
PHYSICAL REVIEW A VOLUME 48, NUMBER 1 JULY 1993
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We study the phase dynamics of a single-mode ring laser described by the complex Maxwell-B1och
equations. We identify three reference-frame frequencies and determine the properties of the field dy-
namics observed in these frames. In one of these reference frames, the phase jumps are always equal to
m, irrespective of the detuning, while in another reference frame quasiperiodic field portraits reduce to
periodic field portraits. We also apply the recent theory of Ning and Haken [Phys. Rev. Lett. 68, 2109
(1992)] to prove that the laser phase can be decomposed into a geometrical component that is frame in-

variant and a dynamica1 component that is frame dependent.

PACS number{s): 42.55.—f

I. INTRODUCTION

The Lorenz equations [1] are one of the generic models
for the study of dynamical systems. As shown by Haken
[2], there is a complete equivalence between the Lorenz
equations and the Maxwell-Bloch equations that describe
a very simple model of a tuned laser. This analogy was
extended by Fowler et al. [3], who established the
equivalence between the detuned laser model and the
complex Lorenz equations. Interest in these equivalen-
cies was greatly piqued when Weiss et al. [4] showed ex-
perimentally that the simple laser model that is
equivalent to the Lorenz equations describes the complex
dynamics of some lasers. Until recently, single-mode
laser fields were characterized only by their amplitude or
photon average. Few papers mentioned the possibility of
a phase dynamics [5—7], and never included a systematic
study. This situation changed drastically when Weiss
et al. [8—10] started to analyze the complex field experi-
mentally. This led to the observation of either the real
and imaginary parts of the field, or its amplitude and
phase. These results were soon followed by a theoretical
analysis [11,12]. This analysis was generalized to cover
Doppler broadening [13], Raman lasers [14], and four-
level optically pumped lasers [15]. The bidirectional ring
laser was also analyzed experimentally and theoretically
along the same lines in the visible and infrared domains
[16—19]. The semiclassical phase concept was extended
to the laser below threshold in Ref. [20], and phase
diffusion was studied in chaotic lasers in Refs. [21] and
[22]. The phase evolution in intracavity two-photon pro-
cess was studied in Ref. [23]. A possible analogy with
Berry's geometrical phase [24] was suggested for single-

mode lasers [12,25] and for intracavity two-photon pro-
cesses [23]. This idea was amplified by Ning and Haken
[26,27], who recently proposed a generalization of the
Berry phase to dissipative systems [27].

As the single-mode laser phase was studied more atten-
tively, a problem arose, mainly in the theoretical litera-
ture. The Maxwell-Bloch equations are usually studied in
a rotating frame of reference. There is, however, a com-
plete arbitrariness in the choice of this reference frame
and its rotation frequency. In the two-level homogene-
ously broadened ring laser, we deal with three "natural"
frequencies: the empty-cavity frequency, the atomic fre-
quency, and the lasing frequency. Any of these three fre-
quencies could be chosen as a reference frequency. In
fact, any frequency can be used as a reference. The ques-
tion is, therefore, to determine which properties of the
laser phase are invariant with respect to a change of
reference frame, and which properties depend on the
reference frame. In the latter case, we should also know
what the frequency dependence is. These problems are
not mere theoretical considerations; they have their coun-
terpart in the experimental procedure used to study the
laser phase. Indeed, the frequency is determined by
heterodyning the laser output with some reference fre-
quency [8]. Here again, the heterodyne reference is arbi-
trary and thus the experimental result is also affected by
an arbitrary constant. The purpose of this paper is to
focus on the phase dynamics and its relation to the refer-
ence frequency. It is organized as follows. In Sec. II, we
formulate the problem and define our notation. In Sec.
III, we analyze and compare three rotating reference
frames. Finally, Sec. IV is devoted to a general discus-
sion of the phase dynamics.
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II. FORMUI. ATION

where E is the cavity electric field with decay rate ~; I'
and F are the atomic polarization and population inver-
sion with decay rates y~ and y~~, respectively. The detun-
ing parameters are defined through

5=(co, —co„)/~, &=(~,—~„)/yi, (2)

where co, is the atomic frequency, co, is the cavity fre-
quency nearest the atomic frequency, and co„is the fre-
quency of the reference frame. This frequency is funda-
mentally arbitrary, and we shall study the consequences
of this degeneracy on the solutions of Eq. (1). The "natu-
ral" choice for the reference-frame frequency is co„=Q,
where 0 is the field frequency under steady-state opera-
tion; it is the solution of 5= —A. This natural choice is
the only one for which Eqs. (1) have a steady solution.
For any other choice of the reference-frame frequency,
the simplest nontrivial solution of Eqs. (1) is of the form
E(t)= 6 exp( iy), w—here y(t) =(0 co„)t+y(0—). These
solutions correspond to a constant intensity I=8 . Thus
the reference-frame frequency appears as a fairly ir-
relevant quantity. This is true only for the steady-state
solutions. When the dynamical system undergoes bifur-
cations to time-periodic or to chaotic states, the intensity
is no longer constant and both phase and amplitude are
functions of time. In the time-periodic states only the
field intensity and the population inversion show a
periodic evolution; the other variables can be periodic
with the same or another period, or can be quasiperiodic.
Furthermore, since in these domains the steady state is
unstable, it is difficult (and often impossible) to determine
the frequency Q, experimentally. Although intrinsic
properties of the dynamical system should be indepen-
dent of the reference frame, we shall see that some refer-
ence frames reveal more properties than others, and that
a bad choice of the reference frame may lead to erroneous
conclusions.

It is common, in optics, to characterize optical fields by
their frequency and intensity (i.e., mean photon number).
For the monomode fields, which are the only ones we
consider in this paper, these two quantities are related to
the polar decomposition of the complex field into a real
amplitude 6 and a real phase y:

E(t)=6(r)exp[ iq&(t)] . —

The instantaneous frequency is, by definition, the time
derivative of the phase y. This transformation is singular
if the real amplitude 6'(t) vanishes or becomes arbitrarily
small. To appreciate fully the difficulty associated with

Our analysis is centered on the Maxwell-jBloch equa-
tions for a single-mode ring laser filled with a collection
of identical two-level atoms:

BE = —a[(1+i5)E+AP],
Bt

BI' = —pi[(1+id, )P+EF],
Bt

BI'
y„[ E+—1+ ,'(EP *—+PE*)

this singularity, let us consider the evolution of the field
E (t) in a typical situation of periodic motion, as shown in
Fig. 1. Inspection of Figs. 1(a) and 1(b) shows the coin-
cidence in time between the peaks in the frequency
jp=—By/Bt and the minima in the intensity I. As reso-
nance is approached (co, ~co, ), the intensity maintains a
well-behaved evolution (with its minima approaching
zero), while the peaks in &p diverge and the corresponding
frequency loses its meaning. This structure in Fig. 1(b) is,
in fact, an invariant since a change of the reference-frame
frequency co, will only shift the frequency jv by a constant
amount, leaving I(t) unmodified. Thus, the dynamical
frequency jv has little to do with our intuitive notion of
the field frequency. A more regular decomposition of the
field is expressed in terms of its Cartesian coordinates:

E(t)=Re[E(t)]+i Im[E(t)]—:%(t)+i 2(t) . (4)

The plot of E (t) in the (W, 2) plane is the field portrait
of E (t); an example is displayed in Fig. 1(c). It should be
stressed that it is precisely % and 2 that are first deter-
mined in the experiments of Weiss et al. [8—10]. The
phase y and frequency j are extracted from these func-
tions numerically. It was shown by Zeghlache et al. [11]
that, for any periodic solution of Eqs. (1), there exists a
reference-frame frequency such that the phase and the
field portrait are periodic and have the same periodicity
as all other dynamical variables. Vilaseca et al. [12] later
showed that there is a countable infinite set of reference-
frame frequencies verifying the same property for the
phase portrait and the other variables, but not for the
phase (special attention was paid to one of these reference
frequencies). These frequencies will be identified later in
this paper. In agreement with those results, Ning and
Haken [25] proved that, in the reference frame rotating
at the steady lasting frequency 0, the field portrait near
the onset of periodic motion is necessarily quasiperiodic.

III. REFERENCE FRAMES

where the subscripts 0 and co, denote the reference-frame
frequency utilized to compute the phase. Thus the com-
plex field E (t) is afFected by co„.A natural way to obtain
co„-independent information on the field evolution is by
using its normalized power spectrum S(co), defined
through

~
V(E*(t)exp(ice„t) ) ~

S(co):— (6)I ~
V(E*(t)exp(iso„t) ) ~

de
0

where V(E) is the Fourier transform of E. Clearly, S(co)
is an invariant since it is independent of the value as-
signed to the reference-frame frequency co„. It is worth
noting, however, that, when solving Eqs. (1) numerically,
S(co) is determined by assigning an arbitrary value to m„,
which must be 1arge enough to avoid overlapping be-

As can be easily deduced from Eqs. (1), the reference-
frame frequency influences the phase evolution y(t) in
any dynamic regime according to

Pn(t)+At =y (t)+co„t,
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FIG. 1. (a) Intensity vs time; (b) instantaneous frequency y vs time; (c) field portrait; and (d) phase y vs time. Parameters are

~/y&=2, y~~/y&=0. 25, co„=fL, 5„=(co,—cu, )/&~=0. 69, and A = 16. All frequencies are given in units of y J.

tween the positive and negative parts of the spectrum,
but small enough to deal with manageable time series (in
our calculations, we took co„=50yj). The relative posi-
tions of the peaks of S(co) with respect to the value as-
signed to co, is the only relevant quantity. To fix the no-
tation, we have plotted in Fig. 2 an example of a power
spectrum for a periodic solution of Eqs. (1). Three new
frequencies can be defined quite simply with this spec-
trum. The first is co&, the frequency of the highest peak.
The second is coo, the algebraic mean of the peak frequen-
cies, i.e., the middle point or center of S(co) (there will or
will not be a peak at this point, depending on whether the
periodic solution is asymmetry or symmetric). The third
frequency is the mean frequency, defined as

A. Highest peak frequency

When the reference frame rotates at the frequency co&,

the field portrait, the phase, and the attractor projection
in the (E,P) plane are shown in Figs. 3(a), 3(b), and 3(c),
respectively, for the same parameters as in Fig. 1. The
main feature is that in this reference frame the field por-
trait is no longer quasiperiodic, but has become periodic.

co —J coS(co)dco
0

These three new frequencies can be used as reference-
frame frequencies leading to specific advantages in the
analysis of the field evolution. %"e shall now compare the
field portrait, phase evolution, and attractor projection in
these reference frames.

a c
M) M0

FIG. 2. Power spectrum with the position of the maximum
side-mode frequency co&, the algebraic mean coo, and the mean

frequency 6 computed according to Eq. (7).
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to the other peaks in the power spectrum) with this prop-
erty, providing field-portrait representations with the

- same periodicity.

B. Algebraic mean frequency

An obvious problem with the choice of co
&

as a
reference-frame frequency is that it is discontinuous as
the atom-field detuning changes from positive to negative
values (since there is a change in the sign of the phase
jumps). Therefore, we may consider another choice,
namely the algebraic mean frequency uo. The field por-
trait, phase, and attractor projection in this reference
frame are displayed in Figs. 3(d), 3(e), and 3(f), respective-
ly. It is quite clear that here, again, we have a field por-
trait that is periodic (with the same periodic as before) in-
stead of quasiperiodic, in spite of the fact that the y
displayed in Fig. 3(e) is no longer periodic. Furthermore,
the shape of the field portrait is similar to the shape of
the portrait on resonance. For instance, the periodic at-
tractors retain the butterAy shape that is characteristic of
the real Lorenz attractor, as shown in Fig. 3(f). This
frame was proposed in Ref. [12]. Contrary to the
highest-peak-frequency case, the phase displays an accu-
mulation rather than a periodic motion. However, the
important feature of this reference frame is that no
matter what the detuning is, the phase jumps are always
equal to m in average. This means that the total phase ac-
cumulation along one period is exactly nm, where n is
the number of phase jumps in the period. This property
was used in Ref. [12] as an operative definition for coo.

Thus, even the phase-jump amplitude cannot be used as a
signature of some topological feature since it also de-
pends on the reference-frame frequency.

C. Mean frequency

The surprising result we have obtained is that the mean
frequency defined by Eq. (7) coincides with the frequency
0, which is the solution of the steady-state dispersion
equation 6= —5. This result holds for periodic and
chaotic solutions. It is a rather general property of the
Lorenz equations, though we have been unable to pro-
duce a convincing analytical proof of that result. There-
fore, the representation in that reference frame is identi-
cal with that of Figs. 1(c) and 1(d).

The equality between B and 0 has interesting conse-
quences. It indicates the existence of some internal con-
sistency in the shape of S(co). This is all the more
surprising since it is known that the mean intensity has
an angular point when the system enters the chaotic
domain [28]. Another consequence is that the mean re-
fraction index, defined as

n = f S(co)des,
0 CO

is practically equal to n (co), which is the mean refraction
index of the steady solution, stable or not. The approxi-
mation n —=n(co) holds provided S(co) has finite support,
i.e., S(co)=0 for ~co

—co, ~/co, ) E with 0&E el.

IV. DISCUSSIQN

We have seen that the choice of the reference-frame
frequency is not "innocent" and that it can significantly
modify the interpretation of the model. Figure 4 displays
the variation of the three frequencies discussed in the
preceding section as a function of the detuning, for three
different values of the gain parameter A. In the first case,
Fig. 4(a), the gain is large and the emission regimes are
simple [29,30]: the steady-state (cw) solution for large
cavity detuning (10& ~co,

—co,
~

& 15 in our case) and the
periodic solution P, (single-round-trip orbit in the phase
space) for small detuning (~co, —co, ~

&10). The algebraic
mean frequency coo is continuous at resonance, whereas
the highest peak frequency co, is discontinuous. Strictly
speaking, what occurs at exact resonance is that co& is not
uniquely defined: any value ranging within the vertical
interval joining the upper and lower branches in Fig. 4(a)
is permitted. This is so because at resonance the phase
jumps are exactly equal to m and their sign is not defined
[the complex field amplitude E(t) goes exactly through
zero]. This means that the temporal evolution of the
phase admits different combinations of positive and nega-
tive phase jumps, so that each one is characterized by a
different average slope (and, as a consequence, by a
different value of co&). Another feature in Fig. 4(a) is that
both coo and co, vary almost linearly with detuning. The
difference ~co, —coo~ is equal to ~/T, where T is the period
associated with the regime P&. Since T varies slightly
with detuning, the difference ~co,

—
ceo~ remains almost

constant. Finally, the mean frequency co varies linearly
across the two regions P, and cw (without discontinuity
at the frontier), since it coincides with the frequency of
the stationary solution Q.

In Fig. 4(b), which corresponds to a smaller gain, the
dynamic regimes are more complex since period P& dou-
bles to P2 for small detunings. For simplicity, only posi-
tive detunings have been displayed in this case. The cw
solution occurs for larger detunings, co, —co, ~ 8, not
shown in the figure. In the region around the bifurcation
point between P, and P2, the frequencies coo and cu, vary
smoothly and co remains linear. The fact that ~, coin-
cides with co and, as a consequence, with Q at resonance
[in both cases of Figs. 4(a) and 4(b)] is one of the reasons
that the shape of the field portraits obtained with the
reference frame coo are similar to the shape of the por-
traits on resonance (i.e., similar to the typical Lorenz-
model portraits), as expressed above [Fig. 3(f)].

For still smaller gain, Fig. 4(c), there is a complete
Feigenbaum scenerio when detuning is decreased. coo and

cu& are defined only in the periodic regimes, and vary
smoothly across the region where the period-doubling bi-
furcations occur. In Figs. 4(b) and 4(c) the frequencies co,

and coo are not shown in the vicinity of the Hopf bifurca-
tion, where the periodic solution P, emerges and the
steady-state solution becomes unstable. This is because
the Hopf bifurcation is subcritical for these parameters
and there is a small bistable domain around the lasing
second threshold. In this domain there is critical slow-

ing down, and the precise determination of co, is some-
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what delicate and time consuming, and does not elicit
any relevant information.

The second problem that we shall discuss concerns the
phase jumps. It is commonly admitted that the phase
jumps of ~ are associated with a zero value for the field
amplitude 6'(t) T. his misconception has its origin in the
fact that, on resonance, it is indeed true that phase jumps
of vr are necessarily associated with 8(t)=0 because, as
mentioned above, the resonant field portrait is a straight
line that goes through the origin of the (A, J )plane. Any
amount of detuning will lead to a field portrait that is a
closed or an open curve, corresponding to periodic or
quasiperiodic motion, respectively. Depending on the de-
tuning, the field portrait will either pass close to the ori-
gin or remain far from it, but it will not cross the
origin —otherwise the Geld frequency jv would diverge.
To illustrate this point, a sequence of phase portraits in
the same reference frame —but for increasing
detuning —is displayed in Fig. 5. They clearly show that
the minimum distance of the field portrait to the origin
increases with detuning. Thus a phase jump of ~ indi-
cates either that the laser is operating on resonance and
that the reference-frame frequency is Q, or that the laser
is detuned and that the reference frame rotates at the fre-
quency coo.

Another problem that can be clarified by our
reference-frame analysis is the relation between the
phase-accumulation behavior and the geometric phase in-
troduced by Berry [24]. This connection has been sug-
gested by Vilaseca et a1., [12] and by Ning and Haken
[25], and has been strongly advocated by the latter au-
thors [25—27] in the context of the complex Lorenz mod-
el. It has also been discussed in detail by Mandel et al.
[23] in the context of two-photon —cavity optics, making
a comparison with the case of the detuned-laser model.
Ning and Haken have recently proposed a generalization
of the Berry phase theory adapted to dissipative systems
[27]. In that context, they were able to show that, for
periodic solutions of the complex Lorenz equations, the
phase of the complex variables can be decomposed into
the sum of a dynamical phase and a geometrical phase.
However, the transformation from Eqs. (1) into the com-
plex Lorenz equations introduces in the coefficient of the
Lorenz equations a dependence on the reference frame.
Therefore, we apply their method directly to the physical
laser equations, Eqs. (1). We first define a dynamical fre-
quency cod through

1 2
(9)

FIG. 4. Maximum peak frequency co&, algebraic mean fre-
quency coo, and mean frequency co as a function of cavity-atom
detuning. (a) A =500; only period-1 and cw solutions occur in
the domain represented by the figure. (b) A =180; period-1 and
-2 solutions are present (the cw solution occurs for larger values
of co, —co, ). (c) A =50; a complete cascade from period 1 to
chaos occurs. ~/y& and y~l/y& as in Fig. 1. The three frequen-
cies co&, coo, and co have been expressed with respect to co, . The
chaotic domain is marked CH.

where ~4) =—col('P„+z,%'3) =col(E,P, F) and A is a 3X3
diagonal matrix with real elements a&, a2, a3 chosen in
such a way that the periodic solutions of Eqs. (1) verify
the relation ~%(t+T)) ='T( 5$)~%'(t)), where 5P is-
real and 7 is a diagonal matrix of elements exp(ia 5P)
with j= 1,2, 3. For Eqs. (1), the obvious property
4, z(t+T)=exp( —i5$)+i z(t) and 4&(t+T)=%3(t),
where 5P is the phase accumulation over one period, im-
plies the choice a, =a&=1 and o:3=0. From these prop-
erties, it is easy to verify that the dynamical frequency (9)
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can be written as

~BE ~ BI
at r)t

(E'E+P*P ) (10a)

= —~„+~,+[(~.—~, )IPI'+(~& —yg)Im(EP')]&(IEI'+ IPI')

—:—co„—Qd(t), (10b)

where Qd(t) is manifestly frame invariant. The geometri-
cal phase y is de6ned as the difference between the total
phase and the dynamical phase

gad
=y+ co„—t +IAd (t )dt . (11)

From this definition and Eq. (5), it is simple to prove
that the frame invariance of Qd(t) implies the frame in-
variance of the geometrical phase gg(t). Although the
Ning and Haken method identifies a fraction of the total
phase that is frame invariant, there seems to be no way to
measure it. This results from the fact that the geometri-
cal phase is not associated with an independent physical
phenomenon in the laser case. This aspect of the mea-
surement was stressed in Ref. [23], where cavities driven
by an external field were considered. In such a case, the
external field provides the reference.

So far, we have mainly considered the cases of periodic
dynamic regimes. For chaotic regimes the frequencies co,
and coo cannot be defined and indeed there is no
reference-frame frequency for which the field portrait and
the attractor projections can be frozen. These represen-
tations are affected by random rotations as discussed in
Refs. [10], [21],and [22], since the phase jumps appear at

random times and with random sizes (diFusivelike phase
evolution). As explained in Sec. III, the only feature that
remains in the case of chaotic evolution is that co =A, i.e.,
the mean frequency coincides with that of the stationary
solution.

Finally, it should be borne in mind that a separate
problem is that of the dependence on the initial phase
y(0). DiFerent choices of that initial phase correspond
to rotations in the five-dimensional space of the solutions
of Eqs. (1). This rotation factors out into a rotation in
the field plane (%,J) and a rotation in the atomic-
polarization plane. Therefore the shape of the field por-
trait will also depend on the initial phase.
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