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Using an exactly solvable model of a bound Klein-Gordon particle in an intense laser field, we
obtain the above-threshold energy spectra of the ejected electron for intensities in the range I =
7 x 10 W/cm? to 10%°° W/cm?, and compare them with the predictions of the Schrédinger theory.
The present calculations also allow us to test an approximation for relativistic intensities, which

should be useful for real systems.
PACS number(s): 32.80.Fb, 32.80.Rm

Current developments [1] in high-power lasers promise
to provide laser intensities beyond 10'® W /cm? for which
the oscillation energy of a free electron in the electromag-
netic field (the so-called quiver energy) could approach or
exceed the rest mass energy mc? of the free electron. In
this condition (in spite of the fact that the laser photon
energy is nonrelativistic) laser-atom interactions need to
be analyzed relativistically and nonperturbatively. In-
vestigations of exactly solvable model problems, in this
context, are of special interest in view of the possibility
of gaining useful qualitative understanding of physical
processes such as ionization of atoms or detachment of
negative ions or possible photodisintegration of nuclei,
in relativistically intense laser fields. Furthermore, they
can help test new approximation methods which might be
needed to tackle a real system. In a recent paper [2] (to
be referred to below as I) we have introduced and solved
a model of a charged Klein-Gordon particle bound in a
separable potential and simultaneously interacting with a
circularly polarized plane-wave electromagnetic field (of
arbitrary frequency and intensity). The model studied
has one discrete state and the full continuum spectrum
and therefore may be applied to quantum systems which
exhibit effectively one bound state, e.g., a negative ion
or the deuteron nucleus. The purpose of this article is to
present quantitative results for the above-threshold en-
ergy spectra of the ejected electron in the relativistic re-
gion of intensities and compare them with the prediction
of the corresponding Schrédinger theory.

The three-dimensional relativistic model system of in-
terest is defined by the Klein-Gordon (KG) equation

{10, = V)? = [b — eA(x,)? —m?}¥() =0. (1)

In natural units ¢ =1, i = 1. The short-range binding
potential is chosen in the separable form

V=Volo)al, (Bl =1, (2)
with
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and
A(z) = Aplercos(k -z + 6) —egsin(k -z +6)] (4)

is assumed to be a circularly polarized vector potential
with peak amplitude Ao, frequency w, and unit polar-
ization vectors e; and ey. Note that in the relativistic
domain the usual dipole approximation is inapplicable
and hence the full wave-vector dependence is retained in
the present theory. It is shown in I that in the absence
of the field, A = 0, Eq. (1) supports a single bound state
with positive binding energy

3 1
By =\/m? — V& + Vo, (5)

for Vo < 0 and %Vbz < m?2, so that the arbitrary poten-
tial parameter Vp can be chosen to reproduce the actual
binding energy of the system of interest. The wave func-
tion of the associated bound state is

U(x,t) = e FolTg (x)
(m? — E3)3/*
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The exact solution of Eq. (1) in the presence of the field
(4) is, as may be expected, much more involved. We
have given this solution in I and used it to derive the
above-threshold energy spectrum of the ejected electron
analytically. We shall not repeat the derivation here, but
quote the final expressions which are used to carry out the
present numerical investigation of the relativistic spectra.
These spectra define the probability distributions of the
energy of the ejected electron in the continuum states
which are given by the relativistic KG Volkov states
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where
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e=¢€(p) =1/p2+m?+e2A2 (8)

and
P=p (9)

This definition, therefore, corresponds to the so-called
J

intrinsic spectrum (3], in the presence of the field. The
appropriate amplitude is given by the following analytic
expressions:

A(p) = io eV AN (p) (10)

N=—oc0

with

o " Vo
AN (p) = J_n(aB|p|sinb,)eN > [(Eo +po + Nko)®i(p + Nk) — —E—{;—zqﬁ(p + Nk)]
0

+Vo[2(Po + Nko) — VolJ—n(aB|p|sin 8,)eN?» ¢(p + NK)[Wo(po + Nko)]~1C™ (pg) (11)

and

&g $(a+ Nk)J_p(ab?q| sin 6,) [(E +Po + Nko)®i(a + Nk) — 2= 6(q + Nk)

400
CM™@e)= Y /5;5

M=-oc0

where

~+o00
Wn(E) =1 - V5[2(E — nko) — Vo] >

2
N 4

In the present case the Fourier transform of the initial
state (6) is

_ 8TAZN, 1

$,(p)= AN 1 14
)= "TE T -
and that of the potential function (3) is
v _ 47TNO
é(p) = PITiaE (15)

The magnitude of the final momentum |p| is given in
terms of the kinetic energy of the ejected particle in the
presence of the field

1/2
1 = et + 200/ i3] (16)

where

Ekin = Po — {/m? + e2AZ . 17)

Before presenting the quantitative results we note that
a proper comparison of the theoretically calculated in-
trinsic spectra with laboratory results, in general, will
require considerations regarding the effective duration of
the laser pulse. For very long pulses the ejected electrons
in the field can be accelerated by the so-called pondero-
motive force arising from the macroscopic field gradient
of the laser beam [4]. The associated extrinsic spectra
would be accordingly shifted greatly to higher energies
compared to the intrinsic spectra. The latter may be re-
ferred directly to the experimental spectra only for pulses
which are short enough with respect to the electron es-
cape time through the spatial profile of the laser field
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(yet long enough compared to the period of the central
frequency). For example, if we assume that a typical ex-
tension of the laser beam, e.g., the beam waist is about
0.1 mm and if the typical energy associated with the drift
motion of the electron in the field is about 10 eV, the
observed spectrum may then be treated as the intrinsic
spectrum for pulse durations in the range

107 s« <«5x107 s, (18)

This range covers most, if not all, of the super intense
lasers currently available. We emphasize that in the case
of longer pulses or greater drift velocity of the electron
these spectra will be shifted far into greater kinetic ener-
gies as a result of the conversion of the large amount of
quiver energy into drift energy through the mechanism
of ponderomotive acceleration.

In order to be able to compare with the available non-
relativistic results for the same system, we have chosen,
for the numerical computations, the nominal binding en-
ergy of the model equal to that of the H atom, g9 = 13.6
eV and the laser frequency fiw = 6.419 eV (the frequency
of the ArF laser).

In Fig. 1 we present the calculated (intrinsic) spectrum
of the ejected electron for the intensity I = 0.7 x 101®
W /cm?. In this case we find the usual “above-threshold-
ionization”- (ATI) like peaks obtained earlier from the
solution of the corresponding Schrédinger problem |3,
5]. The individual peaks can be characterized by the
net number of photons absorbed during the ejection pro-
cess; in this case the successive peaks are —N = 3, 4, 5,
and 6. No essential differences are observed in this case
whether the problem is solved relativistically or nonrela-
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FIG. 1. Above-threshold electron ejection spectrum for a
nonrelativistic intensity I = 0.7 x 10*®* W/cm? and for w =
6.419 eV (ArF laser). Note the typical individual ATI peaks
as in nonrelativistic model [3] with definite number of photon
absorption: —N =3,4,5,6 .

tivistically [6]. This is easily understood by considering
the ratio of the quiver energy to the rest mass energy
of the electron, which is given for the present laser fre-
quency, as

Equ'wer ~ 10_201- ,
mc?

where I is in W/cm2. This ratio is a measure of rela-
tivity of our problem and suggests that significant rela-
tivistic corrections would come into play for intensities
sufficiently above 10'® W/cm?. Before we present the
spectra for such high intensities, we mention parenthet-
ically that the present relativistic model also predicted
the other features of electron ejection spectra, e.g., the
so-called “peak reversal” for I = 10® W/cm? and the
“peak suppression” for I = 1.5 x 10> W/cm?, found in
the nonrelativistic model [3, 5].

For the very high intensities in the range 10'® W /cm?—
10 W/cm? we found that hundreds and even thou-
sands of terms of the summation in (10) contribute to
the spectra in an essential way. This is in strong contrast
with respect to the calculations for intensities below 1016
W /cm?, where only a few terms of the summation (10)
were found to dominate. Nevertheless, a very signifi-
cant simplification occurs in the domain of relativistic
intensities which considerably facilitates the use of the
relativistic formula (11). Thus, we observed that with
increasing intensity the contribution of the second term
in (11) (which is responsible for the very long computa-
tional time) becomes a small fraction of the first term.
This circumstance may be understood by noting that the
ratio of the quiver energy to the binding energy is

(19)

Equ'xver ~ —16
By 3.8x107°I,
where the intensity I is given in W/cm?. Thus, for inten-
sities of order 10'® W /cm? or more, the binding energy of
the electron in the potential is negligibly small compared
to its vibrational energy due to the field. The effect of
the binding potential, therefore, enters in consideration

(20)

primarily through the preparation of the initial state for
t = 0 and not after the field has started to interact with
the electron. This would suggest that all additional ef-
fects due to small binding potential, during the evolution
in the relativistically intense field, would be likely to be
small in comparison with the effect of the field itself.
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FIG. 2. Above-threshold electron ejection spectra at rel-
ativistic intensities: (a) I = 10'® W/cm?, (b) I = 10%°
W/em?, (c) I = 10*® W/cm?. The dashed curve is the pre-
diction of the non-relativistic model for asymptotically large
intensities, which is intensity independent. Note the disap-
pearance of prominent individual peaks similar to those in
Fig. 1 and bunching of electrons near the threshold, with in-
creasing intensity.
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Mathematically, the second term in (11) corresponds ex-
actly to the additional effect of the potential during the
interaction with the field, while the first term corresponds
to the evolution of the initial wave packet under the in-
fluence of the field only. The numerical smallness of the
second term compared to the first term at relativistic in-
tensities thus confirms what may be expected intuitively.
The approximation of neglecting the contribution of the
second term (which also requires long computational time
on the computer) has been tested and confirmed by us by
calculating upper bounds of the second term (using upper
bounds of the Bessel functions appearing in the formula).
The results presented in Fig. 2, for (a) I = 10'® W /cm?,
(b) I =10 W/cm?, and (c) I = 10%° W/cm?, were ob-
tained using the same approximation. The errors at these
intensities were found to be within a few percent at the
main part of the spectra. This finding from the exactly
soluble model strongly suggests that for relativistic inten-
sities electron ejection probabilities for real systems may
also be obtained within similar accuracy using the same
approximation, namely the binding potential is required
for the initial wave packet and the subsequent evolution
is governed by the relativistic Volkov propagator (7] only.

In Fig. 2 the dashed curve corresponds to the result of
the Schrodinger theory for asymptotically large intensi-
ties. It is found that in this limit the Schrodinger theory
leads to the following analytical spectrum independent of
the intensity [8]:

32)\5m+/2mekin

—_— 1
m(2mEgin + A2)% (21)

w(ekin) =

It will be seen that at I = 10® W/cm? (curve a) the
departure of the relativistic distribution is marginal com-
pared to the nonrelativistic limit. Significant departure
from the nonrelativistic limit appears at I = 10!° W /cm?
(curve b) and it becomes rather large at I = 102° W /cm?
(curve c¢). In the last case, it is seen from (19) that
the quiver energy essentially equals the rest mass en-
ergy of the electron. It is seen clearly from the curves in

Fig. 2 that in the relativistic intensity domain the above-
threshold energy spectra lose all distinctions of individ-
ual peaks found at lower intensities (cf. Fig. 1) and they
become continuous humps. This is predicted both by
the nonrelativistic theory and by the relativistic theory.
In the relativistic theory, however, the emitted electrons
tend to bunch together more strongly near the thresh-
old. Note that the latter is determined by the threshold
of ejection inside the field and is therefore greatly shifted
from the unperturbed threshold by the mean quiver en-
ergy. We may point out, finally, that the drift energy
of the electron, on ejection into the field, remains quite
small in these cases and hence our estimate (18) of the
pulse durations relevant for the intrinsic spectra remains
self-consistent.

In conclusion, we have investigated above-threshold
electron ejection spectra using an exactly soluble rela-
tivistic model of a bound KG particle interacting with
an intense circularly polarized laser field. The results ob-
tained for intensities below 10'® W/cm? show the same
features of individual ATI peaks as obtained earlier from
the corresponding nonrelativistic theory. For intensities
in the range between 10'® and 102° W/cm? the indi-
vidual peaks disappear completely and the spectra be-
come broad humps with the maximum near the threshold
energy. The nonrelativistic theory predicts an intensity
independent distribution for asymptotically large inten-
sities while the relativistic theory predicts distributions
with increasingly more pronounced maximum, which also
moves closer to the threshold, with increasing intensity.
Finally, it is found that in the relativistic domain of in-
tensity the binding potential essentially determines the
initial wave packet and the subsequent evolution is dom-
inated by the relativistic Volkov propagator only.
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