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A simple analytical formula, a = a [1 —tan „2tan(C' —2&„~&)], is obtained for the scattering

length in atomic collisions. Here a = cos[m/(n —2)] (/2Mot/[h(n —2)]) " I'("„~)/(I'„"2) is
the mean scattering length determined by the asymptotic behavior of the potential U(r) —o./R
(n = 6 for atom-atom scattering or n = 4 for ion-atom scattering), M is the reduced mass of the
atoms, and C is the semiclassical phase calculated at zero energy from the classical turning point to
infinity. The value of a, the average scattering length, also determines the slope of the s-wave phase
shifts beyond the near-threshold region. The formula is applicable to the collisions of atoms cooled
down in traps, where the scattering length determines the character of the atom-atom interaction.
Our calculation shows that repulsion between atoms (a ) 0) is more likely than attraction with a
"probability" of 75%. For the Cs-Cs scattering in the Z„state, a = 95.5az has been obtained,
where a~ is the Bohr radius. The comparison of the calculated cross-section energy dependence
with the experimental data gives evidence for a positive value for the Cs-Cs scattering length, which
makes cesium Bose gas stable.

PACS number(s): 32.80.Pj, 34.40.+n

I. INTRODUCTION

In the past few years great progress was made in ex-
periments with atoms in traps. The combination of laser
and evaporative cooling and magnetic traps enabled the
production of gases with spin-aligned atoms at extremely
low temperatures together with relatively large densi-
ties. For instance, the best values of [1] for Cs are
T 1 pK, n 10 cm, and in the experiments with
hydrogen atoms [2] thevaluesof T 100 pK, n 8xlOis
cm s have been achieved. These conditions bring the
samples towards the Bose-Einstein-condensation (BEC)
point, and the character of the interaction of atoms
should be of crucial importance for the behavior of the
system in the near-critical conditions.

As is known, the collisional properties of particles at
low energies are determined by the s-wave scattering,
and expressed in terms of one parameter —the scatter-
ing length a. It determines the behavior of the s-wave
phase shift b'o and the scattering cross section o (see, e.g. ,

[3]):

o = 4vra,

where k is the relative wave vector of the colliding parti-
cles. The formulas (1) are valid for ak & 1. If the scat-
tering length is not abnormally small, and the scattering
in higher partial waves does not display any peculiar low-

lying resonances, we can neglect their contribution to the
cross section for all k ( a i, or more precisely, k (( a
At temperatures obtained in the experiments [1,2] the
thermal values of the atomic momenta, p +2mkT, are
very small. The corresponding magnitude of the wave
vector k = p/h is nearly the same for both types of atoms:

k 10 sa& (as is the Bohr radius). Therefore, the ap-
proximation (1) is already valid for H and Cs gases if
a (& 103a~, which seems quite plausible.

The actual value of the scattering length is determined
by the potential energy U(R) of interatomic interaction.
In the case of hydrogen or cesium atoms in a magnetic
trap the spins of the atoms are parallel. Thus, the po-
tential curve refers to the Z„state of the atomic pair.
At large distances U(R) falls off as

U(R) =—

where n = 6 for neutral atoms with J =
2 ground state

(van der Waals forces), or n = 4 for the ion-atom inter-
action. At smaller distances the attraction is replaced by
strong electron-exchange repulsion, which increases ex-
ponentially. The net action of both forces produces a
potential well (see the sketch in Fig. 1), which fixes the
magnitude and the sign of the scattering length. The
sign of a determines whether atoms are repulsed (a ) 0)
or attracted (a ( 0) at very low temperatures.

On the whole the Z„potential curves are well known
for hydrogen [4], and known with less certainty for cesium
[5,6] atoms. The depth of the potential well U;„and the
position of the minimum R;„are the following. For H2..
U;„= —0.20 x 10 a.u. , A;„= 7.9a~, and for Csg..

—1.3 x 10 s a.u. , R;„12a~.Throughout the
paper we will use the atomic units, in which a~ ——1,
and the atomic masses are mH ——1836 a.u. and mc, =
2.422 x 105 a.u.

The strength of the potential U(R) may be character-
ized by the dimensionless parameter Mb ]Us]/h, where
M is the reduced mass of the atomic pair and 6 and Uo
are the typical radius and depth of the potential. Using
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whereas to the left of R() y(R) decreases exponentially.
At large distances the potential decreases as n—/R",

and we can check condition (7) explicitly. It yields

combination of Bessel and Neumann functions J 1 (x)n —2

and N 1 (x). Therefore, in the range of R ) R' the
solution of Eq. (4) is

2
(2p') "-'

R«
/

—
/ln) (9) y)(R) =MRAJ ( vsR * )

where —BN1 R (13)

(10)

Thus, the WKB approximation is violated at large dis-
tances. This can be also seen from the fact that (8)
fails to reproduce the asymptotic behavior (5): when

R b oo y(R) oc p ~ cos(const) (x RA.
However, if p is large enough the semiclassical solution

(8) can be used up to distances where the asymptotic
expression (2) for U(R) is valid, and where the equation
(4) turns into

G (P 1 lp2+ — + 1

(n —2)2x2 y =0. (12)

The arbitrary solution of (12) is represented by a linear
I

Indeed, the estimation of the right-hand side of (9) for
Cs (p = 4.12 x 10 ) gives the value of 117 a.u. , whereas
the potential curve turns into its asymptotic R drop at
much smaller distances. Hence, we can always And the
radius R', at which both the WKB solution and Eq. (11)
are valid (see Fig. 1).

Introducing the new function &p, y = &p~R, and the
2

new variable w, R = (i„vsi,), Eq. (11) is trans-

formed into the Bessel equation:

Using the expansions for the Bessel and Neumann func-
tions for x « 1 (R —+ oo) and keeping the lower-order
terms,

2,v

N, (x) = cot(harv)
sin7rv 2 I'(1 —v)

'

( g P
~ Is(tt S)

a =cos
l n —2) l n —2 I'("-,')

x 1 ——tanB n —2
(i4)

The constants A and B are obtained by matching the
analytical solution (13) to the WKB wave function (8)
at R = R*. Since R* has been chosen to satisfy the
condition (9), the value of the argument x of the cylin-
drical functions corresponding to the point R* is large:

2 "—2
x = „~&R* 2 && 1 . Thus, we can use the asymptotic
formulas for J (x) and N„(x) at x )) 1, so that (13)
turns into

one obtains from (13) the necessary linear asymptotic
behavior of the type (5) for y&(R), with a scattering
length (6) given by

n —2 . ( jr (R&
~

A —Bcot cos
i

R
le'Y n —2 ln —2 2(n —2) 4)
+ . cos

i
R & + ——

i
(R=R').B f 2p . , 7r vr )

sin„, ln —2 2 n —2 4)

Calculating the logarithmic derivatives y id'(R)/dR
for (15) and (8), and taking into account that when R ~
R' —we can use U(R) = o./R" in p —and dp/dR, we
find the A/B ratio:

n —2 h,
2M dR . (17)

(—tani C (i6)

where C = C & + C» and the phases C &,& are

R
C( ——— 27 "-2

p dR, 4» —— R*
n —2

The second equation is just the addition to the semiclas-
sical phase from the distances of R' to oo:

Therefore we see that the sum C is the semiclassical phase
calculated at zero energy from the classical turning point
to infinity, and its magnitude does not depend on the
matching radius R*. It is also worth noting here that the
condition (9) for the validity of the WKB approximation
for the —n/R" potential is equivalent to the requirement
that the contribution to the semiclassical phase from the
asymptotic region R ) R* shouM be large: C» )& 1.

Introducing now the A/B ratio (16) into (14), we arrive
at the anal formula for the scattering length:
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where
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i -2) & -2) I'("-"
n —2
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—U'(R)]dR . (19)
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shift, which is due to the different boundary conditions
at R=RO.

It is interesting to compare the scattering length for
the potential with o—./R" long-range attraction to that
for the totally repulsive potential: U(R) = o;/R" T. he
scattering length for the latter is always positive (see [3],
Sec. 130):

Atoms
H2
Cs2

B o. P Cs C's

1.65 2.5 2 6.5 124.4
0.0016 5.53 1.072 7020 1.1x 10

&io
3.29 x 10~

1.7x 108

The values of the parameters are given in atomic units.

TABLE I. Parameters for Z„potential curves for H2 and
Cs2.

and it has nearly the same magnitude as the mean scat-
tering length: a = cos „z a„.

8. Hard core plus square mell

The simplest potential modeling the "hard core plus
attraction" interaction can be of the form

R(Ro
U(R) = i —Uo, Ro & R & Ri

0, R& R&.

The zero energy s-wave function for it is constructed of
sink(R —Ro) between Ro and Rq, and the linear func-
tion (5), smoothly joined to it at R = Rq. The scattering
length is given by

tan 4
kR. (24)

where

C = k(Rg —Ro) and k =

In this model the mean scattering length is given by
the outer radius of the well, a = Rq, and the contri-
bution of the alternating tan C term in the square brack-
ets is suppressed by the 1/kR& factor. At this point
the square well model divers from the potentials with
an 1/R" asymptotic behavior, where the contribution of
the phase-dependent tangent is regulated by tan „
independently of the potential strength.

ters I3, n, P, C, for the potential (25) were taken from
[8] (see Table I). When R tends to zero the exchange
term displays erroneous decreasing behavior. However,
this range of R does not inhuence the calculations at all,
since the wave function rapidly vanishes to the left of the
classical turning point.

The cutoK function is analogous to that used for the
H-H sZ„potential [7]:

f,(R) = e(R —R,)+e(R, —R) e-&"-~" -'l', (26)

where 8(x) is the unit step function: e(x) = 1 (0),
when x ) (&) 0. Therefore, the only free parameter for
the potential U(R) (25) is the cutoff raCkus R„governing
the decrease of the function f,(R) at R & R, .

The magnitude of the cutoK parameter R, was ad-
justed by comparing (25) to the Cs2 Z~ potential curve,
calculated ab initio by Krauss and Stevens [5] from R = 7
to 20 a.u. The best fit to the values of R~j„and Umj„
of the potential was obtained for R, = 23.165. Both
potential curves are shown in Fig. 3, together with the
asymptotic potential of [6]. The latter was calculated by
changing the sign of the exchange potential for the Zg
curve. Though the values of C, used in [6] are slightly
diferent from those in Table I, the asymptotic behavior
of the curves at R & 18 is very close. We have also
checked the shape of the potential near R;„by calcu-
lating the harmonic vibration frequency u. Our value of
a = 11.2 cm is in good agreement with that of [6],
11 cm ~, and is noticeably less than the frequency of [5]:

U

(a.u. )

III. NUMERICAL RESULTS

In order to perform numerical calculations for the s-
wave scattering phase shifts and the scattering length we
adopt the following expression for the Cs2 Z„potential
curve:

Here the first item on the right-hand side represents the
exchange repulsion between valence electrons, and the
second one is the sum of van der Waals terms, multiplied
by the relevant cutoff function f, (R) to cancel 1/R" di-
vergence at small distances. The values of the parame-

R (a.u. )

FIG. 3. The Csg E„potential curves: dashed curve, ab
initio calculation [5]; dot-dashed curve, experimental fit for
Cs2 Z~ [6] with exchange potential inverted; solid curve, an-
alytical fit (25) for R, = 23.165 a.u.
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cu = 12.29 cm i. Since the potential curve (25) can by
no means be treated as an exact one, we have studied
the s-wave scattering using different values of B, around
23.165 a.u.

The potential U(R) for a given R, value was intro-
duced into the radial s-wave Schrodinger equation. It
was solved numerically for a number of positive energies

k hE = "2~ . The phase shifts bII(k) were obtained from
the asymptotic behavior of the wave function: y(R) oc

sin[kR+ bo(k)], using the algorithm of [10]. It calculates
the total phase of the wave function from B = 0 to large
R, ar;d derives the phase shift as the difFerence between
the total phase and kR when B ~ oo. This procedure
eliminates the usual modvr ambiguity in the definition of
6p, and readily enables to determine the number of bound
states in the potential well (see below).

The dependence of the phase shifts on the atomic mo-
mentum k is shown in Fig. 4 for the five values of the
cutoff radius B,. The values of B, are decreasing in steps
of AR, = 0.025 from R, = 23.215. The decrease of the
cutofF radius causes the enlarging of the potential well
(see Table II), the growth of the potential strength, and
the increase of the phase shifts at a given k value.

In accordance with Levinson's theorem, in the low-
energy limit the phase shifts tend to n, ~, where n, is
the number of bound states. For four larger values of
R, there are 58 bound states, whereas for R, = 23.115

186 I I I I
[

I I I I
]

I I I I
]

I I I I
]

I I I I

184

L,

182

180

178

176 I I I I ] I I I I I I I I I I I I I I I I I I I

0 0.01 0.02 0.03 0.04 0.05
k (a.u. )

FIG. 4. The s-wave phase shifts bp(k) for the Cs-Cs
Z„scattering calculated with different values of the po-

tential cutofF radius: short-dashed curve, R = 23,215 a.u. ;

dot-short-dashed curve, B, = 23.190 a.u. ; solid curve,
R, = 23.165 a.u. ; long-dashed curve, R, = 23.140 a.u. ;
dot-long-dashed curve, R = 23.115 a.u.

TABLE II. The Cs2 Z„potential and the scattering
length.

R, (a.u. )
23.215
23.190
23.165
23.140
23,115

Rp
(a.u. )
9.930
9.906
9.882
9.856
9.833

&min
(a.u. )
11.93
11.91
11.88
11.86
11.83

U'min

(10 a.u. )
-1.273
-1.286
-1.300
-1.313
-1.327

(a.u. )
376
140
65
-69
467

ab

(a.u. )
352.5
144.2
68.0
-67.7
485.3

Obtained by extrapolation of the 8-wave phase shift towards
zero A: values.

Calculated using semiclassical formula (18).

the phase shift at k —+ 0 jumps to 597t.. The scattering
lengths are found by the extrapolation of the phase shifts
from the lowest calculated value at k = 0.005 a.u. to n, vr

at k = 0. The values of

dbo
a = —lim

0 dk

are given in the fifth column of Table II. It should be
noted that the numerical calculation of this limit pro-
duces large uncertainties, especially for large a values,
when the phase shift is steep near k = 0. It follows from
the general consideration of Sec. II that positive values
of the scattering length well prevail over negative ones.
This fact correlates with mostly decreasing behavior of
the phase shifts in Fig. 4.

It is relevant now to compare the values of the scatter-
ing length, obtained from the solution of the Schrodinger
equation to those calculated using our formulas (18) and
(19). In the case of the Cs-Cs interaction n = 6, a = Cs,
and the mean scattering length a is

1/2

4 I'(4)

This is the magnitude of the characteristic scattering
length for the collision of ground-state cesium atoms.
Using the potential (25) we calculated the semiclassical
phase C (19) numerically with the help of (17), in order
to estimate the contribution of the infinite upper limit
precisely. The scattering lengths, obtained from (18),
are presented in the last column of Table II. They are
remarkably close to the values in the previous column.
Furthermore, the semiclassical formula gives much more
accurate results than the extrapolation of the phase shift.
The number of bound states can also be obtained from
C (19). It follows from condition (20) that

n —1

2(n —2)

where [] means the integer part of the expression.
We would like to stress that the mean scattering length

a governs the linear drop of the phase shifts at k & a
0.01: 6'p(k) CI —ak. Indeed, at k ) 0.01 all phase-
shift curves in Fig. 4 are "parallel" with a slope of about
—a. On the contrary, at k ( a ~ the behavior of the
phase shifts is different, and the value of the scattering
length strongly depends on the exact shape of the po-
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tential well. The point is that the zero-energy scattering
displays a resonant character, since often there is a bound
or a virtual (resonant) energy level close to the threshold.
We can describe it by the formula for the phase shift near
resonance:

k
bo(k) = —ak —aretan —+ n, 7r (k & a, ) (28)

1a=a+ —=a
K

1+
aK

(29)

IV. CONCLUSIONS

Using the matching of the WKB approximation and
the exact solution, we have obtained a formula for the
scattering length of the potential with —n/R" asymp-
totic behavior. It expresses the scattering length a in
terms of the mean value a, determined by the asymp-
totic behavior of the potential, and the phase-dependent
factor, which strongly depends upon the actual shape of
the potential well. Near the threshold scattering has a
resonant character, and is very sensitive to the slight-
est changes of the potential. However, beyond the near-
threshold region of A; & a, the phase shifts display
linear behavior, governed by the mean scattering length
a. It suggests the possibility of obtaining a more gen-
eral formula for 6e(k). That formula should connect the

Here r gives the position of the upper bound level

(r ) 0, Eo = —2M), or corresponds to the virtual
level (K & 0), and the formula (29) has the structure
of (3) or (18). When the number of levels in the well is
large, the position of the upper level is extremely sen-
sitive to small changes of the potential. However, if we
consider the scattering process far from the resonance at
k )) r., the behavior of the phase shift is steady, i.e. , not
sensitive to small variations of the potential, its slope be-
ing determined by the average value a of the scattering
length.

It is interesting to apply formulas (18) and (19) to the
case of H-H scattering. The H~ Z„potential is shal-
low, and rigorously speaking it hardly can be treated
semiclassically. For the potential we use the same ap-
proximation (25) (see the parameters in Table I) with
f,(R) = 1, because all the C, are relatively small. The
1/R" divergence appears only at R & 4, which is well
to the left of the classical turning point Bo = 7.008. The
numerical solution of the Schrodinger equation for pos-
itive energy and extrapolation of the phase shift yields
the value of a = 1.42. Using the semiclassical approach
we have obtained a = 4.92, C = 1.03, and a = 1.25.
Therefore, we see that the semiclassical approximation
produces quite reasonable results far beyond the domain
of its strict validity. We would like to stress that this
agreement is not coincidental. The scattering length a is
much smaller than a, and it was essentially determined
by the phase C. Let us also note that both values of a are
close to the value of Friend and Etters [7], a = 1.36a~,
which was obtained using a slightly different approxima-
tion for the potential.

TABLE III. Cs-Cs scattering phase shifts and cross sec-
tions.

(au)
0.003
0.005
0.007
0.010
0.012
0.014
0.016

Energy
(vK)

12
33
64
130
187
255
333

bp

182.02
181.85
181.67
181.36
181.15
180.95
180.73

(10 a.u. )
5.1
6.3
6.8
7.1
6.7
5.8
4.9

b

182.37
182.37
182.25
181.98
181.78
181.59
181.38

O.b

(10 a.u. )
3.4
1.2
0.0
0.7
1.5
2.2
2.7

'Obtained using the potential with R, = 23.165 a.u. (a =
65 a.u.).

Obtained using the potential with R~ = 23.140 a.u. (a =-

—69 a.u.).

range of k & a, in which the phase shift is determined
by the scattering length (18), or, more accurately, by the
resonance equation (28), to the region of larger k values.
A comparison with the results of the numerical solution
of the Schrodinger equation shows that the semiclassi-
cal approximation yields correct results even when the
potential is shallow, and the wave function within the
potential well does not oscillate at all.

Using a simple analytical approximation for the Cs2
Z„potential we have investigated the typical behavior

of the 8-wave phase shifts at small energies. The uncer-
tainties of the potential does not allow to calculate the
exact magnitude of the scattering length. However, it
is possible to make some estimates. Recently the cross
section has been measured for the elastic scattering of
spin-aligned Cs atoms [9]. The experiment shows that
the cross section is 1.5(4) x 10 em2, and is approx-
imately constant from 30 to 250 pK. This value is con-
sistent with the scattering length of a +70. We omit
here the evaluation of the Bose-statistics effects, which
depend upon a particular total spin component. In Ta-
ble III we present the 8-wave scattering cross sections for
the potential (25) with R, = 23.165 and 23.140. The
scattering lengths for the two cases are 68.0 and —67.7,
respectively (see Table II). For the positive a value the
cross section is very flat, whereas for the negative one the
cross section has a deep trough. Therefore, the compari-
son of the calculation with the experimental data favors
a positive Cs-Cs scattering length.

Our results show that in a cooled atomic-gas sample
the interaction between atoms is with a "probability" of
three to one repulsive, rather than attractive. This fact is
important in the search for the Bose-gas instability. This
possibility is considered in [ll], provided the low-energy
interaction of atoms is attractive.
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