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Generation of high-order harmonics from inertially confined molecular ions
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We consider the generation of high-order harmonics from inertially confined diatomic molecular ions

driven by strong short pulses of laser radiation. Using a simple analytically solvable model, we show

that diatomic molecular ions can be a very efficient source of high-order harmonics. The sources of the

strong nonlinear response are charge-resonant states of odd-charge molecular ions. We also discuss pos-
sibilities for quasi-phase-matching, which are given by the molecular ions and which have no analogies

in atomic systems.

PACS number(s): 42.65.Ky, 32.80.Rm

I. INTRODUCTION

Over the last decade there has been a considerable in-
terest in studying high-order multiphoton processes in
atoms and molecules. This interest was mainly due to ad-
vances in the experimental technique that now allows one
to study interaction of atoms and molecules with laser
pulses of intensities I—10' —10' W/cm and pulse dura-
tions ~-100 fsec and shorter. One of the most striking
and potentially practical phenomena observed is the gen-
eration of very-high-order optical harmonics of incident
light. This process has been studied in detail using
atoms, for moderate laser intensities (-10' W/cm ) and
comparatively long (tens of picoseconds) pulses; see, e.g.,
review [1]. Recently, analogous experiments [2—6] were
performed with much higher intensities and shorter (sub-
picosecond) pulse durations, and harmonics of order as
high as 109 were reported [5].

It is important to note that, in some of these experi-
ments, the laser intensity was significantly higher than
the saturation intensity for ionization of neutral species.
Under such conditions, the contribution of ions to the
emission of high harmonics could be important. To our
knowledge, there is only one theoretical paper [7] so far,
analyzing ions as a source of high harmonics. According
to Ref. [7], the contribution of ions to harmonic emission
in typical multiphoton experiments could be significant,
and the experimental data [6] show clear evidence for
harmonic emission from ions. Harmonic generation from
molecular ions will be discussed in this paper.

In general, a theoretical description of harmonic gen-
eration should involve two stages: (i) response of a single
atom (molecule, ion), and (ii) propagation effects. Phase
matching between the incident and the harmonic waves
depends upon details of experimental design but, in gen-
eral, free electrons are a problem. However, molecules
introduce new means of overcoming this problem, and we
will discuss them in Sec. V of the paper.

This paper, like most theoretical studies, focuses on the
first problem, that is, the response of an isolated quantum
system. In previous studies, harmonic emission was de-
scribed using ab initio numerical simulations for a one-
dimensional model atom [8] and realistic three-

dimensional potentials of complex atoms [9], as well as
within the framework of more simple models allowing for
an analytical treatment: essential-state [10] and short-
range potential [11]models.

While most work has concentrated on atoms, in this
paper we consider a simplified analytical model for har-
monic production from odd-charge ions of diatomic mol-
ecules. Molecular ions, whose internuclear axis is aligned
with the laser electric field, are assumed to be created by
a strong short laser pulse and undergo further fragmenta-
tion. A second short laser pulse, coming during the frag-
mentation process, generates harmonics. The reason to
study such a system is that molecular ions are more po-
larizable than atoms and so we might expect them to be a
more intense source of harmonics.

Molecular ions possess a pair of states that can be very
important for harmonic production, that is, any odd-
charge homonuclear molecular ion has so-called charge-
resonant (CR) states [12]. These are symmetric and an-
tisymmetric states corresponding to the fragmentation of
the odd-charge molecular ion A2' "+"+ into A"+ and
A'"+"+, say, H2+ into H and H+. The energy of these
two states goes to the same limit at large R, but at small
R the energy gap between them is significant.

Charge-resonant states are very strongly coupled, and
the matrix element of the electronic transition p(R ) be-
tween them increases with increasing separation R be-
tween the two nuclei: p=R/2 [12,13]. Therefore one
could expect that CR states coupled by a strong laser
field could be an efticient source of high harmonics. It is
important to point out here that recent experiments [14]
have shown that, by using supershort laser pulses for pro-
ducing (and probing) inertially conPned molecular ions,
one can control the internuclear separation R and, thus,
the matrix element p(R ). They have also shown that the
experimental angular dependence of dissociation prod-
ucts of I2"+, kinetic energy of fragments, and ionization
rates of HC1 or I2 can be understood assuming charge-
resonant coupling to be the dominant coupling mecha-
nism [14]. The same is true for bond-softening experi-
ments [15]. Our simplified model, therefore, is also a
realistic model.

Our model for harmonic emission includes only these
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two charge-resonant electronic surfaces. Other transi-
tions at large R are similar to multiphoton transitions in
an atom (atomic ion) and are likely to be weaker at
moderate laser intensities. As shown below, in the case
of supershort laser pulses, the problem of harmonic gen-
eration from these two surfaces can be reduced to a local
electronic two-level problem parametrically dependent on
the internuclear separation R. This conclusion coincides
with that of Ref. [16]. The transition frequency coo(R)
and matrix element p(R) of the local system have to be
taken on the classical trajectory corresponding to the
motion of the vibrational wave packet.

A two-level system is the simplest quantum system
producing harmonics in a strong laser field. In Ref. [17],
it was pointed out that harmonic emission from the two-
level system is a direct consequence of the Floquet
theorem and of the concept of quasienergies. Being a
lovely theoretical model, the laser-driven two-level sys-
tem has undergone continuous study throughout the
whole history of laser-matter interaction (e.g. , [18—22]).
However, high-order harmonic emission from the two-
level system was considered more closely only recently
[23]. In Ref. [23], the problem was studied numerically
and for a low-frequency case, that is, the laser frequency
considered was less (four times) than the transition fre-
quency. In this paper, we give the analytical description
of high-order harmonic emission from a two-level system
in the strong field limit. We consider the case when the
Rabi coupling V=@(R)E(t) of the two levels in the laser
field E=E(t)cosset exceeds the transition frequency coo

between the levels: V& ~0. The laser frequency co also is
assumed not to be small: coo&co. These are the typical
conditions for charge-resonant states of molecular ions,
visible or near-IR laser frequency, and laser intensities
about 10' W/cm . No rotating-wave approximation is
used, and results are obtained for an arbitrary pulse en-
velope E(t) with the only assumption that the duration r
of the laser pulse is long compared to the laser period:
r)) I /co [but short enough that the two-level approxima-
tion is valid, Eqs. (12) and (13)].

As in the numerical calculations for the low-frequency
case [23], we find the long-familiar "plateau" in the har-
monic spectrum. Plateaus seem to be a general feature of
any strongly driven quantum system. Unlike the case of
atoms and atomic ions, for CR states of molecular ions
the plateau can be significantly (up to three orders of
magnitude) higher than typical for atoms [9].

It is important to understand the difference between
our case and that of Ref. [24], where the harmonic spec-
trum from H2 was found to be very similar to that from
H already at R =2 a.u. (the equilibrium distance for H2 is
R, =1.4 a.u.). Any homonuclear odd-charge ion, e.g. ,
H2+, possesses CR states, whose contribution to harmon-
ic emission is shown here to be very important when R is
not too large. Analogous states in neutral hydrogen are
charge-transfer states, leading to dissociation of Hz either
into H+ H or into H++ H ~ These states are also
strongly coupled at small R, but the coupling turns to
zero exponentially with increasing R. Therefore, unlike
CR states, at large R they do not contribute to the gen-
eration of harmonics, leading to quantitatively the same

harmonic spectrum as from separate atoms.
In Sec. II, we describe our model and show under what

conditions harmonic generation from CR states of molec-
ular ions can be reduced to a local electronic two-level
problem with parametrical R dependence. In Sec. III, we
describe the analytic theory for harmonic generation
from this system. In Sec. IV, we discuss the results and
the predicted harmonic spectrum for a number of special
cases. In Sec. V, the role of free electrons produced to-
gether with molecular ions is commented upon. We
show that molecules give us new possibilities for quasi-
phase-matching that have no analogies in atomic systems.

II. LOCAL ELECTRONIC SYSTEM IN A MOLECULE
INTERACTING %'ITH A SHORT LASER PULSE

In this section, we show the conditions under which
the molecular interaction with a short laser pulse can be
described by the equations for a local electronic system
taken at fixed internuclear distance R. This
simplification was used in Ref. [15] to develop an effective
numerical algorithm for studying the molecular wave-
packet dynamics. In the present paper, by using a semi-
classical approach, we derive the conditions under which
the approximation of a local electronic system provides
the adequate description of the interaction process. Since
we take into account only two CR states in the model,
the problem is then reduced to a local two-level system.

A. Qualitative picture

We consider the physical process that occurs under the
action of two successive laser pulses. First, a short strong
laser pulse produces molecular ions, and then the second
short laser pulse, delayed from the first one, generates
harmonics. Consider a diatomic molecular 3 z subjected
to a short strong laser pulse with the duration much
shorter than the typical time of nuclear motion. The
molecule undergoes fast ionization and, if the laser inten-
sity is sufficiently high, a number of differently charged
ions A2

+ are produced. If the duration of the laser
pulse is short, the internuclear distance does not change
much during the ionization process and is approximately
given by the equilibrium distance R, of the neutral mole-
cule. In other words, a wave packet, spatially localized
around R„ is produced on the electronic surface corre-
sponding to the ion A2~+, see Fig. 1.

It is quite natural to assume that the ground electronic
state

~
1) of the ion A 2~ is the one mostly populated.

However, as was shown in Ref. [14], in a strong field this
state is always strongly mixed with the corresponding
charge-resonant state ~2) (which has the opposite parity).
Therefore, after the end of the first laser pulse, one should
consider at least two wave packets excited to the elec-
tronic surfaces

~
1) and ~2) (see Fig. 2).

It is worth giving some typical values of the experi-
mental parameters corresponding to the physical picture
described above. In Ref. [14], a 30-fsec, 630-nm laser
pulse was used to ionize the iodine molecule I2, which
has the typical vibrational period of the order of 150 fsec.
The intensity I-10' W/cm was enough to produce
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B. Mathematical description

We now give the mathematical background supporting
the intuitive physical picture described above. Starting
from the Schrodinger equation for a system shown in Fig.
2, we derive the conditions for which this equation is re-
duced to a local two level system. In the Born-
Oppenheimer approximation, the wave function of our
model system is

%(r,R, t)=f i(R, t)P i(r, R)+gz(R, t)gz(r, R), (1)

-2
4 5 6 7 8

Internuclear distance R (a.u.)

FIG. 1. Qualitative scheme of ionization of a diatomic mole-
cule A2 and excitation of the vibrational wave packet in ion
32~+ by a short laser pulse.

iodine ions up to Iz . Fragmentation of the ions was
mostly due to Coulomb repulsion. For such heavy
species as iodine, the ion motion is only about 0.2 A in 30
fsec, even for the fragmentation of Iz +. It is also impor-
tant to point out that the experimental data [14] are con-
sistent with significant excitation of both the ground state
of the molecular ion and its charge-resonant state.

Consider the motion of the wave packet along, say, the
potential surface ~2) of Fig. 2. This motion corresponds
to the fragmentation of the iodine ion Iz+ into I+ and I.
Let the second laser pulse be switched on when the center
of the wave packet has a coordinate equal to R c (Fig. 2 ).
We assume the second laser pulse to be short, so that the
coordinate R of the wave packet does not change much
during the whole pulse; the concrete criterion will be
given below. In this case, it is physically clear that the
only transition that occurs during the laser pulse is the
electronic transition between the states ~1) and ~2); the
nuclear wave packet has not enough time to be changed
and is simply transferred between the surfaces ~1) and
~2). Thus, if the laser pulse is sufficiently short, the in-
teraction process should reduce to local electronic transi-
tions between the states ~1) and ~2) [15], with the inter-
nuclear separation corresponding to the classical coordi-
nate of the wave packet.
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FIG. 2. Scheme of interaction of t'he I2+ molecular ion with
two successive laser pulses.

where P, z(r, R) are the stationary electronic wave func-
tions of the states ~1) and ~2), and f, z(R, t) are the
time-dependent nuclear wave functions for the surfaces

~

1 ) and
~

2 ), correspondingly.
Equations of motion for this system in the laser field

E=E(t)coscot are (i,j =1,2; i'):
i r), Q; (R, t ) =H; g; (R, t ) + V( t, R )itj, (R, t ).,

where V( t, R ) =p(R )E( t )cosset,

H; =T+6';(R)

is the field-free Hamiltonian of the nuclear motion with
the electron in the state ~i ), 6, (R) is the electron energy
in the state ~i ), and T is the nuclear kinetic-energy opera-
tor. We assume that the molecule is aligned along the
laser field. This condition is experimentally feasible [14]
(see Sec. VI).

Let the second laser pulse be turned on at t =0, and
consider the dynamics of the wave packet initially local-
ized near R =Rc on the surface ~2) (Fig. 2). Our first ap-
proximation to Eq. (2) is to replace V(t, R) by V(t, RO)
This approximation assumes that v ~ &&Ro, where v is the
wave-packet velocity and ~ is the laser-pulse duration.
Thus, the first limitation to the duration of the second
pulse is

(4)

Let us show now that for a short laser pulse the solu-
tion of Eq. (2) can be found in the form

g, (R, t)= a(t)e xp[i@;(R c)t]e xp( iQ, t)po(R), —(5)

where go(R) is the initial wave packet on the surface ~2),
6;(Ro) are the adiabatic electron energies, and the ampli-
tudes a;(t) are R independent.

In order to check the validity of Eq. (5), one should
substitute it into Eq. (2). After simple arithmetic one can
obtain the following equation for a;(t), which according
to Eq. (5) has to be R independent:

i B,a;(t)g (cR ) =0;(Rc)a;(t)$0(R)

+ V(R„t)a,.(t)0,, (R, t)g, (R) . (6)

However, the propagation operator OJ;.(R, t) in this equa-
tion

0.;(R, t)=expIi[6 (Ro) —6, (RO)]t]

Xexp(iB; t )exp( —iB~ t )
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(Q~H; ~ Q) =E; (R *)= T, (R *)+6",(R '), (9)

one finds that the kinetic-energy operator f' is the same
for both potential surfaces. Therefore, the kinetic energy
of the wave packet on the potential surface

~ j ) is equal to
its kinetic energy on the surface ~i ): T;(R*)=TJ.(R*),
E;(R*) E (R*)=N—;(R. ")—6 (R*).

Now one can analyze the conditions for the approxi-
mate equality

0;(R,t)$0(R ) =I/0(R), (10)

which is required to justify Eq. (5). Using Eq. (8) and the
remark above, one can easily check that Eq. (10) is
satisfied if the two conditions below are fulfilled.

First, the distance between two classical particles prop-
agating with the same initial velocity and coordinate but
along different potential surfaces 8,(R) and 6'2(R) should
remain small compared to the width of the wave packet:

R,i, (t) —R„2(t)=
B@,(RO)

aR
a@,(R, )

()R

t2
«AR

2M

(b,R the wave-packet width, M the reduced nuclear
mass). Equation (11) gives the limit to the pulse duration
T for a given molecule and Rp.

Second, the change in the transition frequency
co2&(R,&)=@2(R,&)

—6,(R„) on the classical trajectory
R,~(t) =R,

~ ~ (t) =R,
&
2(t) during propagation of the wave

packet should be negligible in the scale of the propaga-
tion time t: co»(R„(t))—co»(R, ) «t

Note that in the case of parallel electronic surfaces,
both requirements are fulfilled for any t, and for any t,
0 =I.

Ej

Thus, if the laser pulse is so short that the classical tra-

is R dependent in the general case. The R dependence
disappears in Eq. (6) only if the propagation operator is
approximately equal to the identity operator I. If so, Eq.
(5) is justified. Obviously, for sufficiently short time,
&=I. Using the semiclassical approach, we can estimate
how short the time should be. The operator Eq. (7) is
field-free and the semiclassical field-free dynamics of a
wave packet is quite simple: the wave packet propagates
along the trajectory of a classical particle that has the ini-
tial coordinate and the initial energy equal to those of the
wave packet. Therefore, if the wave packet ~g) is initial-
ly localized near some point R *: f(R):f(R—,R *),
R *= ( g(R ) ~R

~ g(R ) ), and has the initial energy E(R *),
in the semiclassical approximation, the propagator
exp( iHt) gi—ve

exp( iAt)f(—R,R'') =exp[ iE(R —')t ]f'(R, R,& ),
where R,&=R,&(t) is the classical trajectory. The func-
tion f' on the right-hand side of Eq. (8) describes the
shape of the wave packet at the moment t, where the
prime denotes that this shape can be different from that
at t =0. Let us make one more remark, which is impor-
tant for analyzing the action of the operator Eq. (7). Cal-
culating the field-free energy E, (R *) of t.he wave packet

~ g) localized near R * on the surface ~i ):

jectories R,~ i(t), R,&
2(t) on the potential surfaces 6 i(R)

and Cz(R) (with same initial conditions) do not diverge
much during the laser pulse:

R„,(r) —R„,(r) «bR (12)

(b,R the wave-packet width, M the reduced nuclear
mass), and if the change of the transition frequency
co2, (R ) on the classical trajectory R,&(t) is small:

co2, (R„(t))—co2, (RO) «r ', t ~~, (13)

ia;(t) =8, (Ro)a;(.t)+ V(Ro, t)a. (t) . (15)

This is the equation for a two-level system with transition
frequency co2, and matrix element p(R) taken on the clas-
sical trajectory of the initial vibrational wave packet at
the moment when the second laser pulse operates.

The physical picture corresponding to our mathemati-
cal analysis should now be clear. As far as the wave
packets propagating along 8,(R) and 62(R) are "in
phase, " i.e., have approximately equal coordinates
R, 2(t), the interaction is reduced to vertical transitions
in a local two-level system with parameters depending on
the coordinate of the wave packet. As far as the pulse is
short, these parameters do not change essentially during
the laser pulse when the wave packets propagate along
the potential surfaces 6, z(R), and hence they can be tak-
en at the initial point Rp of the classical trajectory.

Obviously, the analysis presented here can be easily
generalized to a more complicated case of N electronic
surfaces.

C. Harmonic generation

The matter of our interest is the generation of harmon-
ics by the system described by Eq. (2) and depicted in Fig.
2. We will focus on the response of a single quantum sys-
tem and, as usual [7—11,24], calculate the time-dependent
dipole moment d ( t ) and its Fourier spectrum.

One can easily see that within the same requirements
as to the duration of the second laser pulse [Eqs. (12) and
(13)], the dipole moment for the wave function Eq. (1) is
reduced to that of the two-level system Eq. (15). Indeed,
substituting in the general expression for d (t )

d(t) = (0'(r, R, t ) ~d ~%(r,R, t ) )

=($2(R, t)ip, ( R)~g, ( Rt))+cc. (16)

the wave functions g;(R, t) given by Eq. (14), one obtains

d(t)=p(Ro)az (t)a, (t)(go(R)~ 0, (2R, t)~g ( 0R))+c.c.

(17)

Recalling that 0&z(R, t) =I, Eq. (17) yields

then the evolution of the nuclear wave packets gi z(R, t)
is described by the following simple formula [see Eq. (5)]:

g, (R, t ) =a, (t)exp[it;(Ro)t ]exp( i8, t—)go(R), (14)

where the amplitudes a, (t) are R independent and satisfy
the following equation [see Eq. (6)]
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d(t) =p(RO)a@ (t)a, (t) W'+c. c. ,

where

(18)

III. TWO-LEVEL SYSTEM IN
THE HIGH-INTENSITY LIMIT

A. General expressions

Let us rewrite Eq. (15) for the two-level system in the
following way:

&a i(t) =
—,~2iai(t)+ V(t)a2(t),

a 21a2(t) + V( t)a i ( t)
(20)

Here we shifted the zero energy level. It does not affect
Eq. (18) for the dipole moment, and therefore we use the
same notations for new probability amplitudes. We also
omitted Ro in the transition frequency aiz, (R) and cou-
pling V(R, t) = Vof(t)cosset =p(R)Eof(t)coscot. The ini-
tial conditions corresponding to the wave packet initially
on the potential surface ~2 ) are a, (0)=0, az(0) = 1.

In this section, we consider the behavior of the system
Eq. (20) in a very strong field

(21)

(19)

is the initial population of the surface
~
2 ) .

Therefore, the problem of calculating harmonic emis-
sion is reduced to the calculation of harmonics generated
by the two-level system Eq. (15).

c, (t) = —i—,'co&,cz(t)exp[i2F(t)],

cz(t) = —i—,'co&, c, (t)exp[ —i2F(t)],
(27)

and the initial conditions corresponding to ai(0)=0,
a2(0) = 1 are c, (0)=c2(0)= 1.

In terms of c;(t), the normalized dipole moment
u(t):—d(t)/p(RO) Wis

u(t) =
—,'[[c,(t) (

—(c (t) ( ] . (28)

The expression for the time derivative of the dipole mo-
ment is even more useful. Using Eq. (28) together with
Eqs. (27), one can easily check that

u(t) =i2co2, c, (t)cz (t)exp[ —i2F(t)]+c.c. (29)

It is obvious from Eq. (29) that the first-order (in co&, ) ap-
proximation to u (t) is given by zero-order values of c;(t)
At the same time, u(t) is equally useful for studying the
emission spectrum.

tion (co&, =0), the dipole moment d' '(t) is equal to zero.
Moreover, the first-order correction to a,.' '(t) grows
linearly with time. Hence, the perturbation approach is
not straightforward.

It turns out to be more convenient to introduce new
variables c, (t) and c2(t):

c, (t) =exp[iF(t)][a, (t)+a2(t)],
(26)

cz(t) =exp[ —iF(t)][—a, (t)+a2(t)] .

Equations for c; (t) are easily obtained from Eqs. (20):

We also assume the transition frequency to be less than
the laser frequency:

C02] CO . (22)

aP'(t)= i sinF(t), a~2 '(—t)=cosF(t),

where we denoted

(23)

The above relation between co2& and co is typical at corn-
paratively large distances R -7—8 a.u. for both H2+ and
I2+ (see Ref. [25] and Fig. 2), when cozi is of the order of
10 ' eV. The first condition Eq. (21) is easily fulfilled at
R -7—8 a.u. (-2R, for iodine) and intensity I~10'
W/cm .

One can hope to build a perturbation theory using the
smallness of the transition frequency co2&. That is precise-
ly what is done below.

One can easily obtain the zero-order approximation
a;~ '(t), corresponding to co2i=0 and initial conditions
a, (0)=0, a2(0)=1:

B. First-order expression for the dipole moment
in a very strong 6eld

Vo
2 ))1 (30)

With this strong inequality, the exponent in Eqs. (27) is a
fast oscillating function. However, in spite of the fast os-
cillations, the Fourier decomposition of the exponent
exp[2i( Vo/co)sinait] contains the constant term given by
the Bessel function Jo(2VO/co). It is this term that is re-
sponsible for the linear growth of the first-order correc-
tion to a ' mentioned above. The problem can be over-
come if this term is taken into account exactly. For this
purpose, let us rewrite Eqs. (27) in the following way:

Consider the case of immediate turn-on of the pulse:
f(t )0)= 1. Recalling that F(t)= ( Vo/co)singlet, it is clear
from Eq. (29) and Eqs. (27) that high harmonics appear
only if

F(t)= f V(t')dt'= Vo f f(t')cosset'dt' . (24)
c, (t) = —i—,'co@, j c2(t)cos[2F( t) ]+ic2(t)sin[2F(t) ]j,
c2(t) = i ,'co [2c, (t)—c s—o[2F(t)]—ic, (t)sin[2F(t)]] .

(31)

If the pulse envelope f (t) includes many field periods, the
following approximate expression for F ( t) is valid:

Vo
F(t) = f(t)singlet . (25)

However, one can also check that, in the zero approxirna-

At co2, =0, c;(t) are constants. As we shall see below, in
strong fields the c;(t)'s are very slowly varying functions.
Therefore, the second term in the curly braces is both fast
oscillating and lacking a constant component. It can be
omitted in the zero order. The first term, however, con-
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tains a slowly varying component and has to be taken
into account exactly. By doing so, we obtain

~o ~&i2»1, «1.
Q Voto

(37)

CO2 )cP'(t)=cz' '(t)=exp i— 4(t) (32)

where

@(r)=f cos[2F(t')]dr' . (33)

Substituting this result into the general expression for
u(t) [Eq. (29)], we get

u'"(t) =co2,sin[2F(ti] . (34)

C. Applicability conditions of the perturbation theory in co»

To answer the question of the perturbation series con-
vergency, one has to calculate the first-order correction
to Eq. (32). When doing so, one again has to be careful
with the first term in the curly braces in Eq. (31), as was
explained above. Using zero-order solutions Eq. (32) for
the second term in the curly braces in Eqs. (31) and ac-
counting for the first term exactly, one obtains the follow-
ing first-order correction to c ' [Eq. (32)]:

2' 0

2' 0

(35)

These values have to be small compared to ~cI '~ = 1.
First consider immediate turn-on of the pulse. In the

case of our interest, that is, 2V0 »m, the integrals in Eq.
(35) can be easily estimated by using the stationary-phase
method.

C02 )ic;"'(r)i =O(e), e=
Q Voce

(36)

The correction is small if e «1. Therefore, the two re-
quirements that determine if the perturbation series con-
verges in co2& are

In principle, Eq. (33) answers the question: "what har-
monic emission is there from a strongly driven two-level
system?" The spectrum of the harmonic emission is
determined by the Fourier transform of sin[2F(t)].

Although we obtained this result for immediate turn-
on, using the same method one will get the same result
for a smooth pulse envelope, with the corresponding ex-
pression for F(t) [see Eq. (24)]. However, the applicabili-
ty conditions of Eq. (34) for a smooth pulse envelope will
be different from those for the case of immediate turn-on.

Therefore, before discussing the harmonic spectrum,
we still have to answer several questions. First, what is
the dimensionless parameter of the perturbation expan-
sion and under what conditions does the perturbation
series converge? Second, under what conditions is the re-
sult Eq. (34) correct in the case of a smooth pulse en-
velope where the instantaneous value of the coupling am-
plitude Vof (t) can be not only large, but also small com-
pared to co and co»?

Note that if the conditions in Eq. (37) are fulfilled, the re-
lation between laser frequency and transition frequency is
not crucial: the solutions Eqs. (32), (34), (35) are valid not
only for large laser frequencies co & cu», but also for small
frequencies co ( co2, [if the requirements Eq. (37) are met].

In the case of a smooth turn-on, Eqs. (37) are not
fulfilled at the pulse front. Therefore, in principle, for an
arbitrary relation between cu and co2j and an arbitrary
pulse envelope, the result for u(t) should be different
from that given by Eq. (34). However, in our case the
typical relation between co and co» is co&&co». One can
easily check that, if co2, «co, the first-order correction
Eq. (35) is small for any ratio of 2Vo/co. Therefore, in
the case of a smooth pulse envelope, the perturbation
theory described above is applicable if

CO && C02~ (38)

Indeed, under this condition the second term in the curly
braces in Eqs. (31) is fast oscillating and small both in the
case of the strong field Vof (t) ))co and in the case of the
weak field Vof(t)((co (and resonance phenomena also
are absent).

%e can conclude that the normalized dipole moment
u(t) is given by

u(t) =co2,sin[2F(t)] . (39)

This result is valid both for abrupt turn-on of a strong
pulse satisfying the conditions Eq. (37) and for an arbi-
trary pulse with sufticiently large frequency co »cu2&.

IV. THE SPECTRUM OF HARMONIC EMISSION
FROM CR STATES

A. Results

d(t)=pIVcoz, f sin
2V0 f(t )singlet' dt (40)

The emission spectrum is given by the squared modulus
of the corresponding Fourier component of d(t).

Strictly speaking, in the case of finite interaction time,
i.e., when the field is turned on and then turned off, one
has to speak of the total energy emitted during the whole
laser pulse [26]:

8(Q) ~ fd(t)exp(iQt )dt (41)

However, if the emission spectrum consists of well-
separated and relatively narrow peaks centered near
0& =%co, one can also talk about the time-dependent in-
tensity of emission at the frequencies Q~. This language
is very useful, because the values usually measured in the
experiment are average intensities of harmonics. Let us
specify the time-dependent and average emission intensi-

Using Eq. (25) and Eq. (39), the approximate expres-
sion for the dipole moment of our system can be written
as
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ties in our case.
Returning to Eq. (40) and using the following relation: f I dN(Q) I'd Q = f I dN( t) I'«, (49)

sin
2Vo

f(t)sincot =i g exp[ —i(2k+1)cot]
co k

one can easily check that 6N is related to IN(t) as

6N= f IN(t)dt . (50)

&~2k+ i

2Vo
f(t)

one can rewrite Eq. (40) in the equivalent form

d(t)=pWco2, i g f exp[ —i(2k+1)cot']
k

(42)

(IN ) = f r—„(t)dt ~ f—l d„(t) l'dt,=1 1
(51)

This equality justifies the use of IN(t) and explains its
physical meaning.

In experiments, the average intensity is usually mea-
sured as

XJ2k+i
2Vo f(t') dt' . (43)

where T is the time of interaction. We will characterize
the harmonic spectrum by the values

d(t) = g d2k+i(t)exp[ —i(2k+ 1 )cot ],
k

(44)

Now, assuming the envelope f(t) to be a slowly varying
function compared with the field oscillations, the dipole
moment can be approximately written in the form

i(N)= —f ldN(t)l dt=1

co2i
p Nco

2

—f JN f(t) dt .
1 2 2Vo

(52)

where

co2 )
"2k+1 ' P (2k+1) 2k+i

2Vo
f(t) (45)

2co2i, 2VoI„-d„l'= @IV
Nco co

(46)

where n is the density number of molecular ions and VN
is the phase-matching factor. For further convenience,
we will also put the initial population S'of the upper CR
state equal to unity, understanding n as the density of
molecular ions initially in the state 2 ) .

If the field intensity changes in time, the peaks at 0&
are broadened and, strictly speaking, one has to talk
about the total energy emitted at a given frequency Q
[Eq. (41)]. However, it is convenient to use the time-
dependent intensity

2
co2i 2 Vo

IN(t)" ldN(t)l'= P JN'
Nco co

(47)

Indeed, if the peaks in the emission spectrum are still
well separated, one can determine the total energy emit-
ted in the whole spectral interval under the Nth peak:

DN= f 6(Q)dQ, Q=QN . (4&)

Using the Parceval theorem, which says that the norm in
the Fourier domain is equal to that in the time domain,

are the time-dependent amplitudes of harmonics of the
dipole moment.

Now we are able to define the time-dependent and
average emission intensities at the frequencies Q&=Neo.
If the laser intensity is constant, that is, f(t) = 1, then the
values dzk+, (t) in Eq. (45) are time independent. The di-
pole moment Eq. (44) is a purely co-periodic function and
the emission occurs only at frequencies Q~ with intensi-
ties [27]

B. Discussion

Let us now analyze the spectrum of harmonic emis-
sion. It is well known that Bessel functions attain their
maximum values when their argument is close to the in-
dex. Hence, according to Eq. (52), for constant laser in-
tensity [f(t) = 1], the number of harmonics produced is

%,„=2Vo/co . (53)

The same dependence on Vo and co was found in Ref. [23]
in the case of laser frequency co small compared to co2i.
The maximum frequency in the spectrum is0, =N, „co=2Vo and is independent of the laser fre-
quency.

Linear dependence of N,„on the field amplitude is
different from the dependence N,„~Eo typical for
atoms and atomic ions [7,29]. It is the peculiarity of the
two-level system and, hence, of CR states of the diatomic
molecular ions.

It is also known that Bessel functions are small and os-
cillate if their argument is much larger than the index.
As a result, intensities of low-order harmonics, i.e., with
numbers N «N „=2Vo/co, are not higher than those
of high-order harmonics, and some of the low-order har-

This expression provides the complete description of the
harmonic emission from CR states in the framework of
our model, that is, under the action of very short laser
pulses.

The values that are calculated in most papers are i (N )

averaged either over the whole interaction time (e.g. ,

[28]), or only over the time when the laser intensity is
kept constant, i.e., excluding the turn-on of the laser
pulse and corresponding transient effects (e.g., [29]). We
will calculate both values of i (N), i.e. , for the peak inten-
sity kept constant after fast turn-on and for the Gaussian
laser pulse. Note that, with the turn-on time excluded,
i (N) in our model is simply given by
&(N)= dNl =(pt02i/N~) JN(2vo/co) with. it, our re-
sults can be compared directly with atomic calculations.



48 GENERATION OF HIGH-ORDER HARMONICS FROM. . . 587

monies are strongly suppressed owing to the oscillations
of Bessel functions (Fig. 3). Emission takes place almost
equally at all frequencies up to Q,„=N,„co-Vo (Fig.
3). The plateau in a harmonic spectrum of a strongly
driven quantum system is usually associated with the
low-frequency field, ~ &&~2,. In our case of co-~2„or
even co)&~2„ the plateau appears when the laser fre-
quency becomes small compared to the Rabi frequency
Vp ~ Therefore, the field creates the low-frequency condi-
tion itself, making the laser frequency small compared to
the Rabi frequency.

A laser pulse with a smooth envelope (it is always the
case in experiments) destroys both the suppression of
some low-order harmonics and the very-well-pronounced
plateau because, on the leading and rear edges of the
pulse, the field passes values optimal for all harmonics
with N~N, „: 2Vof(t)/co-N. Figure 4 compares the
spectrum emitted at Vo /co = 15.0 in the case of
two difFerent pulses: with Gaussian envelope f ( t)
=exp( t /r —) and with short front f(t) =1

exp—( t lt„—„),0~ t ~ r. with the rise time t„„=0.2r. It
is seen that the suppression of some harmonics survives
in the case of a fast rise time, but disappears in the case of
a Gaussian pulse.

Quantitative estimates can be obtained, for example,
for the ground state and its charge-resonant state of the
molecular ions I2+ and I2 +. Using the potential curves
calculated in Ref. [25], one can see that the transition fre-
quency co&,(R) turns to zero at the internuclear separa-
tion R =10 a.u. (see also Fig. 2). Therefore, we take R
around 7—8 a.u. , so that the corresponding transition fre-
quency is about co2&(R)=0.2 —0. 1 eV, is still not too
small. The typical laser intensities will be I-10' —10'
W/cm, depending on the concrete species. Recalling
that p(R)=R/2, we can calculate all quantities deter-
mining the emission intensity i(N) for a given laser inten-
sity.

Figure 5 shows the calculated values i(N)=( ~d&(t)~ )
for I2+ at laser intensities I, =4 X 10' W/cm,
I2 =6X 10' W/cm [Fig. 5(a)], and for Iz

+ at
I3=2X10' W/cm, I4=4X10' W/cm [Fig. 5(b)]. The
internuclear separation is R =7 a.u. , and the laser fre-
quency is co = 1 eV.

There are several important peculiarities of harmonic
emission from CR states, which are clear from Fig. 5.

-2

Z',

0 -3

CD0

9 13 17 21 25 29 33
Harmonic number N

FIG. 4. Same as in Fig. 3, but for a smooth pulse envelope.
Vp /co 15~ 0, triangles —Gaussian laser pulse; diamonds —pulse
with envelope f (t)= 1 —exp( t/t„„—), 0(t (w, t„„=0.2r.
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-10
1 3 5 7 9 11

Harmonic number N
13 15

First, the spectrum in Fig. 5 has the familiar features ex-
pected from the harmonic spectrum in a strong field: pla-
teau and cut-off. Second, in the case of CR states of
odd-charge molecular ions, the plateau is shorter than in
the case of atoms, atomic ions, or neutral molecules
[7,24,28]. Indeed, in the case of atoms, the plateau is
long and quite pronounced already at intensitiesI-3—5X10' W/cm [28], whereas in the case of CR
states, the intensities I-10' W/cm are required.

On the other hand, in the case of CR states, the values

F3

CD0

0

-6
1 5 9 13 17 21 25 29 33 37

Harmonic number N

FIG. 3. Harmonic generation in a two-level system driven by
a strong high-frequency field. Open circles —Vp /co = 15.0;
closed circles —Vp /co = 14.5.

-10
1 3 5 7 9 11 13 15 17 19 21 23 25 27

Harmonic number N

FIG. 5. (a) Harmonic emission from I2+ for laser frequency
co=1 eV and internuclear distance R =7 a.u. (1) Open dia-
monds, I=4X 10' W/cm, Gaussian laser pulse; (2) open trian-
gles, I=6 X 10' W/cm, Gaussian laser pulse; (3) closed
squares, I=6X10' W/cm, constant peak intensity. (b) Har-
monic emission from I&

+ for laser frequency ~=1 eV and in-
ternuclear distance R =7 a.u. (1) Open circles, I=2X10'
W/cm, Gaussian laser pulse; (2) open triangles, I=4X10'
W/cm, Gaussian laser pulse; (3) closed squares, I=4X10'
W/cm, constant peak intensity.
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CD
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1 9 13 17 21 25 29 33

Harmonic number N

FIG. 6. Harmonic emission from I2+ for different laser fre-
quencies, internuclear distance R =8 a.u. , and peak laser inten-
sity I=6X 10' W/cm . (1) Open diamonds, co=0.5 eV, Gauss-
ian laser pulse; (2) open triangles, co=0.33 eV, Gaussian laser
pulse; (3) closed squares, co=0.33 eV, constant peak intensity.

i(N)=( ~d&~ ) can be considerably higher than typical
values for atoms or neutral molecules. According to Fig.
5, at sufficiently high intensities I—10' W/cm,
i(N)=( ~d&j ) —10 for N(N, „, which is two to
three orders of magnitude higher than typical in atoms
[24,29] or atomic ions [7]. Unfortunately, there are no
data on harmonic generation from I atoms, but the direct
comparison can be done between the known data for H
and H2 [24] and those for the stretched Hz+ "frozen" at
the internuclear distance R -7—8 a.u. In the region
R ~ 7 —8 a.u. , CR states of H2+ are very similar to those
of Iz+, and harmonic intensities due to CR states in our
model are similar to those for I2+. There are also data of
recent ab initio numerical simulations of the Schrodinger
equation for stretched H2+ [30], which agree well with
our data for N & X „=2VO/co. Both data give the typi-
cal values ~d~ —10 at I =6X10' W/cm, co= 1 eV,
and N ~9, whereas Ref. [24] gives d~~ —10 —10 for
H and d& —10 —10 for H& frozen at the equilibri-
um distance R =1.4 a.u.

The situation is also promising in the case of smaller
laser frequencies. Figure 6 shows the spectrum of high
harmonics at the intensity I=6X10' W/cm, internu-
clear distance R = 8 a.u. [transition frequency
co2,(R)=0. 1 eV], and laser frequencies co=0.5 eV and
co=0.33 eV. As seen in Fig. 6, at smaller frequencies the
plateau is much longer and its level is high. We would
like to point out again that the maximum harmonic fre-
quency A „=X,„co=2Vo is approximately co indepen-
dent. From Figs. 5 and 6, it is also clear that the intensi-
ty of the maximum harmonic also is approximately co in-
dependent.

Hence, the strong coupling of CR states can be a very
efficient source of harmonics, able to compete with the
emission from separate atoms or atomic ions. On the
other hand, when dealing with ions, one has to worry
about the propagation effects, that is, the inhuence of free
electrons created in the ionization process on phase
matching. However, the use of molecular ions brings
several possibilities to solve the problem, and we will dis-
cuss them in Sec. V.

Concluding this section, we would like to make one

more remark. As was already mentioned in Sec. I, there
are, in zero approximation, two main mechanisms of har-
monic production in the process of fragmentation of
molecular ions: that due to strong coupling of CR states
and that due to the emission from two separate ions.
Qualitatively, the total emission spectrum is given by the
superposition of the emission spectra due to these two
different mechanisms. As far as the spectrum due to CR
states exhibits a shorter but higher plateau, under ap-
propriate conditions one can hope to get a double-plateau
structure in the total harmonic spectrum. It is indeed ob-
served in numerical simulations [30] for Hz+ frozen at
R =7 a.u. .

V. PHASE-MATCHING PROBLEM

As we have shown in Sec. IV, CR states of molecular
ions can provide a significant contribution to the emission
of high harmonics. The main reason why CR states
would become an important source of harmonics is a very
high level of plateau in the harmonic spectrum. On the
other hand, the use of molecular ions poses the important
problem of the effect of free electrons on the phase-
matching condition. In this section, we discuss the ways
to exploit the significant difference between the polariza-
bility (susceptibility) of molecular and atomic ions to
solve this problem.

First, if we wish to overcome this problem, we could
lower the gas density. For example, one can have the
same number of free electrons when using I2+ as when
using a 30% ionized medium of initially neutral atoms
with 3.3 times higher density. Lowering the density 3.3
times will lead to the order of magnitude decrease in har-
monic intensities. However, according to our calcula-
tions, the individual susceptibility of CR states can be
10 —10 orders of magnitude higher than that of atoms or
first atomic ions at the same intensities I-10' W/cm .

Second, there is a much more important opportunity:
using the difference in polarizabilities of atomic and
molecular ions, one can modulate the energy transfer
from the incident wave to the harmonic wave by a pro-
cess analogous to quasi-phase-matching. In the absence
of exact phase matching between the incident wave and
the wave of the Nth harmonic (b.k~%0), the energy is
transferred from the incident wave to the harmonic wave
over the length of coherence L~=m. /Ak&. Then the en-
ergy Bow reverses its direction and the energy is
transferred back to the incident wave over the next
length of coherence L& to 2L~. However, if the suscepti-
bility of the medium is modulated in such a way that it is
turned off at L~ to 2L~, 3L~ to 4L~, . . . , but is turned
on at 0 to L~, 2L~ to 3L&, . . . , then the energy How will
take place only in one direction. This idea of modulating
the nonlinearity of the medium was suggested in Ref. [31]
for harmonic generation in relativistically driven plasma.
There the nonlinearity depends on the density, and so it
is possible to achieve the desired modulation by modulat-
ing the plasma density. The use of CR states and the fact
that their susceptibility can be much higher than that of
atomic ions gives another means of modulating the non-
linear polarization of the medium.
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strong pulses
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The idea is to take the gas of, say, I2 molecules and dis-
sociate them in chosen regions. In this way, we prepare a
"sandwich" of molecules and atoms (see Fig. 7). UV ra-
diation from a standard eximer laser would suSce in the
case of I2. Using a nanosecond pulse, one can neglect the
motion of both molecules and atoms. That is, diffusion
from one "sandwich" layer to another can be ignored.
Then a short laser pulse ionizes the medium, creating the
successive layers of atomic and molecular ions with rath-
er different nonlinear polarizabilities (much higher for
molecular ions). The second pulse, coming with some de-
lay ht, generates harmonics (see Fig. 7). The whole idea
is based on the fact that nonlinear susceptibilities of
atomic and molecular ions (even if the latter are
stretched) are rather different owing to the presence of
CR states in the molecular-ion spectra.

In general, the presence of the vibrational degree of
freedom in molecules, together with the possibility to
freeze a diatomic molecule at a fixed internuclear separa-
tion by using a supershort laser pulse, opens rich possibil-
ities for using molecules as a nonlinear medium. Indeed,
creating the vibrational wave packet and varying the time
delay between the first and the second supershort laser
pulses (see Fig. 2), one can obtain the nonlinear response
from diferent local electronic spectra corresponding to
different internuclear distances R. Obviously, the
modulus and the phase of the polarization induced by the
second pulse will depend on the details of the local elec-
tronic spectrum. In other words, the phase of short-
pulse-induced polarization will depend on the concrete
value of the internuclear distance, that is, on the time de-
lay At between the two successive pulses. The principal
possibility of controlling the phase of the nonlinear polar-
ization of the medium by controlling At will be very im-
portant for the phase-matching problem, and will be dis-
cussed elsewhere. One can imagine, for example, prepar-
ing the vibrational wave packets in different regions of
the medium at different times. The second pulse, which
induces the polarization, will thus have a different delay
time from the first pulse while propagating through
different regions in the medium. Therefore, the polariza-
tion will change its phase along the length of the medium.

In summary, the very high polarizability of diatomic
molecular ions opens several ways to solve the phase-

matching problem in spite of the presence of many free
electrons.

VI. CONCLUSION

In this paper, we have considered the nonlinear
response of a single odd-charge ion of a homonuclear dia-
tomic molecule to a strong short laser pulse. We de-
scribed the conditions under which the use of a fem-
tosecond laser pulse allows one to freeze the ion of a
heavy molecule at a certain internuclear distance R. Un-
der these conditions, the emission spectrum is determined
by the local electronic spectrum corresponding to this
particular internuclear distance R. We have shown that,
at large values of R, the charge-resonant states of a
molecular ion can be a very efBcient source of high har-
monics. At a high laser intensity, the harmonic spectrum
has a plateau, which is probably typical for any strongly
driven quantum system. Intensities of harmonics due to
CR states can be several orders of magnitude higher than
those due to atoms or atomic ions. However, the length
of the plateau is shorter than in the case of atoms.

The presence of an additional —vibrational —degree of
freedom, the very high susceptibility of molecular ions
relative to atomic ions, and the use of supershort laser
pulses opens possibilities of controlling the phase of the
nonlinear polarization of the medium and of solving the
phase-matching problem even if there are many free elec-
trons in the medium. The phase of polarization can be
controlled by controlling the internuclear separation, and
we will discuss this issue in more detail in a subsequent
paper [32]. The use of quasi-phase-matching allows one
to handle the deleterions role of free electrons in harmon-
ic emission.

It is important to note that, in this paper, we assumed
that all ions of diatomic molecules are aligned along the
linearly polarized laser field. Experiments [14,15] show
that when such molecular ions are produced via multi-
photon ionization of neutral molecules, they experience a
torque which tends to align them along the electric field
during the fragmentation process. Such a torque also ex-
ists in neutral molecules. It is likely that an appropriate-
ly shaped alignment pulse could be used to orient the
molecules. The physics of the process is the same as in
the long-familiar optical Kerr effect. Therefore our as-
sumption is reasonable and the situation considered in
the paper is experimentally feasible.

In summary, we think the use of molecular wave pack-
ets and supershort laser pulses opens a rich spectrum of
possibilities for inducing and controlling the nonlinear
polarization of the medium, including such possibilities
as modulating the nonlinear susceptibility of the medium,
controlhng the phase of nonlinear polarization, and
e%cient generation of high harmonics of the incident
light.
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