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Mode entanglement in nondegenerate down-conversion with quantized pump
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We study entanglement between field modes in the process of nondegenerate two-photon down-
conversion with quantized pump. We show that due to the quantum nature of the dynamics, strong en-

tanglement between the pump and the signal-idler subsystems can be observed. We find that the higher
the initial intensity of the pump mode the stronger the entanglement between the pump and the signal-
idler subsystem is established during the first instants of the time evolution. We also show that the signal
and the idler modes are strongly entangled (correlated). This entanglement is much stronger than the
entanglement between the pump and the signal-idler subsystem. Correlation between the signal and the
idler modes leads to a high degree of two-mode squeezing, which can be observed during the first in-

stants of the time evolution when the pump mode is still approximately in a pure state. On the other
hand, the back action of the signal-idler subsystem on the pump mode leads to a strong single-mode
squeezing of the pump mode. At the time interval during which squeezing of the pump mode can be ob-
served the pump mode is far from being in the minimum uncertainty state. We also analyze the long-
time behavior of the quantum-optical system under consideration and we show that the interesting
collapse-revival effect in the time evolution of the mean photon number and of the purity parameters of
field modes can be observed. Finally, we show that the degree of entanglement between modes in the
nondegenerate quantum-optical down-conversion strongly depends on the initial state of the system.

PACS number(s): 42.50.Dv, 03.65.Bz

I. INTRODUCTION

A'&=to, it d+tot, b b+A, zy[tt b exp( iso, t)—
+&b exp(i to, t) ], (1.2)

where 8 and a (b and b ) are the annihilation and the
creation operators of the signal (idler) mode, respectively.
These operators obey the usual bosonic commutation re-
lations [8,8 ]=1,[b, b ]=1. The coupling constants A,D
and A.z are proportional to the second-order nonlinear
polarizability of the medium. The pump mode is as-
sumed to be a classical field with amplitude y and fre-
quency co, .

The degenerate two-photon down-conversion process
with the classical pump described by the Hamiltonian
(1.1) has served as a prototype of the quantum-optical
process in which a single-mode squeezed-light field can be
produced [3]. In fact, Kimble and co-workers [4] using
the degenerate down-conversion process described by the
Hamiltonian (1.1) have experimentally generated

Nonlinear quantum-optical processes are generally
considered as candidates for the production of highly
nonclassical states of light [1]. In particular, a great deal
of attention has been paid to quadratic processes, both
degenerate as well as nondegenerate, described by the fol-
lowing Hamiltonians [2]:

AD=to, & &+ADy[(0 ) exp( iso, t)+& ex—p(iso, t)],

=Datod+2to, c c+A[(a ) c+& c ), (1.3)

Be=to, a tI+a)t, b b+(to, +cot, )c c+8;„, , (1.4a)

squeezed light exhibiting a high degree of quadrature
noise reduction. On the other hand, the nondegenerate
Hamiltonian (1.2) describes a process in which a pair of
highly correlated signal and idler photons is created.
This correlation results in a high degree of two-mode
squeezing (for details on squeezing see the recent review
articles [5]).

Generally it is understood that by increasing the
amount of energy transferred from the pump into the
down-converted mode(s), the degree of squeezing can be
enhanced. Nevertheless, in real processes the transfer of
large amounts of energy from the pump to the down-
converted field modes is associated with the depletion of
the pump mode and the back action of the down-
converted modes on the pump field. These two efFects as
well as the role of quantum fluctuations of the pump field
are completely neglected in the parametric approxima-
tion, when the pump made is assumed to be a classical
Geld with a constant amplitude.

In a proper quantum-mechanical treatment one should
take into account the quantum nature of the signal and
the idler as well as the pump mode. In this case, instead
of the Hamiltonians (1.1) and (1.2), we have to consider
the following Hamiltonians [6—9]:
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where

8;„,=A, (& b c+&bc ), (1.4b)

II. QUANTUM DYNAMICS
OF THK NONDKGKNERATK TWO-PHOTON

DOWN-CONVERSION

where we have assumed the pump mode c to be in the
resonance with the signal and the idler modes (i.e.,
co, =2', or co, +cob).

We should note here that nonlinear dynamics de-
scribed by the Hamiltonian (1.1) stimulated investigation
in the direction of generalization to higher-order process-
es. It was expected that processes with Hamiltonians

Pk =coo @+sky[(& )"exp( kicot—)+d"exp(kin)t)],

(1.5)

describing the production of a bunch of k photons from a
classical current, can lead to the definition of new in-
teresting states. Nevertheless, it was shown that the ap-
proach starting from such a generalization faces serious
mathematical difBculties I9]. One possibility of how to
overcome these mathematical problems was proposed by
Hillery [9], who suggested taking into consideration ex-
plicitly the quantum nature of the pump mode. The in-
clusion of the quantum nature of the pump is also stimu-
lated by the fact that the statistical properties of the
pump can have serious effects on the nature of the gen-
erated down-converted modes. Such inhuence can be
completely eliminated by an eventual parametric approxi-
mation beforehand (see, for instance, Ref. [10]). More-
over, the Hamiltonian (1.1) cannot be regarded as a para-
metric approximation of the Hamiltonian (1.3) except in
the region of first instants V2y A, lit ( 1 (Ref. [10]).

The aim of the present paper is to study the entangle-
ment between the modes in the process of the nondegen-
erate two-photon down-conversion with the quantized
pump described by the Hamiltonian (1.4). We will show
that due to the quantum nature of the dynamics, strong
entanglement between the pump and the signal-idler sub-
systems can be observed. We will show that the higher
the initial intensity of the pump mode, the stronger the
entanglement between the pump and the signal-idler sub-
systern is established during the first instants of the time
evolution. We will find that in the process under con-
sideration the signal and the idler modes are strongly en-
tangled (correlated), which results in a high degree of
two-mode squeezing observable during the first instants
of the time evolution. We will show that the back action
of the signal-idler subsystem on the pump model leads to
a strong single-mode squeezing of the pump mode. At
the time interval during which squeezing of the pump
mode can be observed this mode is far from being in the
minimum uncertainty state. We will also analyze the
long-time behavior of the quantum-optical system under
consideration and we show that the interesting collapse-
revival e6'ect in the time evolution of a mean photon
number and purity parameters of field modes can be ob-
served. Finally, we will show that the degree of the en-
tanglement between the modes in the nondegenerate
quantum-optical down-conversion is highly sensitive with
respect to the quantum-statistical properties of the initial
state of the system under consideration.

It has been shown recently that one cannot solve
analytically in a closed form the von Neumann equation
for the density p with the nonlinear Hamiltonians of the
type (1.3) and (1.4) [11,12]. On the other hand, the nu-
merical analysis based on a diagonalization of the Hamil-
tonians in the interaction picture turns out to be very
efBcient and allows one to study the time evolution of the
quantum-mechanical systems described by trilinear Ham-
iltonians (see [13,14] and references quoted therein).

The purpose of this paper is to study quantum correla-
tions between the pump, signal, and idler modes in the
quantum nondegenerate two-photon down-conversion.
As we will see later, the quantum dynamics described by
the Hamiltonian (1.4) leads to a strong entanglement be-
tween the pump and the signal-idler subsystem and be-
tween the signal and the idler modes. The entanglement
between the modes leads to the increase of marginal en-
tropies of the pump, signal, and idler modes, respectively
(even though the total entropy is constant and equal to
zero, if we assume the system to be initially prepared in a
pure state and neglect losses in the system). The
quantum-mechanical entropy S; (as defined by von Neu-
rnann) of the mode i (i =a, b, c) [15] (we assume the
Boltzmann constant k~ to be equal to unity),

S;= —Tr;(p; lnp;), (2.1)

is defined through the reduced density operator p; of the i
mode. In particular, the reduced density operator of the
pump mode p, is given by the relation

pc Trabp ~ (2.2)

where Tr,b denotes tracing over the signal and the idler
variables.

In what follows we will utilize the Araki-Lieb theorem
[16],which can be expressed in the form

~s„—s, ~

~s~s. +s, , (2.3)

where S„and S are the marginal entropies of two sub-
systems which compose the whole system. From (2.3) it
follows that if the pump, signal, and idler modes are ini-
tially prepared in pure states, i.e.,

s. I ~ =o sb I t =o=o=—s, I ~ =o (2.4)

then the entropy S of the total system is initially equal to
zero. Due to the fact that we do not take into account
losses in our model, the total entropy is an integral of
motion, i.e., S =0 for any t & 0 and

Sb S, for t&0, (2.5)

is. —s, i ~s.„=s,~s.+s„. (2.6)

One possibility of how to quantify the degree of the en-

where S,b is the entropy of the signal-idler subsystem.
Additionally, from the Araki-Lieb theorem it then fol-
lows that
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From the above it follows that in our case the index of
correlation I,'b", between the pump and the signal-idler
system is equal to twice the marginal entropy of the
pump mode:

ab-c c (2.8)

The stronger the entanglement, the higher the value of
the index of correlation and the larger the entropy of the
pump mode. In this paper we will study the nondegen-
erate down-conversion process for such initial states for
which the marginal entropies of the signal and idler
modes are equal for any t )0. This additional assump-
tion enables us to express the signal-idler index of corre-
lation I,"b' in the form

(2.9)

from which it follows that for given values of the signal
and idler entropies the index of correlation between the
signal and idler decreases with the increase of the pump
entropy.

The increase of the entropy of the pump mode in the
two-photon down-conversion rejects the fact that the ini-
tial pure state of the pump mode is transformed into a
statistical-mixture state. On the other hand, in the para-
metric approximation described by the Hamiltonian (1.2)
no quantum entanglement between the pump and the
signal-idler subsystem can appear; therefore, if the signal
and idler modes are initially in pure states (for instance,
in the vacuum state), then the entropy S,b is identically
equal to zero for any t )0 and both the signal and the
idler are maximally correlated for any t )0 [17]. From
here we conclude that the parametric approximation
leads not only to neglecting of the important role of the
pump fluctuations and the pump depletion but also to
neglecting of the pump-signal entanglement.

In this paper, instead of evaluating entropies of the
modes, we will evaluate the so-called purity parameters
Sp"' which are also functions of the reduced density ma-
trix p;. The purity parameter S,~"' is defined as

tanglement between two subsystems is to evaluate the in-
dex of correlation I„'"'defined as (see, for instance, [17])

(2.7)

will analyze the entanglement between modes using the
purity parameter and not the entropy S'.

III. ENTANGLEMENT BETWEEN THE MODES:
SHORT-TIME BKHAUIOR

In this section we will analyze the entanglement of the
field modes in the case when the pump mode is initially
prepared in a coherent state and the signal and the idler
modes are in the vacuum state at t =0:

(3.1)

where ~y), describes the coherent state with a real am-
plitude y:

n

ly), = exp( —y'/2) g —~n), ., v'n! (3.2)

0(t) = exP( i8btt)— (3.3)

can be well approximated by the first two terms of the

Using the numerical approach described in Refs.
[13,14] we can study the time evolution of the initial-state
vector (3.1) governed by the Hamiltonian (1.4). The puri-
ty parameter of the pump mode at the early stages of the
evolution is shown in Fig. 1 for various initial intensities

y . From this picture we learn that the higher the intensi-
ty of the initial pump mode, the larger the purity parame-
ter S,"' of the pump, i.e., the stronger the entanglement
between the pump and the signal-idler system. More-
over, we see that after the first increase of the parameter
SPu' a clear minimum is formed. These "oscillations" in
Spu' are repeated few times before the purity parameter
reaches an alinost steady state with small oscillations (see
the long-time behavior). From the time evolution of the
purity parameter it is clearly seen that the pump mode
remains in a pure state only at very early stages of the
time evolution. In addition, the larger the intensity of the
initial pump mode, the shorter the interval at which
S,"'=0 [see Eq. (3.6)].

At the early stages of the time evolution the evolution
operator

SP"'= 1 Tr; [(p—, )], . (2.10)
0.8

Spur —Spur & S ur & Spur
abc — ab — a (2.11)

and it can be shown that the purity parameter represents
a lower bound for the corresponding entropy S, , i.e.,
S,~"'&S;. For a pure state S,P"'=0, otherwise S,~"')0.
Moreover, the purity parameter (by the choice of our ini-
tial states) will satisfy relations valid for the entropy, such
as, for instance, the Araki-Lieb theorem (2.6). The purity
parameter of the chosen system is never greater than the
purity parameter of its subsystem. For our particular
case this implies

0.4

0.0
0.0 0.5 1.0 l.5 2.0

scute d, Dyne

From a computational point of view, the parameter S,P '
can be evaluated much more easily than S;. Therefore we

FIG. 1. The time evolution of the purity parameter S,p"' for
various intensities of the initial coherent state of the pump
(y = 1, line with stars; y =3, dashed line; y =5, solid line).
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FIG. 2. Parameters of the pump mode

(y =5): (a) the Q, function at A, t =0.2, (b) the
photon-number distribution at A,t =0.2, (c) the

Q, function at kt =0.5, (d) the photon-number
distribution at A,t =0.5, (e) the time evolution
of the single-mode squeezing, and (f) the time
evolution of the MUS parameter.
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forrnal Taylor expansion of the right-hand side of Eq.
(3.3):

0(t}=1 i8~t . — (3.4)

The time evolution of the state vector of the whole sys-
tem is then given as (we drop the free evolution term)

ly(t) ) = 0(t)lo). lo&, ly &,

=(1».lo&, —
itxyl ». l»b) ly &,

=
lg &., Iy &, .

Such a factorization is possible only for times t for which
[10]

(3.5)

Q;(~)=—&~lp;l~&,
I

7T

and the photon-number distribution (PND) as

P, (n)=&nip, ln& .

(3.7)

(3.8)

A. Statistical properties of the pump mode

In Fig. 2 we plot the Q function and the PND of the
pump with y =5 for two different values of time. In Figs.

t &t, = 1 (3.6)
yA

From Eq. (3.5) it follows that for times t (t, the pump
mode remains almost completely disentangled from the
down-converted modes. In other words, during the time
interval t (t, the statistical properties of the pump are
not affected by the interaction with the signal-idler sub-
system. To see this, we plot in Fig. 2 the Q function and
the photon-number distribution of the pump mode. The
Q; function of the particular mode is defined as [18]

(3.9)

(3.10)

and

& ~, )'&=&&,'& —&&, &', &(&&,)'&=& &,'& —
& &, &'.

(3.11)
This function is zero for MUS states and is positive oth-
erwise. The time evolution of the function u, is shown in
Fig. 2(f). We see that for short times the parameter u,
equals zero and then starts to grow rapidly, which means
that under the inhuence of the down-converted modes the
pump mode starts to deviate from the MUS. Comparing
Figs. 1 and 2(fl, we can conclude that the pump mode
starts to deviate from the MUS at the same time that it
starts to be strongly entangled with the signal-idler sub-
system. We can conclude that the back action of the
down-converted modes affects significantly the statistical
properties of the pump mode. In Fig. 2(c) [2(d)] we plot
the Q function (the PND) of the pump mode at time

2(a} and 2(b) we plot Q, and P, (n) at time A, t =0.2. The
shapes of these functions are almost identical to that of
the initial coherent state, i.e., the Q function has a Gauss-
ian profile and P, (n) is the Poissonian distribution. As
an additional check of the behavior of the state of the
pump mode during the early stages of the time evolution,
we evaluate the deviation of the pump mode from the
minimum uncertainty state (MUS}. As a measure of the
degree of deviation from a MUS state we can adopt the
following parameter:

t, = &(~, )'& & (~&, )'& —
—,', ,

where the quadrature operators X', and $, are defined as

c(t)+c(t) c(t)—c(t)
c 2 c

c(t) =c exp(ice, t),
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A,t=0.5 (for y=5). We see that the Q, function is
"squeezed" in one of the directions and stretched in the
other. The photon-number distribution exhibits oscilla-
tions similar to those of the squeezed state [3]. More-
over, the PND becomes much broader when compared
with the Poissonian distribution and it indicates a consid-
erable increase in the probability of finding lower number
states. From the above we can conclude that the back ac-
tion of the down-converted modes leads to a squeezing of
the pump mode. In Fig. 2(e) we plot the time evolution
of squeezing parameters defined as [5]

q|=4&(W, ) ) —1, qz=4&(5$, ) ) —1 . (3.12)

From this figure it follows that the back action of the
down-converted modes leads to a considerable reduction
of quadrature Buctuations of the pump mode. The max-
imum degree of squeezing is obtained at times around
A.t =0.6, after which quadrature fiuctuations become rap-
idly super6uctuant and do not become squeezed again.

B. Statistical yroperties of down-converted modes

Now we turn our attention to the down-converted
modes. The purity parameter S,b' of the signal-idler sub-
system is equal to that of the pump mode. This naturally
means that at the very early stages of the time evolution
the signal-idler subsystem is in a pure state. While the
pump is still in a pure state, a two-mode squeezed vacu-
um state is generated in the signal-idler modes. The
two-mode squeezing can be described by introducing two
quadrature operators 2;:

d(t)+d (t) g d(t) d(t) —
(3 13)

where

d(t)=
d eXp(irrI, t)+ b eXp(irrI„t)

(3.14)

The degree of two-mode squeezing can be quantified us-
ing two parameters z;(t) (i = 1 and 2):

z, (t) =4& (»', )') —1, (3.15)

(3.16)

With the initial condition (3.1) the reduced density
operators of the signal and idler modes p, and pb have
the same form, from which it follows that the signal and
idler modes have identical statistical properties, i.e.,

Pur Spur P (tt) Pb(tt) and Q (tz) Qb(tz) (3 17)

The time evolution of the purity parameter S~"' of the

where &(»;) ) =&2; ) —&2;) and 100% squeezing is
obtained for z;(t)= —1. The time evolution of z;(t) is
shown in Fig. 3(a). During the first instants of the time
evolution a high degree of two mode squeezing is ob-
tained. During the initial period the energy is transferred
from the pump mode to the signal-idler modes. With the
increase of the transferred energy the degree of squeezing
becomes larger. This scenario is valid until the moment
when the back action of the signal-idler modes on the
pump mode becomes significant. Before that a pure two-
mode squeezed state is generated in the signal-idler
modes. This pure (S,b'=0) two-mode state is a
minimum uncertainty state. One can check this by in-
specting [see Fig. 3(b)] the time evolution of the MUS pa-
rameter u, t, (t), which is defined as

u.,=&(», )'&&(», )') —
—,', .
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FIG. 5. The time evolution of the purity parameter S,"' of
the pump mode (a) and S,"' of the down-converted mode (b) for
y = 5 on the long-time scale.

FIG. 4. The time evolution of the purity parameter S~"' for
various intensities of the initial coherent state of the pump
mode (y = 1, line with stars; y =3, dashed line; y =5, solid line).

signal mode is shown in Fig. 4. We see that for the given
intensity of the initial pump mode the purity parameter
SI'"' increases during the initial period of the time evolu-
tion much more rapidly than the parameter S~&' (com-
pare Figs. 1 and 4). From here it follows that at initial
stages of the time evolution the index of correlation I,'b'
takes its maximal values (i.e., I b'-—2S, ), which is an ad-
ditional proof that the two-mode squeezed vacuum is
produced in the signal-idler modes [17]. As soon as the
pump mode is affected by the action of the down-
converted modes, the purity parameter S,"' becomes
larger than zero, which results consequently in the
deterioration of the degree of correlation between the sig-
nal and the idler.

In Fig. 3(c) [3(d)] we plot the Q function (the PND) of
the signal mode at the moment At=0. 2 .(we assume
y=5). We clearly see the thermal-like character of the
marginal photon-number distribution and the Q function,
which is the characteristic feature of the two-mode
squeezed vacuum state [5]. At later moments, when the
pump and down-converted modes become entangled
(S, )0), the field statistics of the signal mode are
significantly different from the thermal-like field. In par-
ticular, the photon-number distribution becomes very
broad [compare Figs. 3(d) and 3(f)]. At times much longer
than t, [see Eq. (3.6)] the three modes under considera-
tion become strongly entangled. They are not in pure
states anymore, but the quantum nature of the dynamics
leads to some new interesting features.

should note here that the minima of the parameters S,""'
and S,"' appear simultaneously and moments when they
appear coincide with the "revivals" of the mean photon
number of the signal (idler) mode (see Fig. 6) [14]. We see
that due to the quantum dynamics we can observe a par-
tial restoration of the initial purity of the modes under
consideration.

Estimation of the "revival" time

The explanation of the collapse-revival behavior in our
case can be done using the eigenvalues E;(n) and
the eigenvectors ~E;(n) ) of the Hamiltonian 8;„, given
by Eq. (1.4b):

&;., IE, (n) ) =E;(n) lE, (n) ), (4.1)

where n is the eigenvalue of the number operator 8':

A=b b+c c . (4.2)

For a fixed value of n, the eigenvalues E;(n) and the
eigenvectors ~E;(n) ) are obtained via the diagonalization
of the interaction Hamiltonian H;„, on the subspace &„
formed out of the set of vectors of the form
[i =0, . . . , n;~i), ~i )&~n i ), ]. The —dimension of the
subspace &„ is n + 1. The eigenvectors

~ E, ( n ) ) are given
as superpositions of the basis vectors ~i ), i ) b ~

n —i ), :
n

~E (n)) = g ai;(n) i ), ~i )b n i ), , —
i=0

where the actual values of E (n) and aj., (n) can be found
by numerical calculations.

IV. ENTANGLEMENT BETWEEN THK MODES:
LONG- TIME BEHAVIOR

If we compare the time evolution of the purity parame-
ter of the pump mode Si'"' [see Fig. 5(a)] and of the signal
mode S,"' [Fig. 5(b)] we find that during the initial stages
of the time evolution S~"' increases much more rapidly
than Si'"' [see the previous section and (2.11)]. Neverthe-
less, on the long-time scale the time evolution of both pa-
rameters is similar, i.e., both parameters exhibit small os-
cillation around some stationary value and a very
significant decrease and significant oscillations at some
particular moments. We can call this behavior the col-
lapse and revival of the purity of the field mode. We

15-

I I I I I I
/

I I I I I I I I I
$
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FIG. 6. The time evolution of the mean photon number (n, )
of the signal mode for y =5.
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We suppose the initial state of the whole system l f(0) &

to be of the form

Qo pg= exp( —lyl'/2) g y l0&. l0&, ln &, ..=o &ni
(4.3)

The state vector l0&, l0&bin &, can be decomposed in the
basis of the eigenvectors lE;(n) &:

)

\

\

)

lo&. lo&, ln &, = y c, (n) lE, (n) & .
j=0

(4.4)
0.0 rra ~ re ~ re

I
' ! ~ P

2 4 6 8 10 l2 14 16
In Fig. 7 we plot a distribution of probabilities
P(j)=lcJ(n)l [in fact, the coefficients c (n) are real]
which indicate the overlap between the state
l0&, l0&b ln &, and the eigenstate lEJ(n) &.

From this figure it follows (for more details see Refs.
[13,14]) that for n =21 (even) the decomposition (4.4) can
be well approximated as

FICi. 7. Distributions of the probabilities P(j )= lcj(n)l indi-
cating the overlap between the state l0&, lO)bin &, and the
eigenstates lEJ(n) & for n =16 (line with squares) and n =17
(line with triangles). Increasing i indicates increasing absolute
value of eigenvalues.

l0&, l0&b l2! &, =co(2l)lEe(21) &+c&(21)lE,(2l) &

+cz(21) lEz(2l) &, (4.5)

lO&, lO&bl2l+1&, =co(21+1)lEO(2l+1) &

+ci(21+1)lEi(21+1)&, (4.7)
with Ec(21)=0 and Ez(2l) = —E&(21). In addition, from
Fig. 7 follows that c, (n) =cz(n). Consequently, the time
evolution of the state (4.4) is given as (we drop the free
evolution term proportional to exp[ i (co, + rob )2lt—] )

l@2&(t) &
= exp( iA'~t—)lo&. lO&, l2l &,

=co(2l)lEo(2l) &

where Eo(21+1)=—E, (2l +1) and co(2l+1)=c,(2l
+1) (see Fig. 7). The time evolution of this state is
given as (we again drop the free evolution term
exp[ —i (co, +co~ )(2l + 1)t])

i/21+, (t) & = exp[ —iEo(21+ 1)t]cz(2l + 1)lEo(2l + I ) &

+c, (2l) exp[ iE, (21)t]lE—, (2l) &

+c, (2l) exp[iE, (2l)t]lE2(2l) & . (4.6)

+ exp[iEo(21+ 1)t]

Xcz(21+1)lE,(2l+1) & . (4.8)

For n =21 +1 (odd) we can express the expression (4.4)
approximately as

Using the expressions (4.6) and (4.8), the time evolution
of the whole system with the initial condition (4.3) can be
written as

I tt(t) & = g Q (2l) [co(2l) lEo(2l) &+c,(2l) exp[ —iE, (2l)t] lE, (2l) &+c,(21)exp[iE, (2l)t] lE~(21) & (
1=0

+ g Q(2l+1)I exp[ iEo(21+1)t]co(2l—+1)lEo(21+1)&+ exp[iE&(21+1)t]co(21+1)lE,(21+I)&J,
1=0

(4 9)

where Q (n) =exp( —y /2)y" /&n!. The time evolution of the mean photon number n„of the particular mode x,

n„(t)=(f(t)lx xi/(t)&, (4.10)

can be now well approximated as
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n„(t)= g Q (21) 2co(21)cI(21)(Eo(21)~x x~E, (21)) cos[E, (21)t]

+2cII(21)c,(21)(EII(21)~x x ~E2(21) ) cos[E, (21)t]+Zc, (21)(E,(21)~x x ~Ez(21) ) cos[2E, (21)t]

2

+ g c; (21)(E, (21) ~x x
~ E, (21) )

i=0

+ g Q (21+1) 2co(21+1)(Eo(21+1)ix x iE&(21+1)) cos[2Eo(21 +1)t]
1=0

1

+ g c, (21+1)(E;(21+1)ixxiE, (21+1))
i=0

(4.11)

2[EI(21+2)—E,(21)]ttt =2m. ,

[EI(21+2)—EI(21)]ttt =2m. ,

2[Eo(21+1)—Eo(21 —1 )]ttt =2' .

(4.12a)

(4.12b)

(4.12c)

A numerical analysis of the eigenvalues for n even and
odd shows that tz =tz . The other two revivals are"2 3

given by relations

Terms in the expression (4.11) are proportional to cosines
of the eigenvalues EI(21), 2EI(21), and 2Eo(21 +1). Us-
ing arguments similar to those used for the derivation of
the revival time for the coherent Jaynes-Cummings mod-
el [19], we can estimate the revival times for our case.
For a sufficiently intense initial coherent state ~y), the

2relevant terms in the sums are those with n =n =y . The
revival times tz can be now estimated as times when two

t

neighboring oscillations with 2I =y and y +2 acquire a
2n phase difference [19]:

tg 2'2m'

EI(21+2}—EI(21 )
(4.13)

Using the actual values of the eigenvalues E (see Refs.
[13,14]) given in Table I we find that t~ =25 and

tz ——50, which is in agreement with numerical plots in
2

Figs. 5 and 6 (we have set y =5). We see that during the
first "revival" at t = tz the envelope of the purity param-

1

eter indicates just a small reduction of SI'"'. This reduc-
tion is much more pronounced at t = tz . Rapid oscilla-

2

tions of the purity parameter S,"' around tz indicate a

very rapid change of statistics of the pump (as well as the
signal) mode. We illustrate this by plotting the Q, (a}
function and the corresponding photon-number distribu-
tion P, (n) of the pump mode at three subsequent mo-
ments in the vicinity of the revival time tz (see Fig. 8).

2

In Fig. 8(a) the Q, function is plotted at the moment
when the purity parameter reaches its local maximum.
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FICy. 8. The Q, function [(a), (c), and (e)]
and the photon-number distribution [(b), (d),
and (f)] of the pump mode at times )r.t =49.6,
50.0, and 50.8, respectively.
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TABLE I. The eigenvalues E,(n) of the interaction Hamil-
tonian (1.4b) for n =23—27. We adopt units A= 1 and A, = 1.

Eo

23
24
25
26
27

2.168 76
0.0
2.231 32
0.0
2.291 14

—2.168 76
4.584 62

—2.231 32
4.706 73

—2.291 14

7.11631
—4.584 62

7.304 19
—4.706 73

7.484 09

V. ROLE OF INITIAL STATISTICS
OF DOWN-CONVERTED MODES

We see that the Q, function is formed by four identical
component states which are mutually out of phase by 90'.
The corresponding photon-number distribution has a
Poissonian-like peak around the initial n [Fig. 8(b)].
These results indicate that at this particular moment the
pump mode is in a statistical mixture state. On the con-
trary, at the moment when the purity parameter reaches
its local minimum we can observe a significant peak of
the Q, function at the origin of the phase space [Fig.
8(c)]. Simultaneously the photon-number distribution ex-
hibits significant oscillations [Fig. 8(d)], which can be ex-
plained as a consequence of quantum interference in the
phase space (see [20] and references cited therein). At the
subsequent moment when the purity parameter S,"'
again reaches its maximum value the Q, function is com-
posed of four peaks [compare Figs. 8(e) and 8(a)] and the
photon-number distribution has a peak around n [com-
pare Figs. 8(fl and 8(b)].
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FIG. 9. (a) Time evolution of the purity parameter for D = 10
(dashed line, a mode; solid line, c mode). In (b) the parameter
D =100. In both cases y=3.

Such a factorization can be done only for times

0&t& 1

+D +, ly
(5.5)

at which the purity parameter S~"' is approximately

1.0

0.8

0.6

'r/I//'q ~::

0.4

0.2

tor of the whole system can be naively (see below) ap-
proximated as (we drop the free evolution term)

ly(r) & =(I0&.ID &i, i«D—+ Idyll &. ID+1&b)ly &,

(5.4)

We can expect that the entanglement between the
modes will depend not only on the initial statistics of the
pump mode but also on the initial statistics of the down-
converted modes [10]. In this section we illustrate this
dependence on a simple example when the idler mode is
initially prepared in a number state ID &b, i.e., the total
state vector at t =0 has the form

0.0
0.0

1.0

(a)

40.0 80.0 1 20.0 1 60.0
scaLed Arne

I@(0)&=I0&.ID&, ly&, . (5.1)
0.6

Crj

0.4
In this section we will assume the number of photons in
mode b to be comparable or larger than in mode c.
Therefore, in what follows we will not denote mode c as
the pump mode.

It can be shown easily that for the case DAO the fol-
lowing equations hold for the parameters of the a and b
modes:

0.2

00 400 800 1200 1600
scaLed Nunc

10

g pur ggur

P, (n)=Pb(n+D) .

(5.2)

(5.3)

The entanglement parameters of the c and a modes for
various values of D are shown in Fig. 9. We see that the
time evolution of S~"' depends on the value of D. Name-
ly, the larger the value of D, the faster the purity parame-
ter S~"' increases. The other interesting feature we can
see in Fig. 9 is the quasiperiodic time evolution of the
purity parameters S~"' and S~"' for various values of D.

At the early stages of the time evolution the state vec-

I I I f I I I [ I I I i I I0
0.0 40.0 80.0 120.0 1 60.0

scaLed Nrne

FIG. 10. The time evolution of the purity parameter of the
pump mode (a) and the signal mode (b) on the long-time scale
for D =100 and y=3. In (c) we see the time evolution of the
mean photon number.
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tit —4n.k')/D, k =—1,2, 3, . . . , (5.6)

equal to zero. On the other hand, at times longer than
time t, the c mode becomes entangled with modes a and b
and the application of the parametric approximation is
questionable [10]. From Eqs. (5.4) and (5.5) it follows
that the initial time interval during which the modes are
still not entangled should become shorter with increasing
D. Nevertheless, the exact calculation shows that in the
case when D »y the entanglement between the c mode
to the a and b modes (i.e., the parameter S~"') is much
weaker compared with the case when D =0 [see Fig.
9(b)], i.e., the modes become entangled much later than is
indicated by t, . I.et us note here that while in the case
D =0 at the early stages of the time evolution the two-
mode squeezed vacuum is produced in the (a +b) subsys-
tem, in the case when DAO a displaced two-mode
squeezed vacuum state [21] is produced in these modes.

In the previous section we have shown that in the
long-time scale our system exhibits a purely quantum
effect of collapses and revivals of the purity parameters.
In other words, the system under consideration exhibits
"spontaneous" disentanglement between the pump mode
and the down-converted modes. A similar behavior can
be observed when the idler mode is initially prepared in
the Fock state ~D )b. Moreover, with the increase of the
initial number of idler photons the "collapse-revival"
effect becomes even more pronounced (see Figs. 9 and
10). In the limit D ))y there are moments during which
the purity parameter of the c mode approaches zero,
which means that two "down-converted" modes become
disentangled from the c mode. Simultaneously, the puri-
ty parameter S,"' becomes reduced, but the index of
correlation I,"b' is still larger than zero, i.e., the "down-
converted" modes are still correlated.

In the case with D & 0, the estimation of the "revival"
time is much more dificult compared with the case
D =0. This is mainly because of the fact that the decom-
position of states ~0), D)b~n), into the eigenvectors
~E;(n) ) is not as simple as in the case where D =0. Nev-
ertheless, for the limit case D ))y an estimation for the
revival times of the mean photon number can be given
[22]. These revival times tz are

k

two-photon down-conversion with a quantized pump. We
have shown that due to the quantum nature of the dy-
namics the strong entanglement between the pump and
the signal-idler subsystems can be observed. We have
found that the higher the initial intensity of the pump
mode, the stronger the entanglement between the pump
and the signal-idler subsystem is established during the
first instants of the time evolution. We have also shown
that the signal and idler modes are strongly entangled
(correlated). This entanglement is much stronger than
the entanglement between the pump and the signal-idler
subsystem. Correlations between the signal and the idler
modes lead to a high degree of two-mode squeezing
which can be observed during the first instants of the
time evolution when the pump mode is still approximate-
ly in a pure state. On the other hand, the back action of
the signal-idler subsystem on the pump mode leads to a
strong single-mode squeezing of the pump mode. At the
time interval during which squeezing of the pump mode
can be observed, the pump mode is far from being in the
minimum uncertainty state. We have also analyzed the
long-time behavior of the quantum-optical system under
consideration and have shown that the interesting
collapse-revival effect in the time evolution of the mean
photon number and of the purity parameters of the field
modes can be observed. We have also shown that the de-
gree of entanglement between modes in the nondegen-
erate quantum-optical down-conversion strongly depends
on the initial state of the system. In particular, we have
studied the situation when the idler mode is initially
prepared in the Fock state ~D )b. We have found that
with the increase of D (D ))y ) the entanglement be-
tween the signal and the pump modes becomes weaker.
This strong dependence on the initial conditions requires
a more detailed analysis and is studied in Ref. [22].

On the other hand, in the long time scale very
significant disentanglement between the c ("pump") mode
and the down-converted modes can be observed. This
"spontaneous" disentanglement has quantum-mechanical
origin, and therefore it is dificult to say whether it can be
observed in real systems in which dissipative processes in
the long-time scale play a "destructive" role, i.e., they
rapidly destroy quantum coherences.

which is in good agreement with Fig. 10(c). There are
some additional "small revivals'* of the purity parameters
at times t =tz /2 [see Figs. 10(a) and 10(b)]. It turns out

1

that it is very dif5cult to estimate these additional revival
times.

VI. CONCLUDING REMARKS

In this paper we have studied the entanglement be-
tween the field modes in the process of nondegenerate
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