inside a
cuvette on an inverted microscope. We can either 1ook at
the scattered light of the beam or, placing a filter between
the sample and the microscope objective, look at the drop
using the microscope crosspolarized illumination. The
laser beam spot size, at the entrance of the drop, is much
smaller than the drop diameter d, and so experiences only
a uniform orientation of the director. The gel —nematic-
phase interface acts as the strongest converging lens in
our system. The 50-mm lens before the sample is used to
adjust the beam size, and thus the input intensity at the
entrance to the drop.

At low intensity, a focal point appears inside the drop
and moves backwards, until it reaches a stable position
close to the entrance meniscus, as in the cylindrical case.
Switching back the intensity to its minimum value, we
record the exponential decay of the distance from the en-

V. SELF-FOCUSING IN SPHERICAL GEOMETRY

We describe in this section an observation of the beam
in a spherical geometry. We suspend spherical drops of

FIG. 12. Drop of 6CB (diameter —1450 pm) under crosspo-
larized illumination. Note the point defect at the top of the
drop and the other one antipodal to it.
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FIG. 13. Drop of E209, of diameter 2.8 mm. The two boo-
jums are, respectively, at the top and bottom of the drop. The
beam is coming from the left. The input intensity is —5

kW/cm .

trance meniscus to the focal point with time. The
characteristic director relaxation time ~d is measured to
be 95s for 6CB. The corresponding value of y* is 10
cm /s, taking the diameter of the drop as a typical
length. It is five times bigger than the value we found in
planar samples because of the bigger elastic constraints in
the spherical geometry.

At high intensity, we recover qualitatively the same
phenomena reported in the previous section. Figure 13
shows a drop of E209, of diameter d -2.8 mm, at an in-
put intensity of 5 kW/cm . The two antipodal point de-
fects are, respectively, at the top and bottom of the drop.
The beam, coming from the left, splits into two com-
ponents: the ordinary one that propag ates straight,
unaffected by the director orientation, and the extraordi-
nary one, that exhibits undulation and filamentation. Up
to four oscillations are observed in the figure. We thus
believe that the simple picture using the ellipsoid of wave
normals is appropriate to describe qualitatively the evolu-
tion of the beam inside the liquid crystal, and that the
phenomena encountered (undulation, filamentation) are
robust to the specific boundary conditions, as long as the
director reorientation is constrained in the beam trans-
verse direction.

VI. CONCLUSION

We have presented a detailed study of strong self-
focusing of a laser beam in nematic liquid crystals in vari-
ous geometries. Motivated by the sharp increase of the
focal power as a function of the input intensity in planar
geometry, and by the observed filamentation, we have
visualized the phenomenon in a semi-infinite cylindrical
configuration. The ability to evacuate the heat out, and
the use of a liquid crystal with a wide temperature range
for the nematic phase, enabled us to reach the limit of
steady self-focusing in nematic liquid crystal.

If for thin samples in planar geometry only the phase
of the wave front is modified as the beam crosses the
liquid crystal, we clearly need to resort to a more
el~borate nonlinear model, coupling the phase and the

amplitude of the light field to explain the exponential in-
crease observed for thicker samples. The fact that this
exponential increase appears also in long cylinders indi-
cates that it is not sensitive to the exact geometry and
boundary conditions of the system. It is certainly not due
to heating effects (which reduce the nonlinearity
[9,24—26] and are unimportant in the tube). We showed
that the two distinct focusing behaviors for thin and
thick samples can be encompassed in the same curve, but
have not found a universal scaling for self-focusing in
nematic liquid crystals.

In semi-infinite samples, in a cylindrical and spherical
geometry, we observe a beam undulation and a filamenta-
ry structure. We report in cylindrical and spherical
geometries the existence of a local saturation for the
focusing of the beam. Using such a saturation effect, the
existence of multiple focal points [27] has been predicted
for self-focusing in an isotropic medium. Furthermore, a
standard analysis within the framework of the nonlinear
Schrodinger equation (NLS) also predicts a breaking of
the beam into filaments [28—33].

We do in fact observe multiple focal points and a
breaking of the beam into filaments. However, we do not
thi~k that these models apply to our experiment and we
would like to emphasize, once again, the unusual optical
effects of nematic liquid crystals.

As a matter of fact, the treatment of self-focusing
within the NLS framework leads to the conservation of
the beam momentum [31—35], which is not consistent
with our observation of an undulation in the cylindrical
geometry. However, a full treatment of the nematic-light
interaction leads to a nonlocal partial differential equa-
tion, the analysis of which shows the possibility of
momentum transfer between the beam and the liquid
crystal, and the existence of an oscillatory solution. Note
that, in this analysis, this undulation is due to the ex-
istence of uniform boundary conditions at a finite dis-
tance of the beam, and the model does not require any
saturation of the focusing. The physical model we gave
in Sec. IV captures both the birefringing effect and this
boundary condition's restoring effect. It explains the
beam undulation and describes qualitatively the depen-
dence of the spatial undulation wavelength as a function
of the input beam intensity. More important, the
mathematical model clearly shows the separation of the
focusing into two distinct problems: the outer one for the
beam undulation, and the inner one for the beam struc-
ture. All these predictions are consistent with our obser-
vations. Details of this analysis are given elsewhere [12].
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APPENDIX

We present in this appendix measurements of the ma-
terial parameters near the onset of the Freedericksz tran-
sition in a planar geometry. We use the 100-pm plane
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r;=(d/m) (y") 'I„,/(I I„,), — (A 1)

where I is the pump intensity, d is the thickness of the
sample, y'=K/y is the director diffusion coefficient, IC
is the elastic constant, and y is the viscosity coe%cient
for the director. From a linear fit of the values of (I/r;)
versus the pump intensity, we deduce I„,and y*. These
values are reported in the table. Note that the reported

samples, with the setup described in Fig. l.
Any deformation of the nematic director inside the

sample will affect the polarization of the transmitted
probe beam. We measure this change in polarization us-
ing an analyzer, crossed with the initial polarization of
the probe beam [36].

We first measure the threshold intensity I„,of the
Freedericksz transition, the onset of which is character-
ized by the divergence of the transition time scale. The
experimental procedure is the following. We quickly in-
crease the pump intensity from zero to a value well above
threshold. The exponential increase in time of the
transmitted probe intensity is recorded with a charge-
coupled-device camera, defining a characteristic time for
the director deformation ~; as a function of the final

pump intensity. Since the transmitted intensity is pro-
portional to the square of the deforination angle (the or-
der parameter of the transition) [34], the actual deforma-
tion time is twice the measured one. It can be written as
[37]

values of y* are in good agreement with the ones estimat-
ed from the values of K and y given in the table
(y' =&/y ).

We also measure the characteristic director relaxation
time. Switching off the beam intensity from a given value
above threshold, we record the exponential decrease with
time of the transmitted probe intensity and measure the
characteristic relaxation time ~&. It can be written as
[37] r& =(d/tr) (y*) '. The values of y' estimated from
these measurements are found to be in good agreement
with the ones obtained from Eq. (Al).

We can also associate a characteristic length to the
transition. The Freedericksz coherence length for the
director deformation g is similar to the one defined for a
uniform dc field [16]:

g =(I(. /he)(c/n, )I (A2)

where he is the (optical) dielectric anisotropy, c is the
speed of light, and n, is the ordinary optical index. From
known values of the parameters K and Ae, we can esti-
mate g. We find for 6CB and MBBA, g-25 pm(I)
and for E209, g-40 pm(I) '~, where I is in kW/cm .
From these values, the onset of the Freedericksz transi-
tion is estimated assuming a sinusoidal mode near onset:
g- (d /m. ). Using the material parameters, we getI„,-0.7 kW/cm for 6CB and MBBA and I„,-2
kW/cm for E209, in reasonable agreement with the
values reported in the table.

Also at NEC Research Institute, 4 Independence Way,
Princeton, NJ 08540.
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