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Electrostatic modes of ion-tray plasmas
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The electrostatic modes of a non-neutral plasma confined in a Penning or Paul (rf) trap are discussed
in the limit that the Debye length is small compared to the plasma dimensions and the plasma dimen-
sions are small compared to the trap dimensions. In this limit the plasma shape is spheroidal and analyt-
ic solutions exist for all of the modes. The solutions for the modes of a Paul-trap plasma are a special
case of the modes of a Penning-trap plasma. A simple derivation of some of the low-order quadrupole
modes is given. Experimental measurements of these mode frequencies on plasmas of laser-cooled Be+
ions in a Penning trap agree well with the calculations. A general discussion of the higher-order modes
is given. The modes provide a nondestructive method for obtaining information on the plasma density
and shape. In addition, they may provide a practical limit to the density and number of charged parti-
cles that can be stored in a Penning trap.

PACS number(s): 32.80.Pj, 32.90.+a, 52.25.Wz, 52.35.Fp

I. INTRODUCTION

Penning traps [1,2] typically use a uniform magnetic
field superimposed along the axis of azimuthally sym-
metric electrodes to confine charged particles. Radial
confinement is provided by the axial magnetic field and
axial confinement is provided by electrostatic potentials
applied to the trap electrodes (see Fig. 1). Paul (rA traps
[1] use an electrode structure similar to Penning traps,
but there is no magnetic field, and a combination of rf
and electrostatic potentials are applied to trap electrodes.
Charged particles are confined by the inhomogeneous rf
fields (the pondermotive force) to a region of minimum rf
field strength near the trap center. Penning and Paul
traps are used in a number of studies on charged atomic
particles such as mass spectroscopy [3—8], high-precision
magnetic-moment measurements [1,9,10], high-resolution
spectroscopy and frequency standards [1,11—14],
charge-transfer studies [15], non-neutral-plasma studies
[2,16—21], and antimatter storage [7,22 —24]. In many of
these experiments more than one charged atomic particle
(a "cloud" ) are stored in the trap and cooled to low tem-
peratures. A cloud of charged particles in a Penning trap
can be considered a plasma, in particular a non-neutral
plasma, when the Debye length is less than the cloud di-
mensions. This paper discusses the electrostatic modes of
these plasmas in the limit that the Debye length is much
less than the plasma dimensions and when the plasma di-
mensions are small compared to the trap dimensions. As
discussed below, the modes of a Paul-trap plasma are de-
scribed by a special case of the Penning-trap plasma
modes. Therefore in this paper we concentrate our dis-
cussion on the modes of Penning-trap plasmas and show
how solutions for the modes of an rf-trap plasma follow
from the Penning-trap results.

Measurement of the plasma mode frequencies may
have applications for ion trap experiments. For example,

mass spectroscopy experiments done with a cloud or plas-
ma of ions in a Penning trap can have systematic shifts
associated with the distances of the ions from the trap
center and the small anharmonicities of the trapping po-
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FIG. 1. Sketch of a Penning trap used to make mode mea-
surements on a plasma of Be+ ions. The size of the plasma is
exaggerated. The trap electrodes (shown in cross section) are
right circular cylinders with inner radius p0=1.27 cm. They
provide a quadratic potential near the trap center with
32=0.236. Some other Penning traps use hyperboloids of re-
volution as trap electrodes. The laser beams, microwave horn,
and imaging system are used in the measurement of the plasma
modes as described in Sec. IV.
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tential [6,25,26]. In high-resolution atomic spectroscopy
of ions in a Penning trap, one of the largest systematic
shifts is the second-order Doppler shift associated with
the EXB rotation of the ions about the magnetic field
axis of the trap [12]. The larger the radius of the plasma,
the larger the second-order Doppler shift. A third appli-
cation is illustrated by experiments which measure
electron-ion recombination by passing an electron beam
through a sample of ions trapped in a Penning trap [27].
In these studies, it would be desirable to have a direct
knowledge of the geometrical overlap of the electron
beam with the ion sample. In all of the above examples,
the plasma shape and density, along with the number of
trapped ions, determine the radial and axial positions of
the ions and therefore the size of the required correc-
tions. Similar considerations apply to experiments on
ions in a Paul trap. In some cases the plasma shape and
density can be determined with a laser [20,28]. When
this or other techniques are not available, detection of the
plasma modes, perhaps through induced image currents
in the trap electrodes, could provide this information.

Recent experiments have trapped positron [23] and an-
tiproton [7,24] plasmas in Penning traps. The current
techniques for obtaining information about these plasmas
involves ejecting the plasma from the trap. Detection of
the plasma modes should provide a nondestructive diag-
nosis for obtaining information on the antimatter plasma
density, temperature, and shape. A goal of the an-
timatter work is the high-density storage of large num-
bers of positrons and antiprotons for transport to
different laboratories around the world. Field errors in
the trapping potential can excite plasma modes and
enhance radial transport. Excitation of the plasma
modes may therefore set a practical limit on the density
and number of antiparticles that can be stored in a Pen-
ning trap.

In addition to having potential applications to current
experiments, the electrostatic modes of a Penning-trap
plasma may also provide a tool for studying the dynamics
of non-neutral and strongly coupled plasmas. A simple,
analytic form has been obtained for all of the electrostatic
modes of a low-temperature Penning-trap plasma [29].
This is the only finite length geometry for which exact
mode eigenfrequencies and eigenfunctions have been cal-
culated. Therefore the Penning trap may provide an in-
teresting geometry for the study of plasma modes and
their importance to the dynamical behavior of non-
neutral plasmas. For example, it should be possible to
study how errors in the trapping fields couple to the plas-
ma modes and enhance radial transport [19]. Measure-
ment of the damping of the modes should provide infor-
mation on the plasma's viscosity. This measurement
could presumably be done with a strongly correlated
plasma over a range of magnetic field strengths where
very little information is available.

In Sec. II we review the static properties of a cold,
Penning-trap plasma in thermal equilibrium. We assume
the trapped particle number X»1. For sufficiently low

temperature or small Debye length, the plasma has con-
stant density. If the plasma dimensions are small com-
pared to the trap electrode dimensions, then the confining

potential may be assumed to be quadratic and the effect
of ima'e charges neglected. In this case, the plasma has a
spheroidal boundary with an aspect ratio determined by
the plasma density and the axial restoring force of the
trap. This is the starting point for describing and calcu-
lating the modal excitations of a plasma in thermal equi-
librium. In Sec. III we describe a simple but exact calcu-
lation for some of the quadrupole modes of a spheroidal
Penning-trap plasma. We show how these modes could
be used to measure the density and shape of a Penning-
trap plasma. Section IV compares the results of the
quadrupole mode calculations with measurements [21]
done on about 2000 laser-cooled Be+ ions in a Penning
trap. In that section we show how a zero-frequency
quadrupole mode was excited by a misalignment of the
magnetic field axis with respect to the electrostatic sym-
metry axis of the trap. Excitation of this mode tended to
limit the plasma density. Section V discusses the higher-
order modes of a Penning-trap plasma [29]. Modes that
can be excited by static field errors are identified.

II. STATiC PROPERTIES

2@0m co„(Q—co„)
np-

q
(2.1)

where 0=qB /m is the ion cyclotron frequency, q and m
are the charge and mass of the ion, and ep is the permit-
tivity of the vacuum. The plasma frequency is therefore
related to the rotation frequency through the equation

q no
2

co&
—— =2'„(Q co„).

6'p 771
(2.2)

In this paper we use the convention that the symbols co„

The Penning trap shown in Fig. 1 consists of four cy-
lindrical electrodes. The outer cylinders are called the
"end-cap" electrodes in analogy with the end caps of a
hyperbolic Penning trap [1]. The inner cylinders are elec-
trically shorted and together called the "ring" electrode.
With a positive potential VT applied to the end-cap elec-
trodes with respect to the ring electrode, positively
charged particles (ions) can be electrostatically confined
in the direction of the trap axis. A static, uniform mag-
netic field B=Bz parallel to the trap's symmetry axis
confines the ions in the radial direction. Near the center
of the trap, where the ions are confined, the radial com-
ponent of the trap electric field is directed outward. This
field produces an EXB circular drift of the ions about the
symmetry axis of the trap. As the ions rotate through the
magnetic field, they experience a Lorentz force directed
radially inward.

With sufficiently long confinement, the ions evolve to a
state of thermal equilibrium characterized by a uniform
"rigid" rotation of the ions at a frequency co„[18,28,30].
Specifically, the rotation frequency co„is independent of
radius. In the limit of zero temperature, the plasma den-
sity n p and plasma frequency co are constant in the plas-
ma interior and drop abruptly to 0 at the plasma edge.
The density depends on the rotation frequency according
to (Systeme International units are used throughout)
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and 0 denote positive quantities. However, for positive
ions, the sense of the rotation and the sense of the cyclo-
tron motion with respect to B are actually negative.
Specifically, when viewed from above the x-y plane, the
ions move in clockwise orbit's. For nonzero tempera-
tures, the density drops to 0 at the plasma edge in a dis-
tance on the order of a Debye length A, D [18,30], where

~D (2.3)
npq

k is Boltzmann's constant, and T is the ion temperature.
For A,D « (plasma dimensions), the plasma therefore has
a uniform density, given by Eq. (2.1), with sharp boun-
daries. For very low temperatures, there are correlations
in the ion positions [20,31,32], and the ion density is not
constant over length scales small compared to the in-
terion spacing ( —no

' ). However, as long as the in-
terion spacing is small compared to the plasma dimen-
sions (that is, as long as the number of ions K)) 1) and
small compared to the wavelength of the plasma modes,
the plasma can be treated as a constant-density plasma
even in the presence of spatial correlations.

The plasma boundary has a simple shape in the limit
that the plasma dimensions are small compared to the
trap dimensions [28,33]. Near its center, the electrostatic
potential of the trap, relative to the potential at the trap
center, can be written as

Vl CO

ItIT(r, z)= (2z —r ),
4q

(2.4)

where r and z are cylindrical coordinates, and co, is the
frequency at which a single trapped ion (or the center-of-
mass of a cloud of ions) oscillates along the z axis. For
the cylindrical trap of Fig. 1,
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where QP is the associated Legendre function of the
second kind [34]. When the plasma is a prolate spheroid

where p is the inner radius of the trap electrodes and 32
is a dimensionless parameter that depends on the
geometry of the trap design. For the trap of Fig. 1,
A2 =0.236. In general, the total electrostatic potential is
the sum of the trap potential, the space-charge potential
of the ions, and a potential due to the induced image
charges on the trap electrodes. If the plasma dimensions
are much less than the trap dimensions, the trap potential
over the region of the plasma is given by Eq. (2.4), and
the effect of the induced image charges can be neglected.
In this case the shape of the plasma boundary is a
spheroid (an ellipsoid of revolution) as shown in Fig. 2
[28,33]. Let 2ro and 2zo denote the diameter and the axi-
al extent of the plasma as shown in Fig. 2. The plasma
aspect ratio a=zo/ro is related [28] to the plasma fre-
quency co& and the trap axial frequency co, by

FIG. 2. Spheroidal shape of a Penning-trap plasma. This
shape is obtained under the conditions of thermal equilibrium
and A,D « (plasma dimensions) « (trap dimensions).

(a ) 1), Eq. (2.6) can be written as
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When the plasma is an oblate spheroid (a & 1), Eq. (2.6)
can be written as
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Figure 3 shows a graph of nI, /nI versus the plasma as-
pect ratio a. Experimental measurements of ~„co,and a
discussed in Ref. [28] are in good agreement with the

0 1

FIG. 3. Relationship between the plasma aspect ratio a and
m, /co~ for spheroidal-shaped plasmas in a Penning trap. The
solid line is a theoretical curve from Eq. (2.6) with no adjustable
parameters. The experimental measurements, described in Ref.
[28], were taken with two different traps at three different axial
frequencies between co, /Q =0.071 and 0.121.
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theoretical calculation of Eq. (2.6).
In the next section the potential inside a uniformly

charged spheroid (the space-charge potential of a cold
Penning-trap plasma) will be used to calculate some of
the quadrupole mode frequencies. For r, z inside the plas-
ma, the space-charge potential P~ can be written
[28,33,3S] as 0

4 -it

2

Pi(r, z)= — [a(a)r +b(a)z ],
6q

(2.9)

2-

where a is the plasma aspect ratio, co is the plasma fre-
quency given by Eq. (2.2), b(a) =3Q, (a/(a —I)'~ )/
(a —1), and Poisson's equation requires
2a(a)+b(a)=3. A spherical plasma has a =b =1. At
the limit b =3, the aspect ratio a=0, and the plasma is
an infinitely thin disk. (Because we require zo ))A.D, here
infinitely thin means zo (&ro.) With a =

—,', the aspect ra-
tio a is infinite, and the plasma is an infinitely long cylin-
drical column (zo))ro). In Eq. (2.9) we choose the po-
tential at the center of the spheroid to be 0. If the poten-
tial is chosen to be 0 at ~, then Eq. (2.9) neglects a term
which depends on the plasma aspect ratio o.'but is in-
dependent of r and z.

It is instructive to consider the plasma equilibrium as a
function of rotation frequency co, for fixed trapping con-
ditions (fixed a~„Q,and N). Constant density equilibria
exist for co, (Q/i/2 and co & co„&Q —co, where

co =Q/2 —(Q /4 —co, /2)' (2.10)

is a single-ion magnetron frequency [1]. For co„slightly
larger than co, co, /co = 1, and the plasma is shaped like
a pancake (an oblate spheroid). In the limit that
co, ~co, the plasma's aspect ratio a —+0, and the
plasma's radius ro~~. As co„ increases, co /cop de-
creases and the plasma's aspect ratio a increases by de-
creasing ro and increasing zo. At co„=O/2 the plasma
attains its maximum aspect ratio (smallest ro and largest
zo) and maximum density nii =rom Q /2q . The condi-
tion co„=Q/2 is often called Brillouin fiow [36]. In a
frame of reference rotating with the plasma, the motion
of an individual ion within the non-neutral plasma con-
sists of circular gyrations (perturbed cyclotron orbits) at
the frequency 0—2'„.At Brillouin How, these gyrating
orbits become free streaming (straight-line trajectories),
and the plasma behaves in many ways like an unrnagnet-
ized plasma [36]. Therefore at co„=Q/2, a Penning-trap
plasma behaves dynamically like a plasma confined in an
rf (Paul) trap (neglecting the rf micromotion). As co„in-
creases beyond Q/2, the plasma's aspect ratio a and den-
sity no decrease. Because no is an even function of co„
about co, =Q/2 [see Eq. (2.1)], the plasma's aspect ratio,
radius, and axial extent are even functions of co„about
co„=Q/2. Figure 4 shows a graph of the radius of a plas-
ma of Be+ ions as a function of rotation frequency. The
plasma's rotation frequency and radius were measured
with techniques described in Sec. IV. Good agreement
was obtained between the observed and predicted depen-
dence of the plasma's radius on rotation frequency.

0
0.0 0.2 0.4 0.6 0.8 1.0

FIG. 4. Radius ro of a plasma of =2000 Be ions as a func-
tion of rotation frequency co„.The radius is plotted in units of
rb, the plasma radius at the Brillouin limit, and the rotation fre-
quency is plotted in units of the cyclotron frequency Q. The
solid line is a theoretical curve involving no adjustable parame-
ters. The data were taken as described in Sec. IV with
0/2m=1. 4 MHz and co, /0=0. 151.

With the assumption of thermal equilibrium and max
(A,D, no

'
) « (plasma dimensions) « (trap dimen-

sions), a Penning-trap plasma has uniform density with a
spheroidal boundary. Modal excitations on this equilibri-
um can be conveniently described with spheroidal coordi-
nates by two integers ( I, m ) with l ) 1 and m )0 [29].
(Negative integral values of m are allowed, but do not
give rise to new modes. ) The index m denotes an azimu-
thal dependence e™of the plasma mode potential. The
index l describes the variation along a spheroidal surface
(for example, the plasma boundary) in a direction perpen-
dicular to P. In this paper, Secs. III and IV give a simple,
detailed discussion of some of the l =2 modes and Sec. V
gives a general discussion of higher-order modes of a
Penning-trap plasma. Excitation of an l =2 mode pro-
duces a quadrupole deformation of the plasma shape.
The l =1 modes are the familiar center-of-mass modes.
Here the ion plasma's shape remains unchanged, but the
center-of-mass of the plasma executes one of the three
motions of a single ion in a Penning trap. For example,
the (1,0) mode is the axial center-of-mass mode at fre-
quency a~, . There are two (l, l) modes which correspond
to the perturbed cyclotron and magnetron center-of-mass
modes at frequencies Q —co and co . (In experiments on
long columns of electrons where the induced image
charges cannot be neglected, the analog of the magnetron
center-of-mass mode is the 1 = 1 diocotron mode [37,38].)
These center-of-mass frequencies can, in general, be mea-
sured or calculated very precisely. Figure 3 gives the
(1,0) mode frequency or co, in units of the plasma fre-
quency as a function of the plasma aspect ratio or shape.
Because ~ is typically unknown, a measurement of co,
does not provide information on the plasma aspect ratio.
However, measurement of an l =2 mode frequency along
with the (1,0) mode frequency will determine the plasma"s
aspect ratio and density.
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III. QUADRUPOLE PLASMA MODES

In this section we calculate two different types of l =2
Penning-trap plasma modes. This is done by making a
guess for the plasma eigenmode, then verifying that this
guess is a mode of the plasma and calculating the eigen-
frequency. In particular, we consider small axial and ra-
dial displacements of the ions from their equilibrium po-
sitions consistent with the assumed eigenmode. A self-
consistent calculation of the axial and radial restoring
forces gives two linear differential equations describing
the motion of the axial and radial displacements. We
then require that the eigenfrequencies from these two
equations be equal.

A. (2,0) modes

We first consider an azimuthally symmetric quadru-
pole mode. We assume that in this mode the plasma al-
ways stays spheroidal, but the aspect ratio of the plasma
oscillates in time as shown in Fig. 5. This mode turns out
to be a (2,0) mode [29]. Let p=x+iy and z denote the
equilibrium radial and axial position of an ion (or group
of ions) in a plasma with an equilibrium density no and
aspect ratio a. The displacements from equilibrium

Equations (2.4) and (2.9) can be used to calculate the elec-
tric field at the displaced ion positions with the results
that

Icop 3coz a [~( 1 +e ) ~
1 +5

~ ]
30 2'~ (1+e)i 1+5' p 1+5

me@2

A (5,e)P( 1+5),
3gICOp

2
b [a(1+e)~1+5~-']

co ( 1+e) i
1+8

i
3g

(3.4)

mes
B(5,e)z(1+e) .

3Q'
(3.5)

[P(1+5)] +iA [p(1+5)JP

2

A (5,e)p(1+5)=0, (3.6)

Here E~ and E, are the components of the electric field
perpendicular and parallel to the z axis and m is the
equilibrium plasma frequency. The equations describing
the radial and axial motions of the displaced ions are

z ~z [1+e(t) ],
p~p[1+5(t)],

(3.1)
2

[z(1+e)]— B(5,e)z(1+e)=0 .
dt 3

(3.7)

e(t)
5~ (t)

(3.3)

where g, the mode parameter, is independent of time.

parametrized by e and 5=5~ + i51, give another
spheroidal plasma but with a density and aspect ratio
given by

Plp

(1+e) I
1+Sl'

(3.2)1+aa~a
/1+5/

'

where ~1+5~=[(i+5+) +5I]' . Here e, 5z, and 5I
characterize axial, radial, and azimuthal displacernents.
For an eigenmode the axial and radial displacernents
should have the same time dependence. We assume

After transforming to a frame rotating at the equilibri-
um rotation frequency co„and keeping terms no higher
than first order in 5 and e, we obtain linear differential
equations for 5 and e. The equations are

5+i(A 2'„)—5 — (riA, + A)s~5=0,
dt2 dt

(3.8)

d' ' [B,+B,/q]e=0.
dt

(3.9)

Here A& —=BA (0,0)/B5, and A, —=BA (0,0)/Be, with
similar definitions for B, and B&. There are no first-order
6& terms in the expansion of 3 and B, because 2 and B
are even functions of 51. The real and imaginary parts of
Eq. (3.8) can be solved simultaneously. The solution is
oscillatory with eigenfrequency co2p given by

)(Z )&Z )&Z )&Z COp

co2o=(Q —2'„)— (gA, + As) .
3

(3.10)

The eigenfrequency of Eq. (3.9) is given by

T/4

time

3T/4

2

co2o= [B,+Bs/q] . (3.11)

FIG. 5. Sketch of one cycle of the (2,0) mode at time inter-
vals T/4 where T=2m. /~&& is the period of the mode. The plas-
ma always stays spheroidal with a uniform density, but the as-
pect ratio oscillates in time.

The requirement that the two eigenfrequencies be equal
gives a quadratic equation for g. Substitution of the solu-
tions for q back into either Eq. (3.10) or (3.11) gives the
(2,0) mode frequency cozo. After a number of algebraic
manipulations we find
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Here Q —=Q —2ro„ is the vortex frequency (the cyclotron
frequency as seen in the rotating frame),
Q„=(Q,+co )'/ is the upper hybrid frequency, and

2 3Q gc Q
7 (~2 1)3/2 2

(
2 1)i/2

(3.13)

The lower-frequency mode [denoted by the negative sign
in Eq. (3.12)] is called a plasma mode and is characterized
by 2) & 0 and a mode frequency co2c & Q/V'3. The higher-
frequency mode [denoted by the positive sign in Eq.
(3.12)] is called an upper hybrid mode and is character-
ized by 2) ~ 0 and a mode frequency ro2c ~ Q/&3. Plasma
and upper hybrid modes are discussed in Sec. V. The fre-
quency co& is the (2,0) plasma mode frequency in the ab-
sence of a magnetic field (that is, Q,—+0 or a plasma
confined by a uniform background of opposite charge). It
is a mode frequency of a cold cloud of ions in an rf trap.

Most Penning-trap experiments are done with co, ((Q.
For simplicity we therefore discuss the two modes of Eq.
(3.12) for this experimentally interesting case. Figure 6
shows a graph of co&~ and co&~ as a function of rotation fre-
quency for co, /Q=0. 151. In the limit of low rotation
frequencies (co, ~co ) the plasma mode frequency ap-
proaches co . At co, =co, the mode frequency
~zz= ~ =co, . In this limit the mode parameter g for the
plasma mode frequency is large in magnitude and nega-
tive. The plasma mode looks predominantly like an axial
stretch mode with only small radial excursions which are
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FIG. 6. graph of the plasma co&& and upper hybrid co&& mode
frequencies [from Eq. (3.12)] as a function of rotation frequency
m, for co, /0=0. 151. Also shown are the vortex frequency
0 =0—2'„(dotted line) and the plasma frequency co~ (dashed
line) in units of the cyclotron frequency.

2( )2
'=Q„+cog ' '[(Q„—co2g)2~so

—4Q (co, —co&/3)]'/ . (3.12)

180' out of phase with the axial excursions. This is be-
cause for co„=co &(0 the magnetic field in the rotating
frame ( cc Q —2ro„)is large and constrains the radial ex-
cursions of the plasma. At the Brillouin limit (Q„=O)or
in a cold plasma confined in an rf trap, the plasma mode
frequency equals co& and the mode parameter g= —2.
This means the volume and therefore the density of the
plasma stay constant during the excitation of this mode.
At the Brillouin limit, the plasma mode therefore consists
of incompressible deformations of the plasma shape (a
surface mode). The (2,0) plasma mode of a spheroidal
plasma is similar to an nz =0 plasma mode of a cylindri-
cal plasma column with a wavelength equal to the plasma
length [37,38].

The upper hybrid mode frequency approaches
Q =0—2', for low rotation frequencies and is equal to
0—2' at co, =co . In this limit the mode parameter g
for the upper hybrid mode is small and positive (radial
excursions )& axial excursions). For low rotation fre-
quencies we can show that this mode looks like a
coherent excitation of the perturbed cyclotron orbits of
the ions. For two ions on opposite sides of the trap axis,
the perturbed cyclotron orbits are 180' out of phase. At
the Brillouin limit (or for ions confined in an rf trap), the
upper hybrid mode is equal to co„=Q/v'2. Here
21

=a, which implies that the plasma oscillates (or
"breathes" ) from a small spheroid to a larger confocal
spheroid and back again. The electric field outside the
plasma does not change under such an oscillation. This
can be called a bulk mode because it is confined to the
plasma interior and is difficult to couple to with external
fields. Both of the (2,0) modes are symmetric (even func-
tions) about the Brillouin condition (co„=Q/2), as can be
seen in Fig. 6.

If either one of the (2,0) mode frequencies can be mea-
sured, it can be used together with the (1,0) mode fre-
quency co, and the cyclotron frequency Q to obtain the
plasma rotation frequency co, . The plasma rotation fre-
quency can then be used to determine the plasma's densi-
ty nc and aspect ratio a from Eqs. (2.1), (2.2), and (2.6).
Figure 7(a) shows points of constant co2c (the upper hy-
brid frequency) and Fig. 7(b) shows points of constant co2c

(the plasma mode frequency) on graphs of rotation fre-
quency versus the trap axial frequency. All frequencies
are normalized by Q. The axial frequency ro, [equivalent-
ly the (1,0) mode frequency] depends only on the trap
design and the potential difference between the trap end
cap and ring electrodes. Typically it can be measured or
calculated very precisely. Similarly the cyclotron fre-
quency can be measured or calculated very precisely and
the operating point for co, /Q along the x axis of Fig. 7
precisely determined. A measurement of a (2,0) mode
frequency can then be used with Fig. 7 to determine the
rotation frequency. Figure 7(b) shows that the plasma
mode frequency ro2c gives accurate information on co„/Q
mainly for slow rotation frequencies slightly greater than
co . However, the upper hybrid frequency gives accurate
information on ro„/Q over a wide range of conditions,
especially over the experimentally interesting range
co, /Q «1. Section IV describes some (2,0) mode mea-
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surements on plasmas of Be+ ions. The modes were ex-
cited by applying an oscillatory potential between the
ring electrode and the trap end caps which was resonant
with the mode frequencies.

Figure 7 assumes a spheroidal plasma with A,D,
no 'i (& (plasma dimensions) as discussed in Sec. II.
However, even for finite temperatures, the (2,0) modes
should provide useful information on the plasma rotation
frequency. For example, in the limit that the ion space-
charge fields can be neglected, the upper hybrid mode fre-
quency is 0—2~ . The difference between Q —2' and
the measured upper hybrid mode frequency is therefore a
measure of the importance of the space-charge fields.
Also, an oscillatory drive on the ring electrode at
Q —2' can parametrically excite the perturbed cyclo-

0.5

0.4

0.3

3
0.2

tron motion of the plasma center of mass [the high-
frequency (1,1) mode] whose frequency is 0—co in the
laboratory frame. This parametric excitation requires an
initial, nonzero mode amplitude.

B. (2,1) modes

x ~x+5z cos(co2'& t),
y ~y+5z sin(co2', t),
z~z+e[x cos(coz~,"t)+y sin(co&', t)] .

(3.14)

As the subscripts in Eq. (3.14) indicate, this turns out to
be a (2, 1) mode. The superscript lab indicates that the
description is in the laboratory frame of reference. [This
labeling was not required with the azimuthally symmetric
(2,0) mode because its frequency is the same in either the
laboratory or rotating frame. ] Equation (3.14) can be
rewritten using complex notation as

We now consider an azimuthally asymmetric quadru-
pole mode. As in the previous section, we let p=x+iy
and z denote the equilibrium radial and axial position of
an ion (or group of ions) in a plasma with an equilibrium
density no and aspect ratio a. We guess that there is a
mode described by displacements from equilibrium of the
form

0.1

p~p+5(t)z,
z ~z+Re{F(t)p*I,

(3.15)

0.0
0.0 0. 1 0.2 0.5 0.6 0.7

where the time dependence is now included in 5(t) and
F(t), the asterisk denotes the complex conjugate, Re
denotes the real part, and

0.5
&(t)

5(t)
(3.16)
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5a +Zy=
1 cx

(3.17)

where the mode parameter g is independent of time and
real. Equation (3.15) transforms a uniform density
spheroid into a uniform density ellipsoid. The ellipsoid is
rotated with respect to the original, equilibrium spheroid
by an angle i y i, where, to first order in Z and 5,

0.1 0 ' 4

0.0
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FIG. 7. Sensitivity of the (2,0) mode frequencies for deter-
mining the p1asma rotation frequency. Points of constant (a)
upper hybrid frequency cu2p or (b) plasma mode frequency co2p

are plotted on a graph of rotation frequency cu„vs the trap axial
frequency co, (in units of the cyclotron frequency 0). A mea-
surement of m„Q,and co2p ol ctp2p can be used with these graphs
to determine the rotation frequency. The co2p plots are sym-
metric about co„/0=0.5. The boundary defined by the low-co„
end of the curves denotes the condition co„=co . Ion
confinement requires co, ~ co

(3.19)

The modulus iy ~
denotes the magnitude of the rotation

angle. The phase of y denotes the plane in which the ro-
tation takes place. Specifically, the rotation occurs about
the unit vector ( Imy/iy~, —Rey/iyi, 0) or, equivalent-
ly, the p= —iy axis. To first order in 'F and 5, the tilted
ellipsoid is a spheroid with the same aspect ratio as the
equilibrium spheroid. Therefore to calculate the electric
field at the displaced ion positions to first order in 8 and
5, we have only to calculate the electric field inside the
equilibrium spheroid rotated by an angle

~ yi about the
p= —iy axis. %"e obtain

PPZ CO& Nl CO&
2 2

Ei = (P+ 5z) + (a b)yz, —(3.18)
2g 3g

2Vl COp

E, = (a b) ReIyp*] . —
2$
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Here co is the equilibrium plasma frequency and a(a)
and b (a) are evaluated at the equilibrium aspect ratio a.

After transforming to a frame rotating at the equilibri-
um rotation frequency, the following differential equa-
tions are obtained for fi„—:expIico„tI 5 and
Z„—=exp I i co„tIZ:

0.2

0.0

—0.2

5„+i0, 5„—f (a)(a +g)8„=0,

COp 2f (a) +1 Z„=O.
dt

(3.20)

(3.21)

~ -0.4
CQ—0.6

Here
f (a)—= [a(a) b(a—)]/(1 —a )=—,'(1 —3', /co )/(1 —a ).
With the convention that the time dependence of 5, and
e„is given by exp(icoz, t), Eqs. (3.20) and (3.21) give the
following two equations for co&i, the (2, 1) mode eigenfre-
quency in the rotating frame. We obtain

—0.8

—1.0

0.0 0.2 0.8 1.0

(3.22)

COp
2 a2—

co&,
— f (a) +1 =0 . (3.23)

When Eqs. (3.22) and (3.23) are solved simultaneously, a
cubic equation for g is obtained,

2

0 g+ f (a)(a +g)(g —1) =0 . (3.24)

Solutions for g from Eq. (3.24) can be plugged back into
either Eq. (3.22) or (3.23) to obtain values of co2& for three
different (2, 1) modes. The laboratory (2, 1) mode frequen-
cy co&'& is obtained from co&'& =m2& —~„.With the conven-
tion used here, a positive co&, (co'2; ) denotes a counter-
clockwise precession when viewed from above the x-y
plane in the rotating (laboratory) frame. This agrees with
the usual right-hand rule for the sign of an angular fre-
quency.

Figure 8 shows a graph of the three different (2,1)
mode frequencies (in the laboratory) versus rotation fre-
quency for co, /0=0. 151. As discussed in the previous
two paragraphs, all three modes correspond to a tilt of
the equilibrium spheroid with respect to the z axis. This
tilted spheroid then precesses about the trap symmetry
axis at the frequency co&'& as shown in Fig. 9. Because the
density remains constant during the mode excitation, all
three (2,1) modes are surface modes. The modes with the
highest and lowest values of ~co&'i

~
are characterized by

0 (axial and radial excursions in phase). The third
mode with intermediate frequency is characterized by
g ~ 0 (axial and radial excursions 180' out of phase). For
the mode with the highest value of ~co~&,

~
in Fig. 8, the

tilted spheroid precesses rapidly at a frequency near Q.
For co„=co « Q, the mode frequency approaches
co&', ———(0—co„)and the mode parameter satisfies ri ((1.
Equations (3.15) and (3.16) show that the axial excursions
are small compared to the radial excursions and the pre-
cession can be thought of as being due to a coherent (al-
though asymmetric in z) excitation of individual ion cy-

FIG. 8. Graph of the three (2, 1) mode frequencies co2'1 as a
function of the plasma rotation frequency cu, for co, /Q=O. 151.
The mode frequencies in the laboratory frame are plotted. The
mode with the lowest value of ~co2; ~

has a frequency equal to 0
for co„/0=0.219.

clotron orbits. For low rotation frequencies, this mode is
classified as an upper hybrid mode (see Sec. V). For the
mode with the lowest ~to&~,"~ in Fig. 8, the tilted spheroid
precesses at a low frequency. For co, «0 and
cu„=co «Q, the mode parameter satisfies q»1 and
~z', ——co, —co„. Here this mode can be thought of as a
coherent (and azimuthally asymmetric) excitation of the
axial motion of individual ions. For low rotation fre-
quencies, this mode is classified as a magnetized plasma
mode (see Sec. V). At the Brillouin limit, the highest-
and lowest-frequency modes both have g=1, and their
frequencies are equally spaced about —0/2. Stated

FIG. 9. Sketch of the (2, 1) mode in the laboratory frame.
The plasma spheroid is tilted with respect to the z axis and
precesses about the z axis at copy ~ In this figure the sense of the
precession is positive. The picture in the rotating frame is the
same except the precession occurs at the frequency
~21 ~21 +~rlab
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difFerently, in the rotating frame the two modes have
equal and opposite frequencies at the Brillouin limit.
Near the Brillouin lin-it, these two modes are classified as
evanescent modes (see -' .~.. V). The intermediate frequen-
cy mode has g&0. For co, «Q and co„=co «0, the
intermediate mode has ~i) ~

&&1 and A@2',
———co, —co„.

Therefore this mode has an interpretation similar to the
lowest-frequency mode. However, the behavior of this
mode is quite di8'erent for co„»co . At the Brillouin
limit g= —a, which means that the plasma shape does
not change (that is, the plasma spheroid does not tilt),
and this mode frequency in the rotating frame is 0.
Therefore this mode vanishes at the Brillouin limit and is
called a magnetized plasma mode (see Sec. V).

Figure 8 shows that the (2, 1) mode with the lowest
magnitude of frequency in the laboratory frame is 0 at
co„/0=0.219 for co, /Q =0.151. This zero-frequency
mode can be excited by a static field error [19,21,39].
From the ion's point of view (the rotating frame) the stat-
ic field error looks like a rotating field with a frequency
co„.When co2i=co„orco2; =co&, —m„=0the (2, 1) mode is
excited. Section IV describes the excitation of the static
(2, 1) mode by a tilt of the electrode symmetry axis of the
trap relative to the trap magnetic field axis. If the rota-
tion frequency co, was increased from small values by an
external torque, excitation of this mode tended to limit
co, to values less than the rotation frequency where

b=0.
CO2)

In addition to the (2,0) and (2, 1) modes, there are two
(2,2) modes. The (2,2}modes are discussed with the other
I =m modes in Sec. V. In a (2,2) mode, the plasma forms
an ellipsoid with unequal principal axes in the x-y plane.
The ellipsoid rotates about the z axis at the (2,2) mode
frequency. A measurement of one of the (2,1) or (2,2)
mode frequencies can be used to determine the plasma ro-
tation frequency and aspect ratio in the same manner as
described for the (2,0) modes (see Fig. 7).

IV. EXPERIMENTAL RESULTS

In this section we compare experimental measurements
of some quadrupole modes of a Penning-trap plasma with
the calculations of Sec. III. Much of the experimental
work has been described previously in Ref. [21]. Typical-
ly between 1000 and 5000 Be+ ions were stored in a cy-
lindrical Penning trap shown schematically in Fig. 1.
Most of the experimental work was done with B =0.82 T
where Q( Be+ )/2m= 1400 kHz. Some singly charged,
heavier ions were created when the Be+ ions were creat-
ed or loaded into the trap. In addition, singly charged,
heavier ions slowly formed after loading Be+, presum-
ably due to ion-molecule reactions involving the Be+
ions. Their presence appeared to shift the observed mode
frequencies. We could eliminate them from the trap by
momentarily raising Vz- so that co, /Q&1/&2 for the
heavier ions, making them unstable. In practice we
would raise Vz to satisfy co, /0 =0.67 for Be+. We then
obtained repeatable and consistent measurements for the
mode frequencies.

Radiation pressure from a laser was used to cool the
Be+ plasma [20,21,28]. A 313-nm laser (power

= 100 pW) was tuned 10—50 MHz below the rest
frequency co~ of the 2s S,&2(m~=+ —,', mJ=+ —,')
~2p P3/2(g p ) transition in Be+. In addition to cool-
ing the ions, this laser optically pumped the ions into the
( —'„—,'

) ground state [28]. The ions were detected by imag-
ing the laser-induced ion Auorescence onto the photo-
cathode of a photon-counting imaging tube (see Fig. 1).
A real-ti. me display of the image was used to monitor
qualitatively the plasma's kinetic energy; a hot plasma
had a more difFuse boundary and less ion Auorescence.
With this simple diagnostic we were unable to distinguish
between an increase in the random thermal energy of the
ions and the excitation of a coherent modal motion of the
plasma. The cooling laser was split into two beams. One
beam (shown in Fig. 1) was directed perpendicularly to
the z axis near the center of the trap. The second beam
(not shown in Fig. 1) was used along with the first beam
when the lowest ion temperatures were desired
[20,21,28]. It was directed at a 51' angle with respect to
the z axis. (The projection of this beam along the z axis
cooled the ion's axial motion directly. ) With laser cool-
ing, the Be+ ions quickly evolved into a near thermal
equilibrium distribution and could be confined for many
hours [28]. The temperature of the ions could be mea-
sured from the Doppler broadening of an optical transi-
tion [28]. Typical temperatures ranged from 5 to 200
mK. (Here temperature refers to the Maxwell-
Boltzmann velocity distribution which occurs in thermal
equilibrium in the rotating frame. )

The plasma density was determined from Eq. (2.1} by
measuring the plasma rotation frequency. We measured
the rotation frequency by driving the (mz =+—'„
mJ =+

2 )~(+—'„——,') electron spin-fiip transition at fre-

quency co, in the 2s S,&z
Be+ ground state. The transi-

tion frequency co, is approximately equal to 22 6Hz at
8 =0.82 T. The transition was observed as a decrease in
the ion fluorescence when the frequency of the applied
microwave field is resonant with co, [40]. In addition, a
decrease in the ion fluorescence was observed at the side-
band frequencies co, co, . This is because from the ion's
point of view the phase and amplitude of the microwave
field are modulated due to the rotation of the plasma.
This produces sidebands in the microwave spectrum ob-
served by the ions at co, +co„[41].Measurement of these
sidebands enabled co„/2m to be determined to about 5
kHz. At 8 =0.82 T, the Be+ ion densities usually were
measured to be greater than 10 /cm . This density with
temperatures less than 200 mK results in Debye lengths
less than 10 pm. With 1000—5000 ions in the trap, the
typical plasma dimensions were between 100 and 1000
pm, which is one or two orders of magnitude larger than
A,i, . The radius of the cylindrical trap electrodes (1.27 cm)
was another order of magnitude larger. Consequently the
laser-cooled Be plasmas satisfied the condition
A,D « (plasma dimensions) « (trap dimensions) and
formed constant density, spheroidal plasmas. The axial
frequency cu, was measured by applying an oscillating po-
tential to one of the end caps [42]. The cyclotron fre-
quency Q was calculated from the magnetic field. The
magnetic field was determined accurately from measure-
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ments of the electron spin-Aip or nuclear spin-Hip transi-
tion frequencies in the Be+ ground state.

The angular momentum and therefore the rotation fre-
quency co„ofthe Be+ plasmas were controlled by a
torque from the radiation pressure of a second, weak
laser beam (power =2 pW) whose frequency coT was
tuned above the cooling transition frequency coo. This
torque beam (see Fig. 1) was directed perpendicularly to
the z axis but displaced from the z axis through the side
of the plasma which recedes from the laser beam due to
the plasma rotation. This beam imparted to the plasma a
torque which tended to increase the plasma rotation fre-
quency co„.Initially the plasma was cooled by the cooling
laser beam with the result that co„«Q.The torque laser
beam was then directed through the side of the plasma
with a frequency coT tuned slightly below coo. As coT was
increased above coo, coT became resonant with the frequen-
cy of the Doppler-shifted ions in the torque beam. This
produced ion fluorescence and a torque on the plasma
which increased the rotation frequency. As shown in
Fig. 4, an increase in co„produced a decrease in the plas-
ma radius ro for co, &Q/2 and an increase in ro for
co„)0/2. The plasma radius was measured with the im-

aging tube. Accurate measurements of the plasma's axial
extent were more difficult to obtain. However, we could
qualitatively check that the plasma obtained its max-
imum axial extent (and therefore maximum aspect ratio)
at the Brillouin limit by scanning the position of one of
the laser beams along the axial direction.

By appropriate tuning of the torque laser frequency
and with some adjustment of the positions of the cooling
and torque lasers, we could obtain a steady-state, equilib-
rium plasma with a rotation frequency anywhere in the
allowed range from co to 0—co . In addition to supply-
ing a torque, the torque laser also supplied energy to the
plasma when coT) coo [43]. Equilibrium occurred when
the energy input from the torque laser was removed by
the cooling laser and when the laser beam torques and
torques from static field asymmetries summed to 0. We
were also able to increase co„to values greater than 0/2
by using just the cooling laser. An increase in the cooling
laser frequency increased co„.In this case, however, the
rotation frequency sensitively depended on the cooling
laser frequency and a steady-state condition was more
difficult to achieve.

We discovered [21] that as the plasma rotation fre-
quency was increased, there was a range of rotation fre-
quencies where the plasma acquired a diffuse boundary
and a low level of ion fluorescence characteristic of a hot
plasma. The range over which this apparent heating oc-
curred depended sensitively on the alignment of the
trap's symmetry axis with the magnetic field axis. Let Oo

denote the angle between these two axes. If we assume
that the trap is aligned when the apparent heating reso-
nance is minimized, then we could adjust Oo&0. 01 by
searching for an alignment which gave no apparent heat-
ing. For Oo) 0. 1 the plasma rotation frequency could
not be increased beyond the point at which heating first
occurred. This heating resonance appeared to get
stronger with an increase in the number of ions. We have
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FIG. 10. Rotation frequency co„atwhich heating was ob-
served as a function of the single-particle axial frequency co, .
Both frequencies are expressed in units of the cyclotron frequen-
cy Q. The experimental data were obtained with 1000—5000
Be ions stored in the trap of Fig. 1. The solid line indicates

the calculated rotation frequency co, at which co» =0. This is a
universal curve involving no adjustable parameters.

been able to identify this heating resonance as an excita-
tion of a collective (2, 1) plasma mode by the static field
asymmetry associated with the misalignment of the trap
symmetry axis with the magnetic field. Figure 10 shows
the measured rotation frequencies where heating oc-
curred with Oo-—0.02 for different trap axial frequencies.
Also shown (solid line) is the calculated rotation frequen-
cy at which ~z; =0, that is, co„=co2,as calculated from
Eqs. (3.22) —(3.24). Excellent agreement is obtained be-
tween the predicted and measured rotation frequencies
where heating is observed.

We did not attempt to understand the source of energy
in the heating resonance. However, two possibilities are
listed below. A static asymmetry cannot change the total
energy of the plasma, but it can convert potential to
thermal energy by producing an expansion of the plasma.
Because the ratio of potential to thermal energy is large
in our plasmas, a small expansion can produce a large in-
crease in the ion thermal energy. This energy source in-
creases with the potential energy per ion of the plasma.
For example, it increases with the ion number or plasma
density. With the lasers operating continuously, the
time-averaged plasma radius does not change. However,
the plasma radius may Auctuate. For example, there
could be a small plasma expansion between photon
scattering events, balanced by a plasma contraction when
a photon is scattered. Heat could be generated by expan-
sion during plasma fluctuations. Another source of ener-
gy is the torque laser. The energy input from this laser
could increase when the static (2,1) resonance is excited if
there is an increase in the scatter rate from this laser.

If the density is increased from low values correspond-
ing to co„((0/2,excitation of the static (2, 1) mode may
provide a practical limit to the density and number of
charged particles that can be stored in a Penning trap.
For large ion numbers or Oo) 0. 1' we were unable to ob-
tain densities greater than n 0(co„=co2, ). For
m, /Q&0. 53, Fig. 10 shows that co, =co2& occurs for
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co„/Q)0.5 and therefore the static (2, 1) mode will not
prevent reaching the Brillouin limit in this case. Howev-
er, for a high magnetic field and a trap with large dimen-
sions, the condition co, /0) 0.53 may be difficult to ob-
tain because of practical limitations on the voltage that
can be applied to the trap electrodes. In addition,
co„/0=0.5 with co, /0=0. 53 occurs for an aspect ratio
a=0.44. For storage of a large number of charged parti-
cles, this would require a trap with a large radius. How-
ever, a large volume trap is more easily constructed by
extending it axially while keeping the radius fixed [44].
For storage of large ion numbers, the plasma dimensions
may not be small compared to the trap dimensions. This
changes the calculation of the modes because the trap po-
tential will not, in general, be quadratic and the image
charges in the trap electrodes cannot be neglected. In
spite of the difficulty of increasing co„(and the density)
through the point where the heating resonance occurs,
there is still the potential to "jump through" this condi-
tion by sudden switching of co, or creating the plasma
with co„&~co&, ~.

Laser torques were also used to increase ~, in Be+
plasmas consisting of 40000 Be+ ions at 8 =6 T. We
were unable to remove possible contaminant ions at this
high magnetic field because of the high voltages required
on the trap electrodes. In addition, we did not have a mi-
crowave source (=160 GHz at B =6 T) to drive the
ground-state electron spin-Aip transition and measure the
plasma rotation frequency. However, a rough measure of
co„could be obtained from the plasma aspect ratio. We
were able to obtain rotation frequencies co, )0/2. Fig-
ure 11 shows an image of a rapidly rotating Be+ plasma
with co„/2m.=Q/2+=10 MHz. The propeller shape of
the ion Auorescence is due to the fast rotation of the plas-
ma. The ions get excited in the laser beam, but decay
outside the laser beam because the 8.2-ns lifetime of the
excited P state is longer than the typical transit time

FIG. 11. Image of the ion fluorescence of a rapidly rotating
Be+ plasma at B =6 T with cu„/2m.=0/2m. = 10 MHz.

Fluorescence due to the perpendicular and diagonal cooling
beams is observed. The plasma diameter in the z =0 plane is
approximately 1 mm. The ion kinetic energy due to rotation at
the radial edge of the plasma is approximately 50 eV.

through the beam. The (2, 1) heating resonance was much
stronger and more sensitive to the magnetic field align-
ment at B =6 T than in our work at 0.8 T. This may
have been due to the larger number of trapped ions at
8 =6 T. We also observed additional heating resonances
at lower rotation frequencies than the (2, 1) heating reso-
nance. Section V discusses other static modes that are
potential candidates for these additional heating reso-
nances. We note that many of these resonances tend to
limit the plasma density to even lower values than the
static (2, 1) resonance.

Density limits on trapped ion plasmas have also been
reported in other Penning-trap experiments. In Ref. [45]
the experimentally observed ion fluorescence in a Pen-
ning trap was interpreted in terms of limits to the ion
density imposed by single-particle resonant transport
[46]. In single-particle resonant transport, enhanced
transport (and lower ion density) may occur when the ax-
ial bounce frequency of an individual ion is commensu-
rate with the ion's rotation frequency. In this process an
individual ion resonantly interacts with an external field
error. This is different from transport due to the excita-
tion of a zero-frequency mode where a collective plasma
mode resonantly interacts with an external field error. In
our work we observe no evidence for single-particle reso-
nant transport as an important mechanism for limiting
the ion density. An important difference between our
work and that of Ref. [45] is the ion temperature. In our
work the ions are sufticiently cold that the ion-ion col-
lision time is short compared to the axial bounce time.
The experimental measurements of Ref. [45] were done
on relatively hot ion clouds (=5000 K) where the ions
may bounce faster than they collide. In addition, the De-
bye length in this work was likely comparable to or larger
than the cloud dimensions. In this case the ion density is
not constant, and calculation of the space-charge-shifted
axial bounce frequency of an individual ion requires a
model different from the cold thermal equilibrium dis-
cussed in Sec. II. The theoretical analysis of Ref. [45]
would be more convincing with a self-consistent calcula-
tion of the space-charge shifts. Such a self-consistent cal-
culation is described in Ref. [47]. When space charge is
important, the potential variation in the axial direction is
no 1onger harmonic, so the axial bounce frequency de-
pends on the ion temperature and axial dimension of the
ion cloud. Both of these dependencies are neglected in
Ref. [45].

We also measured the (2,0) plasma and upper hybrid
modes. These modes were excited by applying a
sinusoidal potential between the two central and two
outer electrodes in Fig. 1. They were detected by a
change in the ion Auorescence when the frequency of the
applied rf was resonant with the mode frequency. This
change was presumably caused by a change in the ions'
Doppler width and possibly by a change in the laser
beam —plasma overlap. Measurements of the plasma
mode frequency as a function of the plasma rotation fre-
quency are shown in Fig. 12 for two different trap axial
frequencies. The solid lines show the plasma mode fre-
quency calculated from Eqs. (3.12), (3.13), and (2.6).
Again, good agreement between the predicted and ob-
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FIG. 12. Plasma mode frequency co&& as a function of the ro-
tation frequency co„for two different axial frequencies co, . All
frequencies are expressed in units of the cyclotron frequency A.
The circles and triangles give the experimental data. The solid
lines give the cold-Quid model predictions for ct)2p. The dashed
and dotted lines give the high- and low-magnetic-field calcula-
tions for co2p, respectively. The dotted line corresponds to the
co&p frequency for an rf-trap plasma with the same density and
aspect ratio.
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served modes is obtained with no adjustable parameters.
Figure 12 shows two additional calculations. In the first,
shown as dashed lines, the magnetic field is assumed to be
effectively infinite; that is, the ions are not allowed to
move radially, and the mode frequency is calculated as-
suming a simple axial stretch of the charged spheroid.
The mode frequency in this case is calculated from Eq.
(3.11) by setting the B& lr) term equal to 0. In the second
calculation, shown as dotted lines, the magnetic field is
assumed to be effectively 0; that is, the curve shows co&
[see Eq. (3.13)]. From this figure, the (2,0) plasma mode
behaves like a mode of a strongly magnetized plasma at
low rotation frequencies and an unmagnetized plasma
near the Brillouin limit. We attempted to excite the
upper hybrid (2,0) mode with a drive frequency near the
upper hybrid frequency. A resonance (a change in the
ion fluorescence) was observed as the frequency of the ap-
plied rf was swept. The amplitude of the drive was de-
creased until the resonance signal was barely detectable.
Figure 13 shows a plot of the measured resonance fre-
quency along with a calculation of the upper hybrid (2,0)
mode from Eqs. (3.12), (3.13), and (2.6). Agreement is
good, indicating that the observed resonance was likely
the excitation of the upper hybrid (2,0) mode. As dis-
cussed in Sec. V, our drive could also potentially excite
an upper hybrid (4,0) mode. For the conditions of this
experiment, the two mode frequencies would be difficult
to distinguish. However, for sufFiciently weak drive
strength, the (2,0) mode should be excited more strongly
than the (4,0) mode. We could not excite this upper hy-
brid mode near the Brillouin limit because, as discussed
in Secs. III and V, the upper hybrid modes become
difficult to couple to with external fields there.

The agreement obtained here with the zero-
temperature calculations requires that A,D « (plasma
dimensions) «(trap dimensions). This condition is usual-

FIG. 13. Upper hybrid mode frequency co2p as a function of
the rotation frequency co, for co, /0=0. 151. All frequencies are
expressed in units of the cyclotron frequency Q. The circles
give the experimental data. The uncertainty for measurements
done at low rotation frequencies is approximately the size of the
circles. At high rotation frequencies the uncertainties increase
because the mode becomes difFicult to excite. The solid line
gives the cold-Quid model predictions.

ly easy to satisfy with a laser-cooled ion plasma and, in
fact, may not be difficult to satisfy with a cryogenic
( T =4 K) plasma. For example, a plasma with
no = 10 /cm at T =4 K has a Debye length A,D =44 pm.
Consequently if the dimensions of this plasma are greater
than 1 mm, the inequality A, D «(plasma dimensions) is
satisfied. A plasma with ~p = rp ——1 mm and
no—- 10 Icm requires loading 4m. rona l3=4X10
charged particles within 1 mm of the trap axis. The
charged particles must then be cooled and evolve into a
thermal equilibrium state before the plasma radius ex-
pands [18,46] due to radial transport produced by trap
asymmetries. For electrons this appears to be possible
because at large magnetic fields (B=6 T) the cyclotron
radiation time is short (& 1 s) and the time over which
the plasma spreads due to trap asymmetries can be long
[16] (many hours). In addition, localized sources such as
field emission points can be used to load many electrons
close to the trap axis. For ions which cannot be laser
cooled the inequality for a zero-temperature plasma may
be more difFicult to achieve. This is because radiative
cooling times are typically longer. In addition, the radial
transport in Penning traps due to trap asymmetries is
likely faster for ions than electrons because of the larger
ion mass. However, with care in loading the plasma, or
with the development of a technique to reduce the plasma
radius and increase the ion density, it should be possible
to satisfy the conditions for a zero-temperature plasma
with ions at 4 K. Ions in a Paul trap can be rapidly
cooled to the temperature of a background buffer gas. In
this case it should be possible to obtain a plasma where
the Debye length is small compared to the plasma dimen-
sions. Some experiments in Paul traps approximate this
regime [47].

V. GENERAL LINEAR MODES

The quadratic oscillations discussed in Secs. III and IV
are important special cases of an infinite set of linear nor-
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mal modes. Although we have, up to now, emphasized
the behavior of the quadratic modes, there are several
reasons to consider the general modes here. First, al-
though the general higher-order modes have not yet been
experimentally measured, we will see that it should be
possible to observe at least a few of them using the same

experimental techniques as were described in Sec. IV.
Second, a deeper understanding of the quadratic modes
may follow from consideration of their place in the
hierarchy of general oscillations. Finally, a simple exact
analytic solution for all of these modes has been found
[29].

In Sec. V A we briefly review some features of this gen-
eral solution. We then discuss a simple form of the gen-
eral dispersion relation for the modes which allows one to
obtain numerical solutions of the mode frequencies using
a polynomial-root-finding algorithm. We also consider
some examples, including some of the modes which can
be resonantly driven by applying an oscillating potential
between the two end electrodes and the center electrodes.
In Sec. V 8, we focus on modes which can be resonantly
driven by static field errors. We find that such reso-
nances occur in profusion, becoming dense when the
cloud rotation frequency is small compared to the cyclo-
tron frequency.

B5n +V.(n~5v) =0,
Bt

(5.2a)

ty nc(x) is uniform within the plasma spheroid and zero
outside, and Pii is the total equilibrium potential in a ro-
tating frame, equal to [28]

m COp

QD=pr+pi+ (Q co )r
2q

The first two terms in Pc are the external trap and space-
charge potentials, given by Eqs. (2.4) and (2.9), respec-
tively, and the last term is a pseudopotential due to rota-
tion through the magnetic field.

We substitute Eqs. (5.1) into the cold-fiuid equations
[48] describing conservation of momentum and particle
number, as well as into Poisson's equation. In the rotat-
ing frame, the cold-fluid equations have the same form as
in an inertial frame (for example, the laboratory frame),
except that the electrostatic potential is changed as indi-
cated above and the cyclotron frequency is changed to
the vortex frequency Q =0—2'„.When equilibrium
force balance is taken into account and the equations are
linearized in the small perturbations, we obtain the
linearized continuity, momentum, and Poisson equations
of cold-fluid theory:

A. Description of the normal modes
85v q+ VP —5vXQP=O,
Bt m

(5.2b)

n (x, t) =n~(x)+ 5n (x, t),

v(x, t) =0+5v(x, t),
P(x, r) =Pii(x)+1((x,t),

(5.1a)

(5.1b)

(5.1c)

where fin, 5v, and f are the perturbed density, fiuid ve-

locity, and potential, respectively. The equilibrium densi-

In order to obtain a general solution for the normal
modes several assumptions must be made. We assume
the cloud is near thermal equilibrium, and we assume the
oscillations around this equilibrium are small so that we
can linearize the equations of motion. The temperature is
assumed to be sufficiently small that pressure effects on
the fluid dynamics are negligible, and correlation effects
are also neglected; these are good approximations provid-
ed that both the Debye length and interparticle spacing
are small compared to both the size of the cloud and the
wavelength of the mode. Electromagnetic effects are
neglected (that is, V XE=V XH=0 in Maxwell's equa-
tions) since the cloud is small and the mode frequency is
relatively low, and the effect on the dynamics of image
charges in the electrodes is neglected.

These approximations are identical to those used in the
earlier sections and apply well to present experiments on
small cold ion clouds. However, unlike in the previous
analysis, we do not assume a particular form for the den-
sity perturbations. Rather, a general linear perturbation
is employed. The dynamics are described in a frame ro-
tating at the constant rotation frequency co, of the equi-
libriurn plasma. In this frame the plasma is stationary
and the density, Quid velocity, and the potential are per-
turbed from their equilibrium values:

(5.2c)

where z is a unit vector along the z axis. Equation (5.2b)
and further equations implicitly assume q & 0. For
q &O, Q ~—0„.Using the assumption that the per-
turbed quantities have a time dependence of the form
e '"' in the rotating frame (so that co is the mode fre-
quency as seen in this frame), a differential equation for g
follows from standard algebraic manipulations of Eqs.
(5.2):

V.e V)=0, (5.3a)

0 (5.3b)

where ei ——1 —co /(co —Q, ), pz=Q~z/[~(~~ —Qz)],
and e3—= 1 —co~/co . Equation (5.3a) is just Maxwell's
equation V.D=O for a medium with a linear frequency-
dependent anisotropic dielectric tensor e. After a solu-
tion to Eqs. (5.2) for the perturbed potential g is found,
Eqs. (5.2) can be used to calculate the perturbed density
5n and perturbed fiuid velocity 5v.

The normal mode problem requires a solution to Eq.
(5.3) subject to the boundary condition that $~0 at
infinity, which is a problem in the theory of electrostatics.
Outside the plasma @=1 and g satisfies Laplace's equa-
tion, V g "'=0. Inside the plasma the dielectric tensor is
anisotropic and the solution of Eq. (5.3a) is more compli-

where e is the cold-plasma dielectric tensor. In Cartesian
coordinates
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cated. The inner and outer solutions must be matched
across the plasma-vacuum boundary according to

in l,out
'Y Iboundary ~

Iboundapy

(5.4a)

(5.4b)

x =[(P,—d )(1—Pz)]' cosP,

y
—= [(P,—d')(1 —P)]'"sing,

z ( &, /e3) ':—g, g2

(5.6)

where d =zp rp and zp =zp(e,—/e3) . These coordi-2—=—2 —2 1/2

nates are frequency dependent; the different possible to-
pologies of the coordinate surfaces are discussed in Ref.
[29].

Returning to Eq. (5.5), we note that different normal
modes are enumerated by the integers l and m, where
I ~ 0 and

I ml & l. In fact, values of m & 0 do not give rise
to new modes if negative frequencies are allowed. There-
fore m ~ 0 is assumed throughout, and negative frequen-

where n is a unit vector normal to the plasma-vacuum
boundary.

Although the formulation of the problem as one in the
theory of electrostatics is a step forward, simple solutions
are generally available only in one of the standard
geometries for which a separable solution exists, and this
is not a standard geometry. The surface of the plasma is
spheroidal, while the dielectric tensor is anisotropic with
a difFerent, cylindrical, symmetry. However, Ref. [29]
showed that Eq. (5.3) does in fact have a separable solu-
tion in an unusual frequency-dependent coordinate sys-
tem. This is the only known exact analytic solution for
normal modes in a magnetized plasma of finite size. The
solution for the mode potential is

AQP(g, /d)Pi ((2)e' ~ "" (outside plasma),

&PP(g, /d )Pi (gz)e' ~ " (inside plasma),
(5.5)

where A and 8 are constants and Qi and Pi are associ-
ated Legendre functions. Outside the plasma, the solu-
tion is expressed in terms of spheroidal coordinates [49]
(g„gz,P) defined by the relations

x=[(g—d )(1—gz)]'~ cosP,

+
—[(g2 d2)(1 g2)]1/2si

z—=g

The coordinate gi is a generalized distance coordinate
taking the value giP [zp oo ) outside the cloud, gi is a
generalized latitude in the range [—1,1] and P is the usual
azimuthal angle. Surfaces of constant f, are confocal
spheroids with the surface of the cloud defined by g, =zp,
and surfaces of constant g2 are confocal hyperboloids.
The foci are a distance 2ldl apart, where d—:zp rp. —
The coordinates (g„g2,$) become the usual spherical
coordinates ( r, cos8, P ) when zp = rp.

Inside the cloud the coordinates (g„g2,P) are em-

ployed in order to obtain a separable solution. These
coordinates are transformed spheroidal coordinates
defined by the equations

cies are allowed. For IAO, positive and negative fre-
quency modes rotate about the z axis in opposite direc-
tions. As discussed in Sec. III, we use the convention
that modes with positive frequency rotate counterclock-
wise when viewed from above the x-y plane (so that
dP/dt) 0 for co)0). The two directions of rotation are
not equivalent due to the applied magnetic field. The
mode frequencies for positively and negatively charged
particles differ by a minus sign.

For a given pair (I, m) the mode potential outside the
cloud decays away like s' ' " at large distances s from
the cloud center [because QI (x)~x "+" for large x
and g, ~s for large s]. The modes can also be
differentiated by the number of oscillations in P. For ex-
ample, there are l —m zeros in the potential as one moves
in gz along a given spheroid outside the plasma from one
pole to the other [that is, from $2= 1 to —1 on a constant
(g„P)curve]. This is because P& (x) has l —m zeros in
the range [—1,1].

The variation of the potential outside the cloud is in-
dependent of the mode frequency, up to the overall con-
stant A. However, inside the cloud, the frequency depen-
dence of the coordinates (through their dependence on e,
and e3) implies that the behavior of the mode potential
varies depending on the mode frequency, the plasma fre-
quency and vortex frequency [except for two exceptional
cases described in Eqs. (5.9) and (5.10) below]. This
behavior can be understood qualitatively from the spatial
Fourier transform of Eq. (5.3a),

(5.7)

where k~ and k, are the components of the wave vector
perpendicular and parallel to the magnetic field, respec-
tively. When co/co~ and 0/co~ are such that e, /e3 &0, a
solution of this equation exists with both k~ and k, real,
which is a propagating mode. However, when e&/e3) 0,
Eq. (5.7) implies that either ki or k, must be imaginary
and the mode is evanescent. The frequency dependence
of the e's implies that the propagating mode relation
6& /E'3 (0 is satisfied by frequencies in the ranges
0& Ical &min[pi, ln, l] and max[p~„ln. l] & lail & &„,
where A„=(co+0,)'~ is the upper hybrid frequency.
Modes in the first frequency range are called magnetized
plasma oscillations, and modes in the second frequency
range are called upper hybrid modes [50]. As we will see
presently, evanescent modes occur only when IQ, I &co~,
and such modes have frequencies in the range

I
Q

I
&

I pal & co~. These regimes are shown in Fig. 14 as a
function of the rotation frequency. (Here, remember that
both the vortex frequency and the plasma frequency are
functions of co, .) Modes with frequencies falling in areas
labeled A are magnetized plasma modes, modes falling
in areas B are upper hybrid modes, and modes falling in
C are evanescent.

Modes which are evanescent have a different potential
variation within the cloud than modes which are propa-
gating. Propagating modes reAect off the interior surface
of the spheroid and set up a standing-wave pattern inside
the cloud, whereas evanescent modes propagate along the
cloud surface but decay with distance from the surface
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1.0

0.8

0.4-

B:
-' ~

4

the four possible (4,0) normal mode potentials are shown
in Fig. 16, again for a spherical cloud with 0,/co~ =0.5.
Like the (2,0) modes, these modes could also be driven by
in-phase oscillation of the end-cap potentials. There are
now four zeros in the exterior potential as we move from
pole to pole along the spheroid, as can be observed in
Figs. 16(a)—16(d). Figures 16(a) and 16(b) correspond to
upper hybrid modes, whereas Fig. 16(d) is a magnetized
plasma mode and Fig. 16(c) is an evanescent mode. The
decay of the evanescent mode with distance into the plas-

0.2

0.0
0.0 0.2 0.4 0.6

ur, /a
0.8 1.0

FIG. 14. Sketch showing the areas of allowed mode frequen-
cies co as a function of the rotation frequency co, . Modes in re-
gions A, 8, and C are, respectively, magnetized plasma, upper
hybrid, and evanescent modes.

into the plasma. (Because of the curvature of the cloud's
surface, this decay is algebraic rather than the exponen-
tial decay we would observe for an evanescent mode at a
planar interface. )

For example, the zeros of the (2,0) mode potential
within the cloud are shown in Fig. 15 for the case of a
spherical plasma with 0 /co =0.5. As discussed in Secs.
III and IV, there are two possible forms for the potential
corresponding to a high-frequency upper hybrid mode
[labeled (a)] and a lower-frequency mode [labeled (b)].
The upper hybrid mode is propagating, but for this value
of Q /m the lower-frequency mode is evanescent, decay-
ing with distance into the plasma. This behavior is best
observed in Figs. 15(c) and 15(d), which show the poten-
tial variation of the modes along z =0 and r =0, respec-
tively.

Furthermore, either Fig. 15(a) or Figs. 15(c) and 15(d)
show that the potential of the upper hybrid mode nearly
vanishes along the cloud surface, so there is almost no
potential variation exterior to the cloud. This is because
as 0 /co ~0 (the Brillouin limit in a Penning trap or the
condition for ions in a Paul trap) the upper hybrid modes
have frequency co=co and, as shown below, become bulk
plasma oscillations with f'"'=0. If II„/co ~0 and
co~cu~, then e=O and Eq. (5.4) implies Vg'"'.n=O along
the plasma boundary. The only solution which satisfies
both the boundary condition at the plasma and P'"'—&0

at infinity is P'"'=0. Furthermore in the 0,/co ~0 limit
the magnetized plasma modes disappear as their frequen-
cy co~0. Thus, only the evanescent modes with E'&/G3) 0
may be observable near the 0 /co ~0 limit if only elec-
trostatic detection of the modes is employed. In this lim-
it the evanescent modes satisfy V g'"=0, so from Eq.
(5.2) there is no density perturbation except at the surface
of the cloud. In this limit the evanescent modes induce
incompressible deformations of the cloud's shape, and for
this reason they are often called surface modes.

As a second example, the interior potential variation of

(c)

W 0.5

-0.5
0.2 0.4 0.6 O.S

0.5-

-1.5-

-2
0.2 0.4 0.6 O.S

FIG. 15. (a) and (b) show the zeros of the potential for the
two l =2, m =0 modes in a spherical plasma with Q /m~ =0.5.
(a) is the upper hybrid mode and (b) is the plasma mode which is
evanescent for these conditions. In (c) the variation of the mode
potential (normalized to the potential at the plasma center) is
shown as a function of cylindrical radius r in the z =0 plane,
and in (d) the potential is shown as a function of z along r =0.
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(b), ma is most easily observed in Figs. 16(e) and 16(f). Just as
with the (2,0) modes, for this relatively low value of
II /co the upper hybrid modes induce almost no poten-
tial variation outside the cloud, as opposed to the mag-
netized plasma mode or the evanescent mode.

Finally, there are two exceptional cases for which the
form of the mode potential is independent of co, co, and
0 . When l =m or l =m + 1, we can substitute into Eq.
(S.5) the general form of the Legendre function Pi,

(c) z,

(I —m)/2

Pi (x)= g (1—x )
~ p~x'

j=0
(5.8)

where the p 's are given numbers, and use Eq. (5.6) to
show that

and

in gr m i (mP —cot)
(m, m) (5.9)

in =gp' Ze~ ™P—mt)
(m+$m) r Ze (5.10)

(e) 2

W 0.5—

-0.5
0 0.2 0.4 0.6 Q.S

2,

0.5—

0

-0.5—

-1.5
0

I I I I

0.2 0.4 0.6 O.S

FICx. 16. (a)—(d) show the zeros of the potential for the four
l =4,m =0 modes in a spherical plasma cloud with
0 /co~ =0.5, in order of highest frequency (a) to lowest frequen-
cy (d). In (e) the variation of the mode potential (normalized to
the potential at the plasma center) is shown as a function of cy-
lindrical radius r in the z =0 plane, and in (f) the potential is
shown as a function of z along r =0. The labels (a)—(d) corre-
spond to Fig. 15(a)—15(d).

where A and 8 are constants. (In fact, for all l and m, g'"
can be expressed as a finite-order multinomial in x, y, and
z.) In the cases of Eqs. (5.9) and (5.10) the form of the
mode potential is independent of co, co, and 0, because
the mode satisfies 8 f'"/Bz =0 and Vig'"=0 separately,
and so Eq. (5.3a) is satisfied for any e, and e3. Further-
more, these particular modes satisfy V g'"=0, so they
cause incompressible deformations of the cloud for all m

and 0; that is, they are always surface modes. For exam-
ple, for the case of the (2, 1) mode, QI2, ~=Be'~ "rz,
which is the potential inside a tilted cloud precessing at
frequency co, in agreement with the analysis of Sec. III.
The (1,0) and (1,1) modes are also examples of incompres-
sible cloud deformations, which correspond to the well-
known axial center-of-mass and magnetron modes.

The (2,2) mode is an incompressible distortion of the
cloud into a triaxial ellipsoid, leaving the length of the
cloud fixed at 2zo. In general, the (l, l) modes are finite
length extensions of the z-independent diocotron and
upper hybrid surface modes of cylindrical non-neutral
plasmas [51].

Although the I =m and I =m+1 surface modes ap-
pear to be fundamentally different from other magnetized
plasma, upper hybrid, and evanescent modes, in fact they
display many characteristics which are similar to these
modes. For example, when co„«0 two of the three (2, 1)
oscillations can be thought of as finite length versions of
magnetized plasma modes in a cylindrical column. The
modes (indicated by the upper two curves in Fig. 8) have
m =1 and a half wavelength potential variation over the
length of the column; they rotate in opposite directions
around the column. Similarly, the other (2, 1) mode is a
finite length version of an upper hybrid oscillation which
also has a half wavelength variation over the column
length. Modes with larger values of I simply have more
wavelengths fitted into the column length, and so are not
fundamentally different. Indeed, we will soon see that the
frequencies of these I =m and l =m + 1 modes behave in
a qualitatively similar fashion as those of the other propa-
gating and evanescent modes. %'hen discussing the gen-
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a —e3/e&

a —1
(5.11)

eral frequency dependence of the modes, we therefore do
not need to make a distinction between these modes and
modes with other values of l and m.

Turning now to the normal mode frequencies, Ref. [29]
showed that substitution of Eq. (5.5) into Eq. (5.4) leads
to two homogeneous linear equations for 3 and 8 which
have a nontrivial solution only if

' 1/2

Here PP =P—P (a/(a E—3/c, ) ), Q& ——QI (a/(a—1)' ), a=zo/ro, and the primes denote differentiation
with respect to the entire argument.

The general behavior of the solutions to this equation
was considered in Ref. [29]. Here, we discuss a
simplification of Eq. (5.11) which aids in the determina-
tion of the solutions, and we consider some examples.
Analysis of the roots of this nonlinear equation is aided
by the fact that it can be expressed as a polynomial in the
frequency m. This polynomial can be derived by substitu-
tion of Eq. (5.8) into Eq. (5.11), which leads, after some
algebra, to the expression

(1—m) /2
m'

x' '(1 —x ) g p x ~ ma (e, +e 2) +(1 —m —2j)e3-
i=o

=0, (5.12)

where x =a/(a' e3/E, —)'~ . The factor before the sum
is nonzero and can be discarded. Furthermore, since
x J=(1 e3/a —e&)J, and e'&, e2, and e3 are rational func-
tions of co, the sum itself may be expressed as a polynomi-
al in co. For example, e3/e, = (co —Q, )(co —

co& ) /
[co (co —Q„],and e, +e 2=(co +coQ,—co& )/[co(co+ Q, )].
Substitution of these results into Eq. (5.12) leads, after

I

(I —m)/2
g j Int[(l —m)/2] —j 0

j=0
where

(5.13)

some further reduction, to the following polynomial
equation:

m'

aj =—p (co+Q, ) (1 —m —2j)(co —co )—
a —1

co +ma co(co —co +coQ, )

b—:a co (co —Q„)—(co —co )(co —Q,),

and

c —=a co (co —Q„).
The function int[(l —m)/2] denotes the largest integer
less than or equal to (1 —m)/2.

This form of the dispersion relation (the dependence of
co on a for a given l, m) is considerably more simple to
solve numerically than Eq. (5.12), using any polynomial-
root-finding algorithm. Furthermore, the equation leads
to some simple analytic results. For example, we can
count the number of normal modes by determining the
order of the polynomial. The order is
3+4int[(l —m)/2]; however, we must be careful to ex-
clude any spurious roots generated in the derivation of
Eq. (5.13) through multiplication by resonant denomina-
tors of e&, e2, or e3. When m =0 and l is odd, there is a
single spurious root at co= —Q, [due to the (co+Q, ) term
in a ]. If m =0 and 1 is even there are three spurious
roots at co =0 and co= —0 . Subtracting out these roots
from the total, we find for m =0 there are 2l normal
modes. However, when m =0, Eq. (5.13) is a polynomial
of order l in co . The roots then come in l pairs at +co,
and the pairs do not really correspond to two separate

modes; indeed, Eq. (5.5) shows that the mode potential is
identical for both +~ when m =0.

When m %0 and when 1 —m is even, there is a single
spurious root at co=0, while when l —m is odd, there are
no spurious roots. Thus, when l —m is even there are
[2(l —m)+2] modes, and when 1 —m is odd there are
[2(l —m)+1] modes. The roots no longer come in +co
pairs because, for m%0, modes with positive and nega-
tive frequencies rotate in opposite directions around the z
axis, and these directions are not equivalent because of
the magnetic field.

Some simple analytic results are also possible for the
mode frequencies when l =m or l =m +1. In this case
only the j=0 term survives from Eq. (5.13) and the
modes are determined by the equation ao=p. When
l =m this is a quadratic equation with roots given by

Q /2+QQ„/4+co„/[I —(ro/lad)Q/ /QI ] .

(5.14)

For Q, )0 the low-frequency mode (upper sign) corre-
sponds to the diocotron mode of a cylindrical non-neutral
plasma [51] and the high-frequency mode (lower sign) is a
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surface mode in the upper hybrid frequency regime.
When I =m + 1, Eq. (5.13) becomes

(a)

(aI+PI)co (co+0 ) a—Icoco —0 co =0, (5.15)

where a& ——1+a (I —1) and PI ———[a/(a—1)'~ ]QI' '/QI' '. There are three solutions for the
mode frequency which, when /=2, are the same as the
solutions of Eqs. (3.22) —(3.24) for the (2, 1) mode. When
l = 1, one of the roots is spurious and the other two ap-
proach the single-particle axial bounce frequency
caI, =co~ /(1+PI)' in agreement with Eq. (2.6); this is the
axial center-of-mass mode.

Results for the frequencies when l =m +2,
m +3, . . . require the solution of even higher-order po-
lynomial equations. We have found the solutions numeri-
cally, and some results are displayed in Figs. 17(a)—17(c)
as functions of the rotation frequency cu, . It is important
to remember here that both Q and co are functions of
the cu„;in fact, in the rotating frame the plasma becomes
unmagnetized at the Brillouin limit 0 =0.

Examination of the mode frequencies at the Brillouin
limit (equivalent to the case of ions in a Paul trap) shows
that for given I and m there are two modes which become
unrnagnetized surface plasma oscillations. These surface
mode frequencies are described by the particularly simple
limiting form of Eq. (5.11), @3=PI QI /PI QI [here the
argument of the PI 's simplifies to a/(a —1)' ]. Thus,
when 0 =0 there are a pair of surface modes with fre-
quencies of opposite sign. For A WO but 0

~ (co~ and
l ~~, these modes are evanescent, approaching the
magnetized surface plasma frequencies +El„/v'2. This
result is independent of the shape of the cloud. However,
for

~

0
~

)co„the behavior of these two modes depends on
m. When m =0 the pair of modes remains in the mag-
netized plasma regime co(co&, as shown in Figs. 17(b)
and 17(c). When m %0, however, only one mode remains
in the magnetized plasma regime, while the other enters
the upper hybrid range, as shown in Fig. 17(a).

The rest of the modes always remain in either the mag-
netized plasma or upper hybrid regime. Their numbers
are as follows; when m&0 there are l —m magnetized
plasma modes and 2int[(l —m)/2] upper hybrid modes;
when m =0 there are int[(l —1)/2] pairs of magnetized
plasma modes, and int[l /2] pairs of upper hybrid modes.
[These numbers can be determined by analysis of the
solutions of Eq. (5.13) in the limits 0 ~ oo and 0 —+0.]

Finally, we compare the frequencies of (2,0) and (4,0)
modes, which, like the (2,0) modes, can be excited using
the technique described in Sec. IV. The frequency of the
evanescent (4,0) mode, shown in Fig. 17(b) for the experi-
mental value co, /0=0. 151, is quite di6'erent from the
evanescent (2,0) frequency, which was measured experi-
mentally. Evanescent branches with higher I are even
further removed from the I =2 root, approaching0„/&2. This provides further evidence that the mea-
sured mode shown in Fig. 12 is in fact a (2,0) mode exci-
tation and not a higher-order oscillation. However, it
should be possible to excite other m =0 even I modes us-
ing the same experimental technique. For larger values
of co, /0, however, the evanescent (2,0) mode becomes
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FIG. 17. Mode frequencies co in the rotating frame vs rota-
tion frequency cu„ for di6'erent values of (I,m) and co, . (From
Sec. VB, co" =co—me@, .) For co&0 the diagrams should be
reflected through the point (co„,co)=(Q/2, 0). Also shown for
comparison are the upper hybrid frequency Q„(~„)(solid
curve), the vortex frequency Q (~, ) (dotted curve), the plasma
frequency co~(co, ) (dot-dashed curve), and in (c) the surface
upper hybrid frequency Q„(~„)/&2(dashed curve). All fre-
quencies are expressed in units of the cyclotron frequency Q. (a)
co, /Q=0. 151; (l, m)=(2, 1), filled circles; (I,m)=(5, 1), open
circles. The (2, 1) modes for this condition are also shown in

Fig. 8 in the laboratory frame. (b) ~, /Q=0. 151; (I, m) =(2,0),
filled circles; (I,m)=(4, 0), open circles. The (2,0) modes for
this condition are also shown in Fig. 6. They are the same in
the laboratory or rotating frame. (c) co, /Q=0. 5; (I, m) =(2,0),
filled circles; (I,m) =(4,0), open circles.
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nearly degenerate with the evanescent (4,0) mode [see
Fig. 17(c)], making it more difficult to distinguish be-
tween modes with di6'erent values of l merely from fre-
quency measurements.

B. Resonances between modes and static Seld errors

co= me@„. (5.16)

Now that the linear modes have been enumerated, we
turn to the problem of modes driven by an external
source. In particular, as we saw in Sec. IV, a static field
error can drive to large amplitude a (2, 1) mode, when the
mode satisfies the linear resonance condition that it has
zero frequency in the laboratory frame. In this section
we consider the resonance between a static error and
modes with general ( l, m ).

In the rotating frame, modes have a variation propor-
tional to exp( im P i cot ).—The azimuthal angle P as
viewed in the rotating frame is related to the angle PL as
viewed in the laboratory frame through the Galilean
transformation P =

PL +co„t Th. erefore, the condition
that a mode has zero frequency in the laboratory frame is

Solutions of this equation can be found graphically in
Fig. 17 by finding the intersections of the line given by
Eq. (5.16) and the curves of mode frequency versus rota-
tion frequency. In general, for a given l and m there are
I —m intersections for mWO and no intersections when
m =0. [Equation (5.16) implicitly assumes m ~0 and
positively charged, trapped particles as discussed earlier.
With the sign convention used here where co„is always
positive, the condition for negatively charged particles is
CO

= Pl CO„.]
For a given co, /0 the solutions of Eq. (5.16) provide

specific values of co„/0 at which resonances can occur
between a static error and a mode with given (I,m).
These values trace out curves as co, /0 is varied; the
curves are plotted for m =1 and m =2 in Fig. 18. Since
modes with l —m odd are odd in z, these modes will be
excited (in linear theory) only by errors which are also
odd in z, such as the error induced by a tilt of the elec-
trodes with respect to the magnetic field. Similarly, er-
rors which are even in z excite modes with l —m even.
Furthermore, only modes with the same value of m as the
perturbation can be excited (in linear theory). This im-
plies that the tilt field error, which (for small tilt angles) is
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FIG. 18. Values of ~, /0 and ~, /0 for which diferent m =1 and m =2 modes become zero frequency in the laboratory frame.
The limiting points U and P, which fall on the confinement boundary, are discussed in the text. The confinement boundary, defined

by co„=co and co„=A—co, where co is given by Eq. (2.10), is also drawn. The m =1 modes are shown in (a) and (b), and the m =2
modes are shown in (c) and (d). Modes odd in z are shown in (a) and (c) and modes even in z are shown in (b) and (d). The curve for
the zero-frequency (2, 1) mode in (a) is the curve in Fig. 10.
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an m =1 perturbation that is odd in z, can linearly
resonate only with the (2, 1), (4, 1), (6,1), . . . modes.

The (2, 1) mode is most strongly excited since it has the
slowest spatial variation and hence has the largest "over-
lap" with the slowly varying tilt error. Furthermore, the
(4, 1) and (6,1) resonance curves have quite different forms
from the (2, 1) curve, which indicates that the excitation
observed in the experiments is in fact a (2, 1) mode, not a
higher-order excitation. However, the other resonances
may also be measurable.

Turning now to the limiting behavior of the resonance
curves, we observe that in the rotating-frame mode fre-
quencies are always less than the upper hybrid frequency
Q„=(co~+Q,)'~ . Then Eq. (5.16) implies that resonant
rotation frequencies must satisfy the relation

mco„~+co +Q =+2'„(Q—co„)+(Q—2'„)
which can be solved to give

co„/Q~ (+m —1 —1)/(m —2) = 1,0.366,0.261, . . . .

This implies that as m increases the resonances become
packed into a smaller and smaller region of the experi-
mental operating regime. Since most experiments
operate in the regime co„/Q(&1, we may have cause to
worry that these many resonances could have a deleteri-
ous effect on the plasma confinement. However, the
mode resonances with smaller values of l and m are most
dangerous since they are more easily excited by perturba-
tions with slow spatial variation, and larger l and m
modes may be heavily damped due to viscous effects or
collisionless Landau damping [52].

Other limiting values of the resonance curves can also
be found. For example, consider the limit in which the
plasma becomes extremely oblate, that is, a thin disk or
pancake. This occurs along the edge of the confinement
region defined by the equations co„=co and ~,=0—co

where ro is given by Eq. (2.10). In this limit, the mode
frequencies approach either Q or m . In the former case
resonances occur when 0 =mco„,or

co„/Q = 1/( m +2 ) = —,', —„',—,', ... .

This limit is labeled by the point P in Fig. 18. In the

latter case resonances occur when co =m~„,which can
be solved for ~„to yield

co„/Q=2/( m +2 ) =—', , —,', —,', , . .. .

This limit is labeled by the point U. Resonance curves
which connect to the point P are due to magnetized plas-
ma modes, whereas curves connecting to point U are due
to resonances with upper hybrid modes.

Finally, we briefly discuss how the strength of these
resonances should behave as the size or density of the
plasma increases. Since the plasma is generally small
compared to the distance to the electrodes, external field
errors have slow spatial variation compared to the plas-
ma size, and hence only the lowest-order l and I reso-
nances should be observed. However, as the plasma in-
creases in size higher-order modes have a larger "over-
lap"' with the field error. Furthermore, as either plasma
size or density is increased more electrostatic energy is li-
berated by radial expansion of the plasma due to the
torque of the error acting on the cloud. Thus, we expect
heating due to resonances to increase as more ions are
trapped, and more resonances with higher values of l and
m should be observable. This qualitative picture appears
to agree with observations of higher density ion clouds.
However, a quantitative analysis of this important ques-
tion involves effects which are beyond the scope of this
work, such as the effect of viscosity, Landau damping,
laser light pressure, and nonlinearities on the saturation
level of the mode amplitude. These issues need to be con-
sidered in a future paper.
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