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Soliton trapping and daughter waves in the Manakov model
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We show that the phenomena of soliton trapping and daughter wave ("shadow") formation in optical
fibers are already contained in the Manakov model [Sov. Phys. JETP 38, 248 {1974)].
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I. INTRODUCTION

The effect of birefringence on soliton propagation in
single-mode optical fibers [1,2] was first considered we be-
lieve by Menyuk [3]. This effect is an important con-
sideration for soliton propagation because of the poten-
tial possibility of a single injected soliton being split into
two separating solitons of different polarizations. Single-
mode optical fibers are not really single-mode type since
there exist two possible polarizations. Thus it is possible
to have two modes simultaneously present, each with a
different polarization. If each of these modes did propa-
gate at the same group velocity, there would be no prob-
lem. However, optical fibers are birefringent. This
means that different polarizations can have different
group velocities. Thus a pulse injected into one end of an
optical fiber will in general be bimodal, with each
separate polarization component propagating at a slight-
ly different velocity, eventually resulting in the separation
of the two different polarizations. However, the Kerr
nonlinearity can act against this tendency of bimodal
pulses to split. Numerical studies by Menyuk [3] showed
that there are threshold amplitudes, above which the bi-
modal soliton would not split (the unsplit two-component
soliton is frequently called a vector soliton). This
phenomenon of bimodal solitons being forced to propa-
gate together in a birefringent materials has been termed
"soliton trapping. " Theoretical studies of soliton trap-
ping have been done by Ueda and Kath [4] where they
used a variational principle to study the interacting
modes, while Kivshar [5] has studied the phenomenon
from the point of view of the interaction energy between
the trapped solitons. All these studies confirm that soli-
ton trapping does occur and they also give threshold
values for trapping to occur.

Another phenomenon observed in numerical studies is
the formation of "shadows" [6] which are small daughter
pulses that split off from a soliton and propagate along
beside it in the other mode. This effect has been studied
in some detail numerically [4]. An analytical approach
based on the perturbation theory has been developed re-
cently in Ref. [9].

What we will show here is that, to a certain extent,

both the birefringence-induced splitting of an initial vec-
tor pulse and the formation of the "shadows" are already
contained in the well-known integrable model proposed
by Manakov [7] in 1973. Due to the vector nature of the
electric field, the cross-coupling coefficient for linearly
polarized pulses in optical fibers is —, whereas in the
Manakov model it is unity. Thus the Manakov model
has one coefficient off by 30% and slightly overestimates
the strength of the cross coupling. However, we argue
that even so, in any reasonable sense, the Manakov model
is still "close" to the actual physical model for linearly
polarized pulses and a study of the Manakov model
would at least give a qualitative understanding of what is
happening, and perhaps even quantitatively also. In fact
we find a wealth of information in the Manakov model.
We can delineate threshold regimes for decay, soliton
trapping, soliton splitting, and even soliton-shadow for-
mation. While the quantitative values could be ques-
tioned because of the unity value of the cross coupling,
nevertheless the qualitative regimes that we find do agree
with what is observed numerically. Of course, as shown
by Menyuk [6], the cross-coupling coefficient is quite sen-
sitive to the modal nature of the birefringence. If the
birefringence is elliptical (8=35 ), then the cross-
coupling coefficient would be exactly unity with our re-
sults here being essentially quantitatively correct as well
(except for the profile shape).

So, the Manakov model does prove to be quite useful in
giving, at least, a qualitative understanding of all these
phenomena. To achieve a better quantitative description
of the linearly polarized birefringence, one could take ad-
vantage of the fact that the above-mentioned value of the
cross-coupling coefficient, —', , is rather close to Manakov's
value of 1. Then, one could develop a variant of the per-
turbation theory using Manakov's model as the zeroth-
order approximation. This approach, developed in Refs.
[9—11], seems to be promising. However, the idea that
we pursue in this present work is very simple. The main
point is to solve the so-called direct scattering problem
for an initial profile of the vector pulse in the Manakov
system. Actually, we do this for the box-shaped initial
pulse, which is easiest to solve (but which, nevertheless,
yields quite nontrivial results). The eigenvalues and the
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associated normalization coefficients that characterize the
discrete components of the spectrum generated by the
solution of the direct scattering problem contain full in-
formation about the soliton content of the initial pulse.

II. THK INITIAL-VALUE PROBLEM

The governing equations for bimodal propagation in a
birefringent optical fiber are

where g is the spectral parameter. Since (3), for e= 1, is
the integrability condition for a common solution of (4)
and (5) to exist, then we may solve (3) by solving (4) and
(5) instead. To do this, we determine the scattering data
of (4) and determine its x evolution with (5). One may
define the scattering data from the scattering coefficients.
These are defined as follows [7]. First assume that q, and

q2 are integrable with respect to t. Let @(g,x) be the
solution matrix for (4) subject to the boundary condition

i(i3~u +58,u )+—,'B,u +(u *u +au *u)u =0,
i(B„U—58;v )+ —,'B,u+ (u u+au 'u )v =0,

(la)

(lb)
@(g,x ~—~ )=

—i' 0 0
0 e'~" 0

0 el'
where u and U are the normalized envelopes of the two
modes, t and x are the normalized time and distance
along the fiber, e is the cross-coupling coefficient (which
is unity in the Manakov model and —, in a linear
birefringent optical fiber), and 5 is one-half of the velocity
splitting due to birefringence. By the simple phase trans-
formation [4]

—i' p p

@(g,x)~ 0
0

p

0 &gX

Then as x ~+ ~, we will have

(7)

$2
u =q&exp i x —i5t

$2
U =q2exp i x+i5t

(2a)
where T indicates the matrix transpose and S is the 3 X 3
matrix of scattering coefficients a, . where

S=[a,, ] .

One can show [7] that the matrix S is unitary for real g,

one can transform away the birefringence in (1), giving
STS=I . (9)

ld q, + —,'B,q, +(qiqi+eqzq2)q, =0,
q 2 ~ q 2 + ( q 2 q 2 +~q 1 q l )'q 2

(3a)

(3b) B,S=g [J,S], (10)

From (5), it follows [7] that the x evolution of S is given
by

Ui(+lgvi =qiup+q2U3

CU2 =

u, igu = ——q*v, ,

(4a)

(4b)

(4c)

However, the effects of the birefringence have not been
eliminated but have simply been transferred to the initial
data. If at x =0, u(t, x =0) and u(t, x =0) are propor-
tional, then by (2), q, (t, x =0) and q2(t, x =0) will be pro-
portional only in their amplitudes, with each having an
oppositely directed phase. Thus the effect of the
birefringence can be transferred to the phasing of the ini-
tial data.

When the cross-coupling coefficient e is unity, (3) is in-
tegrable [7] and can be solved by an inverse scattering
transform (IST). The necessary Lax pair [7] is

where J is the diagonal matrix

The scattering data for inversion about + ~ consists of
the continuous spectra [p, (g) =a,z(g)/a»(g) and
pz(g)=a»(g)/a»(g) for g real] and a bound-state spec-
trum. The latter consists of the zeros of a»(g) for g in
the upper half complex plane and a set of normalization
coefficients (C„Cz) for each bound state. Let N be the
total number of bound states and g„(n =1,2, . . . , N) be
the zeros of a» (g) in the upper half plane. Then the nor-
malization coefficients (the residues of the p's) are

(1 la)

and

iB„U,= [g —
—,'(q*, q, +q2qz)]u, + [iraq,

—
—,'B,q, ]uz

ai3(g„)
C2n

a ii(g„)
(1 lb)

+ [Cq~ —
—,'~iq~]v» (5a)

where a'» is the derivative of a»(g) with respect to g.
From (10) it follows that for real g

iB„U2=[ iraq*,
—

—,'B,q*, ]ui+—[ —g + —,'q*, q, ]v2

+ —,'q *, q2U3,

i& U3=[ —gq2 —
—,'~, q2 ]ui+-,'qiqfu2

+[—
g +—,'q2q2]v3,

(5b)

(Sc)

l) a„(g)=0,
pi 2lg pi

~.p2=2l &'p~

and for the bound-state parameters

(12a)

(12b)

(12c)
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a,g„=o,
B„C,„=2ig„C,„,
B„C~„=2'gC2„.

(12d)

(12e)

(12f)

0
e

F3(g)= 0 + g
n=1

—2i g*t

Fi(g„*), (16c)

The solution of the initial value problem consists of
simply solving (4) for the scattering data at x =0 by using
the initial profiles for qi and q2. Then by (12) one can
determine the scattering data at any later position. Now
one uses the inverse scattering equations to reconstruct
qI and q2 at any later x. The inverse scattering equat1ons
are [7]

1

f 0' e2ig't

0
2~i c g' —g

X [pi(g')F2(g')+p~(g')Fq(g') ],

which are a set of linear nonhomogeneous algebraic equa-
tions.

The only solutions of (16) that will be of interest to us
are the one- and two-soliton solutions. For the one-
soliton solution, (12), (15), and (16}give

2q, eiexp[2i[(g+gi)x —g, (t —to+2/, x )]]
cosh[2q, (t —to+2/, x ) ]

(17a)

2g, e2exp [ 2i [(pi+ rI, )x g i( t—to+2/, x—) ] ]

cosh [2rt, ( t —to+ 2g, x ) ]

(17b)

0
F,(g)= 1 + .f, e "~'p*, (g')F (g'),

0
(13b)

w~ere

0i =fi+t rji
2g I fo 2l' g'I (0

2l &IE& e ' 'e
2g I to 2l'gl to

C2 = —2igle2 e ' 'e

(18)

(19a)

(19b)
0

F3(g)= 0 + .f, e '~'p2(g')Fi(g'),

.1. 2mi c g' —g
(13c)

where C is the contour in the complex plane above all
zeros of a» (g) [the poles of p, (g) and p2(g)] while C is
its mirror image in the lower half complex plane. Lastly,
one can recover q, and q2 from the following asymptotic
limit for large g:

1
(o,a,P)Filg = (aq*, +Pq,*)

2i g

for any values of a and P, or

(1,0,0)Fz lg
= . q, ,

1

2l

(1,0, 0)F3lg „= . q2 .1

2ig

(14)

(15a)

(15b)

0 —2Eg„'~

F2(g)= 1 + g "F,(g„*),
() n i 0n

—0

(16a)

(16b)

Of the above parts, we are only interested in the bound-
state part (the discrete component of the spectrum) which
determines the soliton content of the solution. The con-
tinuous spectrum will always dispersively decay and is of
no interest since after any reasonably short distance it
will be gone. %'hat will be left will be only the solitons.
In this case only the poles contribute to (13), which
reduces to

r

2ig

F, (g)= 0 —g [C,„F2(g„)+C2„F3(g„)],

eI e, +eZe2=1 . (20)

III. RESULTS FOR BOX PROFILES

The easiest case to analyze would be for initial boxlike
profiles where q I and q2 are zero for t )0 or t ) 1 and in
between

geikt

g
—ikt

(21a)

(21b)

where Q and k are constants. Menyuk [3] and others
[4,5] have used the typical sech( t } shape. Our
justification for the boxlike profile is that (4) can be re-
duced to the constant coefFicient case, allowing an alge-
braic solution which can be rapidly numerically calculat-
ed. Also, for areas larger than n/2, the radiation com-
ponent of the box profile is relatively small and the eigen-
value spectrum is not too different from that of other
profiles [8].

Taking (21) to be the initial profiles, we fix Q and k,
then choose a value for g. From the algebraic solution,

One notes that the real part of the eigenvalue gives us
the soliton velocity while the imaginary part gives the
amplitude and width. The ratio of C, /C2 gives the rela-
tive sizes of the two modes while the total amplitude,
CI C, +C2 C2, gives the central position.

The two-soliton solution is more complex, but when
the two solitons have a relative separation larger than
their combined widths, the solution approaches a sum of
the one-soliton solutions. For the leading soliton, the
values of to, e„and e2 will be correct but for the lagging
soliton, there will be a shift in to as well as a rotation of
the polarization (e„e2). These corrections would be
necessary for any quantitative comparisons.
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FIG. 1. Plots of the imaginary part of the bound-state eigen-
values q vs the birefringence factor k for various initial pulse
areas from 1.5 to 3.3. The dots are the numerical values ob-
tained.

we calculate the general matrix S as given in (7). We first
calculate the phase of a» along the real g axis to deter-
mine the number of bound states. Then we calculate
a»(g) on a course grid in the upper half complex g plane
to localize the approximate position of each zero. Then a
Newton method is used to converge onto the exact loca-
tion of the zero, at which the values of C, and C2 are cal-
culated. Then we repeat the above procedures for other
values of Q and k. The results for the bound-state eigen-
values are shown in Figs. 1 and 2. In Fig. 1 we plot the
imaginary parts, g„, versus the birefringence factor k for
various areas (simply Q). For the initial profiles (21), we
have an initial pulse polarized at 45. Along with the
direction of polarization, the pulse has an amplitude of
&2Q and an area of the same amount (for k =0). Now
the critical area when k =0 for soliton formation is ~/2,
so the first soliton will appear when Q=a/2 ~ =1.11.
However, this soliton would have a zero amplitude. So
we choose Q=1.5 as our first curve. One observes that
for this value of Q we obtain a rather small value for
g&=0. 81, which soon drops to even smaller values as k
increases, vanishing at k=2. 1, with no other solitons
possible for larger values of k.

There is another critical area that one has to keep in
mind and that is if Q & m. /2=1. 57, then it is possible to
have separating solitons, one in each mode. That does
not happen for Q=1.5 because we are just below the
threshold for the generation of individual separating soli-
tons in each mode. However, for Q =1.8, we are above
that threshold. At k =0, we have only one mixed-mode
soliton with pi=1. 38 (the threshold for two solitons at
k =0 is &2Q =3m/2 or Q=3.33). As k increases, this

gI decreases until it vanishes between k=2.4 and 2.5.
Between k =2.5 and 2.8, there are no solitons produced,
but above k =2.8 we have two separating solitons. What
has happened here is that the initial relative velocity be-
tween the two modes is now sufIIcient for each mode to
rapidly pass through the other, thereby quickly separat-
ing and since each mode has a sufficient area (Q & vr/2), a
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FIG. 2. Plots of the real part of the bound-state eigenvalues
vs the birefringence factor k for initial pulse areas of 1.8 and
3.3. The curves for other areas basically lie between these two
curves.

single soliton is generated for each mode. From Fig. 2,
one can see that the relative velocity of separation quick-
ly becomes proportional to k. Above Q=1.8, for any k
there is always at least one soliton produced. For
Q=2.0, between k =0 and approximately 2.6, there is
only one mixed-mode (trapped) soliton produced. At ap-
proximately k =2.6, there is a bifurcation where another
zero of a&& rapidly rises up from below the real axis and
joins the other zero which is falling down. Then they
split into two separating single-mode (escaping) solitons.
This second zero which rises up from below cannot be
seen at Q =2.0 or 2.2 because of the extremely small
range of k in which it exists. However, for Q=2. 8 or
3.3, it is more easily seen since it then exists over a much
wider range of k. This second mixed-mode soliton will

appear as a "shadow" of the main (larger) soliton since it
also has a purely imaginary eigenvalue, therefore moving
parallel with the main soliton. As we shall see later, it
also lags behind the main soliton. One observes that for
Q =3.3 this shadow soliton is almost ready to appear at
k =0. This is because the k =0 threshold for two
mixed-mode solitons is +2Q =3'/2, or Q =3.33 as men-
tioned earlier. Above this value of Q, we are in the range
where multiple soliton production would occur. Since
multiple solitons are not desirable in optical communica-
tion, we have stopped at Q =3.3.

From these data we can construct Fig. 3, which shows
the regions for soliton trapping, escaping, decaying, and
shadow formation. If no solitons are produced, we have
only decaying continuous spectra (radiation) which are
the lower part of Fig. 3. Above this and to the left is the
region of soliton trapping. Here one will at erst only ob-
tain a single mixed-mode soliton, but when Q becomes
larger than about 2.5 or so, one will also obtain a second
mixed-mode shadow soliton. To the right is the region
where solitons will not be trapped. Rather they will es-
cape and separate into two single-mode solitons. One
should note the general shape of the trapping region. It
is bounded from below by the threshold for mixed-mode
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FICx. 3. Plot of the regions for soliton trapping, shadow pro-
duction, escaping solitons, and the region where only decaying
radiation is produced. The two points labeled M are the data
points obtained by Menyuk [3] in his numerical studies. The
vertical axis is the initial area and the horizontal axis is the
birefringence factor k.

C1 C&+C2C2
to = ln

4g) 4g)
(22)

Clearly, if g, is small and in particular as g&
—+0, we see

that to will take on large and positive values. This means
that small-amplitude solitons will take long times to form
and will, in general, follow behind any larger solitons.
Thus the shadow solitons, usually in general of small am-
plitudes, will indeed follow behind the main soliton. For
example, when a soliton has an amplitude of less than —,'„
in general to will be of order 10 or more since C& and C2
are typically of order unity. This means that shadow soli-
tons will usually be several or many widths behind the
main soliton. This also creates difhculty in observing
such solitons in numerical calculations since a very long
grid would have to be used in order to allow them to have
time to form.

The polarization of the resulting unsplit vector solitons
was found, as one would expect for our symmetric initial
state, to always be at 45'. But the escaping solitons were
not the pure polarized (single-mode) solitons. For large
k, they do asymptotically approach pure single-mode sol-
itons but would typically have a few percent of the other
mode present. Near the bifurcation point, the mixture
could be much larger, but only very near this point.

Let us now compare these results with the numerical

soliton production and to the right by k =2.8. This sug-
gests that there is probably an upper limit to k for soliton
trapping of k =3.0. If the birefringence factor is larger
than this, one may never see soliton trapping.

We now make some comments on the relative positions
and polarizations of these solitons. The position of a soli-
ton is strongly affected by its height as one can see in (19).
In general, C, and C2 will always be some nonzero value.
Thus we have

observations of Menyuk [3]. There are four differences to
consider. First, there are the differences in the profile
shapes. He used q = 2 sech( r) which at k =0 has an area
of mA and an energy E=f "„q qdt of 2A . Our box
profile has an area of Q and an energy of Q . Since the
nonlinear Schrodinger equation (NLS) is scale invariant,
we can compare scale invariants. Two invariants are the
area and the ratio of the energy to the birefringence fac-
tor, E/k. Doing so, we can take his threshold values and
plot them in Fig. 3. These are the points labeled M in
Fig. 3. As one can see, they lie above our threshold
curve. The second difference is the mixed-mode coupling
constant, e in Eq. (3). He used —', and we used unity. This
means that the effective nonlinearity of the mixed mode
for e= —,

' is less than that for @=1. Thus if he had used
@=1 instead of e= —,', his threshold would have been
smaller by some factor. Simply scaling the nonlinearity
suggests that this factor would be &5/6, which would
reduce his values by only about 10%%uo. A third factor is
the ability to observe the actual threshold. At the thresh-
old, one only produces a zero-amplitude soliton. One
could not observe a zero-amplitude soliton numerically.
Furthermore, just above threshold, the soliton will have a
very low amplitude, and will take a very long time to
form. Thus it would be relatively indistinguishable from
the continuous spectra dispersing away. On the other
hand, our analytical results can pinpoint precisely when a
zero-amplitude soliton forms. Thus any numerically ob-
served threshold would always lie above the analytically
observed threshold. Fourth and last, we have used an in-
tegrable model whereas for e= —', the model is nonintegr-
able. In any nonintegrable theory, solitons (actually soli-
tary waves instead) can interact and can gain and lose en-
ergy in collisions with each other. In particular, during
formation as in an initial-value problem such as this, one
would expect that solitary wave formation would tend to
pump energy into the continuous spectra, particularly if
the initial modes were predominantly solitary waves, sim-
ply because there is a low intensity of continuous spectra
present for providing energy to the solitary waves. Thus
one would expect the threshold for a nonintegrable model
to be higher than that for a similar integrable model.

Nevertheless, even with these differences, we see that
the Manakov model can provide valuable insight into the
phenomena of soliton trapping, decaying, and escaping,
and it can help to delineate the regions of each. The
quantitative values might be off somewhat, but the quali-
tative picture does seem to be very good. Even for the
problem of the shadow formation, this exactly solvable
model yields useful results. However, it should be noted
that the latter problem can be formulated in its full form
only within the framework of nonintegrable models, since
there is a rigorous result that a collision of two solitons
with strictly orthogonal polarizations in the Manakov
system can never change their polarizations. At the same
time, the perturbation theory based on the Manakov sys-
tem was effectively applied in Ref. [9]just to the problem
of the collision-induced shape formation, and it seems
plausible that this version of the perturbation theory can
find more applications. This issue will be considered else-
where.
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