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The process of spontaneous radiation accompanying the scattering of a charged particle by a center of
force is studied under conditions in which the scattering takes place in an intense, low-frequency laser
field. Approximations are developed which provide expressions for both the amplitude and the total rate
for spontaneous bremsstrahlung in the presence of the external field, given in terms of the physical (on-
shell) amplitude for bremsstrahlung in the absence of the field. Of particular interest is the effect of the
external field on the radiation probability when there is a narrow resonance in the field-free scattering.
An explicit analytic approximation is obtained for the spectrum of spontaneous radiation in the resonant
case; a series of peaks is found, with spacing between adjacent peaks equal to the frequency of the exter-
nal field. The effect may be thought of as a continuum analog of the process of intense-field harmonic
generation. A simple model, constructed with the aid of a low-frequency approximation for the ampli-
tude for bremsstrahlung in the absence of the external field, is evaluated numerically in order to illus-

trate this resonance-replication effect.

PACS number(s): 34.80.Qb, 03.65.Nk

I. INTRODUCTION

The development of computational techniques ap-
propriate for the treatment of scattering that takes place
in a radiation field, either external or spontaneously pro-
duced, has long been a subject of interest. The analysis of
spontaneous bremsstrahlung radiation provides a useful
tool in probing the dynamics of the scattering process,
while the nonlinear multiphoton effects encountered in
the study of scattering in the presence of an intense exter-
nal field, generated by the high-powered lasers now avail-
able, present both opportunities and challenges to the
theorist. Here we shall be concerned with a scattering
event accompanied by both spontaneous and stimulated
bremsstrahlung. A scattered electron emits photons
spontaneously in the absence of the laser field. With a
laser field present, the radiation energy is redistributed
through stimulated photon exchanges with the field. This
in turn alters the spontaneous radiation spectrum dramat-
ically. Of particular interest to us will be the situation
where the scattering supports a relatively long-lived reso-
nant state. In this case a series of peaks is expected in the
spectrum of the spontaneous radiation under the com-
bined influence of both the resonance and the laser field.
We shall develop approximations appropriate to single-
photon spontaneous radiation by a charged particle un-
dergoing resonant scattering in the presence of a low-
frequency laser field.

There is a physical similarity between the process un-
der consideration and that of bound-state harmonic gen-
eration, which has been studied fairly extensively in re-
cent years [1]. A resonant state with a lifetime much
greater than the period of the laser field may be con-
sidered as a quasi-bound state. Thus the discrete, repli-
cated, nature of the bremsstrahlung spectrum for laser-
assisted resonant scattering may reasonably be thought of
as “quasiharmonic” radiation. In spite of the analogy be-
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tween these two processes significant differences in their
spectra are expected, and this will be discussed below.

Our objective is to develop an approximation for the
radiation spectrum that can be expressed in a fairly sim-
ple analytic form. We therefore confine our attention to
external fields of low frequency since accurate trial func-
tions, providing a nonperturbative representation of the
laser-assisted scattering, are then available [2]. It is a re-
markable property of these approximate wave functions
that they lead to expressions for the radiation cross sec-
tion that require for their evaluation only a knowledge of
the spontaneous radiation rate in the absence of the low-
frequency laser field. This will be recognized as a charac-
teristic feature of a wide class of low-frequency approxi-
mations, one of the earliest being Low’s result [3] for
spontaneous bremsstrahlung. More recent examples are
contained in the sum rules derived for the total cross sec-
tions for laser-assisted scattering [4] and “two-color” ion-
ization [5].

The low-frequency approximation is based on the as-
sumption that the external field is slowly varying—for
the case of a monochromatic field considered here the
frequency is required to be small compared with any of
the other characteristic energies in the problem. In the
absence of scattering resonances the wave function intro-
duced by Kroll and Watson [2] provides an adequate ap-
proximation for large enough scattering energies (the rel-
ative error being of first order in laser frequency, as dis-
cussed further below). In the resonant case, the Kroll-
Watson (KW) function is not suitable and a modification,
of the form introduced earlier [5] in connection with a
different problem, is adopted here.

In Sec. II the approximate wave functions to be used in
the calculation are introduced and a measure of their ac-
curacy is provided. The use of these wave functions to
derive a low-frequency approximation for the spontane-
ous bremsstrahlung amplitude in laser-assisted scattering
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is described in Sec. III, with separate treatments given to
the nonresonant and resonant cases. A simple model is
constructed and evaluated numerically to illustrate the
main features of the spectrum in the resonant case. The
model makes use of a low-frequency approximation for
single-photon bremsstrahlung in the absence of the field,
of the form derived some time ago by Feshbach and Yen-
nie [6]. An alterative derivation of the Feshbach-Yennie
approximation is given in the Appendix. We conclude in
Sec. IV with a discussion and summary of results.

II. APPROXIMATE WAVE FUNCTIONS

As preparation for the derivation given below we shall
introduce approximate wave functions describing a pro-
cess in which an electron of mass p scatters from a center
of force, represented by a short-range potential V(r).
The scattering takes place in the presence of an intense
laser field with vector potential, in the dipole approxima-
tion, given by A(t)=acoswt. (Effects of target structure
can be accounted for within the low-frequency approxi-
mation, and a more general representation of the field can
be adopted [4]; for simplicity these possible generaliza-
tions are not considered here.) The Schrodinger equation
for the system (in units with #=1) is
2
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where \I/;,J"’ is the solution that develops from a plane
wave of momentum p in the remote past and \I/{,") is the
solution corresponding a plane wave in the distant future.
The wave equation cannot in general be solved analytical-
ly. However, if the frequency of the field is sufficiently
low, the wave functions can be approximated fairly accu-
rately. The low-frequency condition requires that the en-
ergy of the laser photon be much lower than any charac-
teristic atomic energy—in the present problem it is the
scattering energy. (Here we assume, temporarily, that
there are no scattering resonances.) Some time ago Kroll
and Watson [2] introduced an approximate solution of
Eq. (2.1) of the form

= _ . rt,,plet')?
‘I/;,i)(r,t)—exp —zf dr 2@t ’
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+iS AT |ully(0) (2.2)
where the field-modified momentum is
p(cot)=p~%a coswt , (2.3)
and the field-free wave functions are defined as
lu(®)y=Ip)+GF(E,)Vip) , (2.4)
with E,=p?/2u. The time-independent Green’s
function is represented formally as G{(E)

=(E+in+V?/2u—V)~!, with 7 a positive infinitesimal.

The accuracy of the KW function just defined may be
tested by inserting it into Eq. (2.1); one finds that

9 |g
[H—l—a; \I’p (r,t)
"2
=exp —iftdt'm‘i*ii A(t)r
2u c
XeEB(1) (= iV~ D fane(r),  (2.5)
where u;fsi is the scattered part of the full wave [the

second term on the right-hand side in Eq. (2.4)] and the
electric field is given by

E(n)=“Zsinor . (2.6)
The significance of the phase term (e/c) A-r in the ap-
proximation (2.2) is clear; it serves as a gauge-
transformation factor, changing the laser-atom interac-
tion from the p- A form (velocity gauge) to the E-r form
(length gauge). As a result the error in the wave function,
as measured by the remainder term on the right-hand
side in Eq. (2.5), is proportional to the electric-field
strength, and hence the frequency. This is the basis for
the expectation that the KW approximation is accurate
at low frequencies. (A limitation on the strength of the
field is implicit here. The analysis of Ref. [4] leads to the
requirement that the parameter ea /pc be of order unity
or smaller.) The argument for the validity of the KW ap-
proximation breaks down in the case of resonant scatter-
ing since the wave function will be rapidly varying and
the momentum derivative can make the magnitude of the
remainder exceptionally large. A generalization of the
KW function, one that retains its validity even for wave
functions that vary rapidly in the neighborhood of a reso-
nance, was introduced in a recent treatment of multipho-
ton ionization [5]. This function, when expanded in a
Fourier series, takes on the form

T 5r, )= Sexp[ —iEy,t +ic AT P . @)
n
The energy E, is defined as
E,=E,+A+no, (2.8)

with A=e2a?/4uc? recognized as the pondermotive ener-
gy of the field. The Fourier coefficients in Eq. (2.7) are
the functions

f,(,i)(r)Zfozﬂ%exp[iepn(())]ui,ﬁ,))(Epn;r) , (2.9
where the phase is defined by

©,,(0)=n0+p,sind—1v sin26 , (2.10)
with

=SR2, = ;;j; . @.11)

The off-shell field-free wave functions in Eq. (2.9) are
represented formally as
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(2.12)

This reduces to the on-shell version, Eq. (2.4), for
E =p?/2m. A measure of the error in the approximation
(2.7) is provided by the relation

. 0
H‘ lat

lug?(E))=Ip) +G§™(EWip) .

W 5, 1)=—eE(1)-r¥, Ur, ), (2.13)

where ‘I/;,isi is the scattered-wave component of the full
wave function. It is defined as in Eq. (2. 7) but with the
replacement of the field-free solution llp(g)(Epn) in Eq.
(2.9) by the corresponding scattered wave u;,(g’) (E
given by the second term in Eq. (2.12).

The accuracy of the function (2.7) is indicated by the
magnitude of the right-hand side of Eq. (2.13). This term
is proportional to the electric-field strength [owing to the
retention of the gauge-transforming phase factor in (2.7)]
and hence to the frequency w. The important feature of
Eq. (2.13) is that the remainder does not contain the
momentum derivative present in the corresponding equa-
tion (2.5) for the KW function. Thus a rapid variation of
the wave function in the domain of a resonance will not
introduce an unusually large error. This improvement is
achieved, evidently, through the introduction of the
Fourier expansion leading to a sampling of the wave
function over a range of energies, as indicated in Egs.
(2.8) and (2.9).

In the following section these wave functions will be
used as approximations to the exact initial- and final-state
distorted waves, describing the combined interaction of
the electron with the target and the laser field, in the ma-
trix element for single-photon bremsstrahlung.

pn)

III. BREMSSTRAHLUNG RADIATION
A. Formulation

We consider the process in which an electron with ini-
tial momentum p undergoes laser-assisted scattering into
a final state with momentum p’, accompanied by the
spontaneous emission of a photon of momentum ) and
polarization €, with Q-e=0. The S matrix element is
S = —iM, where, in the dipole approximation,

M(p’,p;ﬂ,l)=f_°° dtfdr[\l/{,,"(r,t)]*
X (A-1e’ )W 1, 1) , (3.1)

and A=i(e/c)QA,,. We have introduced the amplitude

A, =(2mc?/ QL3)1/ 2 of the component of the vector
potentlal of the spontaneous radiation field corresponding
to photon emission, with L3 representing the quantiza-
tion volume. It will be convenient to begin by examining
the amplitude for bremsstrahlung in the absence of the
external field. In that case we may write

Wi r,n=e P'ulE)(r), (3.2)

where E —p2/2,u is the scattering energy and the
:,i)(r) are the spatial wave functions defined earlier in
Eq. (2.4). The transition matrix then takes the form

M(p',p;Q,A)=278(Ey —E,+Q)A-m(p’,p), (3.3)

where

(+)>

m(p’,p)={ul|r|u (3.4)

is the matrix element related to the single-photon brems-
strahlung. We observe that if there is a narrow scattering
resonance at energy E,, then the magnitude of the final-
state wave function in Eq. (3.4) will rise rapidly as E,
passes through E, and the amplitude m(p’,p) will show a
peak at this energy. That is, for a fixed value of E, lying
above E,, the spontaneous radiation probability is
enhanced for Q) close to the value E,—E,, owing to the
existence of the scattering resonance.

The peaking effect may be seen more explicitly by ex-
amining the form of the low-frequency approximation for
spontaneous bremsstrahlung obtained by Feshbach and
Yennie [6], valid for resonant scattering. An alternative
(and simplified) derivation of the Feshbach-Yennie for-
mula is presented in the Appendix. The expression con-
tained in Egs. (A6) and (All) is convenient for our
present purpose; it reads

m(p’, p)~— —,fﬁ+2(p p)— t(li'p,'r)l,r (o' —p?
— L fap—p 2
Q | pQ or
Xt(Ey=Qn| o 3.5)

where the #’s are on-shell scattering matrices as functions
of scalar variables. For resonant scattering the second
term in Eq. (3.5) peaks at the radiation frequency
Q,eik=E, —E,. The representation (3.5) will be adapted
later in Sec III D to illustrate the calculational procedure
to be used when low-frequency approximations are ap-
propriate for the description of both stimulated and spon-
taneous bremsstrahlung.

We now return to the general case of arbitrary . Ac-
cording to Eq. (3.3) and the relation between the vectors
A and €, the cross section for laser-assisted scattering ac-
companied by the spontaneous emission of a photon into
any one of the discrete states in a range AQ may be writ-
ten as

4
Aa(m=@p—’ﬂ— S [dp5Ey —E, +0)

2
X 3 e m(p',p) 20
R L
(3.6

The sum gver polarization states for a given propagation
direction { can be expressed as

2 A

S le;m>*=|m[*~[Q-m|*.
i=1

3.7)

Following standard procedures we may now pass to the
limit of infinite quantization volume, sum over polariza-
tion states, and integrate over all the directions of the
propagation vector . In this way we arrive at an ex-
pression for the cross section, differential in the photon
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frequency Q, of the form

203
M=(2m3i"§"’—?—fdp'a(Ep,
pC

—E + p)?

(3.8)

We are now in position to examine the spectrum of
single-photon spontaneous radiation when the system
considered above is exposed to an intense low-frequency
laser field. For this purpose we adopt the generalized ap-
proximate wave functions introduced in Eq. (2.7). With
these functions replacing the exact solutions in the transi-
tion matrix (3.1) we obtain the approximation

M(p',p; @M= [ 7 dt [dr(¥§ (r,0)]*

X (A-1e’ )P (F)(x,1) (3.9)

The error in this approximation is of order (wa ), that is,
of first order in the frequency w, and in the amplitude a
of the vector potential. This property is indicated by Eq.
(2.13) (and can be put on a firmer basis by examining an
explicit formal expression for the error in the transition-
matrix element). After integrating over the time variable
in Eq. (3.9) we obtain

M(p',p;Q,A)=27 3 SE, —E,+Q+Ilw)A-M;(p',p) .
I

(3.10)

A-M; represents the amplitude for spontaneous emission
of a photon (£, ¢€) from the scattering channel in which /
low-frequency photons are exchanged with the external
field. (The frequency € is not assumed to be small at this
stage.) We have

MI(P’,P)
2f2#d9'f27rd9 xpl

X(p'(6'),Epyy 4 ;P(0),Epy)
(3.11)

—i0,4,(0)+i0,,(0)]

where i is defined as

m(p’,E';p,E)=Cuy (E")rtluy™(E)) . (3.12)
The bar over m is inserted to distinguish it from the on-
shell amplitude m defined earlier in Eq. (3.4). For
E'=p'?/2u and E =p?/2u, i reduces to m. The proba-
bility of spontaneous radiation can be derived from the
expression in Eq. (3.10). In the following we first examine
the nonresonant case and then generalize the discussion

to allow for resonances.

B. Nonresonant scattering

The expression for the transition amplitude M, can be
simplified considerably when the scattering is non-
resonant. In that case the amplitude i in Eq. (3.11) may
be assumed to be a smooth function of its energy argu-
ments. We begin by replacing i in Eq. (3.11) by its Tay-
lor series expansion

m(p(0),E,, (3.13)

(nw)*,

with respect to the energy E,, about the value E,
(Final-state and photon variables are held fixed and the
dependence of M on these variables is temporarily
suppressed.) An n-fold integration-by-parts procedure —
developed and described in Ref. [S]—establishes the rela-
tion

fohgexp[iepn(9)]F(p(9))(na))k

= [ expli6,,(0)IF(p(0))

X (—wpycosf+ 2wy c0s20)+0(wa) , (3.14)

where F(p) is an arbitrary smooth function of momen-
tum p. The error incurred in this procedure is of the
same order (wa) as that introduced by the underlying ap-
proximation for the wave functions. The above relation
is now used to replace (nw)* by (—awp,cosb
+2wy cos20)* in Eq. (3.13). After resumming the expan-
sion and recognizing that

E0)=E—wp,cos0+2wy cos20 , (3.15)

we see that the initial-state momentum has been placed
on the energy shell. A similar procedure applied to the
arguments p’(6’) and E;,;,, of @ puts the final-state
momentum on shell as well. The result is summarized by
the rule

m(p’(6'),Ey;+,;P(0),E,, )—m(p'(0'),p(H)) . (3.16)

m is the on-shell amplitude defined earlier in Eq. (3.4) and
is independent of the index n. The sum over n in Eq.
(3.11) may then be performed with the aid of the identity

o0
2 ein(e—6)

n=-—ow

=2mw8(0'—0) . (3.17)

The integration over the phase variable 6’ is then trivial
and we find that the approximation (3.11) has been re-
duced to

M,;(p’,p)= fozwg—eexp[ —il@—ipsin@lm(p'(0),p(0)) ,

2
(3.18)
with
p=e—(%cp—)'—a ) (3.19)

We have just shown that the low-frequency approxima-
tion for the bremsstrahlung amplitude in the presence of
the laser field takes on a very simple form in the absence
of a scattering resonance. The result, in the form (3.18),
could have been derived directly using the KW approxi-
mate wave function (2.2) valid for nonresonant scattering.
The derivation described here was based on the general-
ized wave function (2.7), allowing for resonances, in order
to prepare the way for the discussion in Sec. III C and to
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have available a uniform procedure that is more generally
applicable.

An expression for the differential cross section for the
spontaneous radiation of a photon can be obtained from
the representation Eq. (3.10) for the transition amplitude.
We find that

do(Q) _ ., 34ue’Q} , _
—q —m _L—3pc3 yrfdpa(E,,, E,+Q+l0)

X M, (p’,p)|* . (3.20)

A sum over polarization states and an integration over
propagation directions of the spontaneously radiated
photon has been performed following the procedure lead-
ing to Eq. (3.8). To perform the sum over the index / (in
the nonresonant case) we first expand the 8 function in its
Taylor series

1

SEy—E,+0+lo)=3 =8 E, —E, +Q) o)
~ k!

(3.21)

We now employ a procedure of repeated partial integra-
tion, of the type referred to earlier. Thus, with M, given
by Eq. (3.18), we may represent |M,|? as a double integral
over phase angles 6 and 6'. In the integrand of one of
them, say, the one with 6 dependence, we may make the
replacement (/w)*—(—wp cos)* for each term in the sum
generated by the expansion (3.21). The sum over / may
now be carried out using the identity (3.17). The cross
section, differential with respect to the photon frequency,
is then obtained in the form

2003
do(Q) _ , ;s 4ue’Q
dQ 3pc?

f21rd0 fd 'S(E

><|m(p'(e),p(9))|2 .

(3.22)

The essential feature of this result is that the cross section
for spontaneous emission in the presence of the laser field
is represented in terms of the corresponding cross section
in the absence of the field. The effect of the low-
frequency field is accounted for approximately through
an averaging of the initial and final momenta over the
variable 6 representing the phase of the field. This is a
general feature of a class of sum rules associated with the
low-frequency approximation (4,5].

The cross section (3.22) can be rearranged in a different
form which may be convenient for applications in some
cases. Using a relation valid for an arbitrary function
g (),

27 d 6 r2rd6
=/,

T Zexp[—i©y, () +i6,,(6)]g(6)

_[do
=[5 e, 623

we rewrite Eq. (3.22) as

do(Q) _ , 13 4ue’Q’
dQ 3pc?

2 d@' (awd0 ,

zf S ] Sl —i0,,(0)

+i©,,(0)]

X [dp'8(Ey—E g +Q)|m(p’,p(6))|?,

(3.24)

where we have made the variable transformation
p’'(6)—p’ in the integral over momentum. Adopting the
partial integration procedure for the variable 0 that was
used in the derivation of (3.14), we may replace p(0) in
Eq. (3.24) by p(8, ), with the fixed phase determined by
the condition

d[e,,(6)] B
—re— =0. (3.25)

6=6

n

With the generalized Bessel function defined as

_rwd6 . o
J_,,(p,y)——fo 2ﬁexp[z(ne-i-psm@ v sin20)] ,
(3.26)
we express the differential cross section in the form
203
dolsd) =370 0pp) (2 Y
3pc
X [dp'8(Ey—Ey, ,+Q)
X |m(p’,p(6,))|?
(3.27)

This expression will be shown in Sec. III C to have wider
applicability; it is valid for resonant scattering as well.

C. Resonant scattering

If there is a resonance in the field-free scattering,
whose width is comparable to or smaller than the laser
frequency, the introduction of an expansion of the type
shown in Eq. (3.13) will no longer be useful owing to the
rapid variation of the radiation amplitude fm(p’,E’;p, E)
when either of the energy variables is close to the reso-
nance energy E,. Since we are interested in the effect of
the resonance on the bremsstrahlung radiation, we shall
assume that none of the energies E,, lies inside the reso-
nance region; this allows us to avoid consideration of res-
onance effects in the absence of bremsstrahlung. Laser-
induced resonances occur for E; ,, near E,. We wish to
simplify the expression (3.11) while properly accounting
for the resonance. Toward this end we decompose the
amplitude f into two parts,

m=mt+m" (3.28)

Py 4

allowing us to separate the resonant contribution i
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from the slowly varying background i ®. We take fii” to
be negligible outside the resonance region. Turning to
the resonant contribution first, we define an amplitude
Mj as in Eq. (3.11), but with i replaced by its resonant
component f’. This expression may be simplified,
without loss of accuracy, through a multiple integration-
by-parts procedure with respect to the variable 6 (of the
type employed earlier). This leads to the form

Mi(p.p)=3 [ expl ~i6,1.4.,(0)]

XJ_(pp7)
xﬁr(pl(e’ )’Ep’l-i-n;p(en )’Epn ) ’
(3.29)

where the generalized Bessel function J_, and fixed
phase 0, are defined in Egs. (3.26) and (3.25), respective-
ly. This result may be used to evaluate the resonant con-
tribution, do’(Q)/dQ, to the cross section for emission
of a photon into the frequency range (Q,Q+dQ). It
takes the form shown in Eq. (3.20), with the amplitude
il

do(Q)
aQ

( )3 4‘u,e Q
P

[RELa—e
0o 2w

[ap S 8(Ey —E, +0+10)

1Oy 4+,(6)]m"(p'(6),E,,

M, replaced by its resonant part Mj. The energy conser-
vation condition E, =E ,—Q—l fixes the energy vari-
able E; , , appearing in the function " as

Eyisn=E,—Q+no+A=E,,—Q . (3.30)

The spectrum of spontaneous radiation will then have
peaks near those photon frequencies () determined by the
condition E,=E_, —Q since only here does the ampli-
tude M’ contribute appreciably to do"/dQ). Under the
assumption that the width of the resonance is small com-
pared to the laser photon energy, contributions to the
cross section corresponding to different values of the in-
dex n do not overlap. Thus, with terms in Eq. (3.29) asso-
ciated with different n values treated separately (and with
the polarization sum and angular integration carried out),
we rewrite the expression for the differential cross section
do’(Q)/dQ as the incoherent sum

dU’(Q) do?, (Q.)

= zJ : (3.31)

where, with the aid of Eq. (3.30), we have

2(Pp?)

—Q;p(6,),E,,) (3.32)

We now expand the energy-conservation 6 function in powers of (/w). As in the procedure leading to Eq. (3.22), we are
then able to perform the sum over photon-number index / and, with the aid of relations (2.8) and (3.15), to express the

cross section as

do(Q) 44203 r22dO’
“ = 3 #e — ,8 E ’
aQ (27) 3pc3 fO . fdp ( p'(6)

From energy conservation, implied by the 8 function ap-
pearing in the above expression, we have
E¢)=E,,—Q. Furthermore, the condition given in
Eq. (3.25) is readily shown to lead to the relation
E o, =Ey,- Therefore m" is reduced to its on-shell ver-

sion m”. As a result, we have

doy(Q) e’
——d”—Q—=(2m3J;pT Jap8(E,—Ey, ,+Q)

X|m'(p',p(6,)*.  (3.34)
Introduction of the variable transformation p’(6’')—p’
has enabled us to remove the average over the phase 6'.
We now outline the generalization of the above pro-
cedure that takes into account the interference between
the smooth background and the resonance. Written in a
form similar to the expression (3.20), this contribution to
the cross section is

doi(Q)

203
— 34 e<Q) , _
Jq = @m —"‘—3PC3 [dp S8(Ey—E,+0+10)

X2 Re[(M))*-M]]
(3.35)

—E,,+Q)|@m"(p'(6'),E,,

Qp(6,),E,,)|*. (3.33)

—

where, by referring to Eq. (3.18) valid for nonresonant
scattering, we see that
vd

M4(p’,p)= f . exp[ —il6—ipsindlm*(p'(6),p(9)) ,

(3.36)

and Mj is obtained from Eq. (3.29). In an analysis similar
to that which led to Eq. (3.34) we find (with details of the
derivation omitted) that

doi(Q)

dcr’(Q
T (pp"y)——_ ’

= 2 J2 (3.37)

where

dol(Q) 203
_____2(277_)3EH€_Q_
dQ 3pc?
X [dp'S(Ey—Epyq ,+Q)

XZRe{ [mb(p’:p(en ))]* 'mr(pl’p(en ))} .

(3.38)
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For the contribution to the cross section from the
background amplitude M, we may use the nonresonant
result (3.27) derived in Sec. III B. Explicitly, we write it
as

do®Q) _ 5 dol(Q)
30 %J—n(pp,v)—dﬂ , (3.39)
where
dol(Q) 4ue?Q3
_E_=(21r)s_£;;_cs_. Jdp8(Ey—E, ,+Q)
X|m®(p’,p(6,NI>.  (3.40)

Combining the contributions (3.34), (3.38), and (3.40), and
recognizing that

|m|*=|m’|?+2 Re[(m®)*-m’]+ |m?|?,

we are able to express the total cross section in the form

do(Q) _ o p do,(Q)
ST %J_n(pp,y)———dn , (3.41)
where
do,(Q) 4ue’Q? ,
ﬁ_=(2w)3_£;pT Jdp8(Ey—E, ,+Q)
X |m(p’,p(6,)]? . (3.42)

This last expression, according to Eq. (3.8), is just the
singly differential cross section for spontaneous emission
of a photon of frequency () accompanying field-free
scattering with initial scattering energy E 6, [The for-

mal correspondence between this result and that derived
previously in Eq. (3.27) should be noted.] The cross sec-
tion for scattering in the presence of the laser field, given
by Eq. (3.41), takes the form of a sum of terms each
weighted by the square of a generalized Bessel function.
For a given term corresponding to the index n, the fre-
quency for which there is a peak in the spontaneous radi-
ation spectrum is given by

Quax=Ep, —E,=E,+A+no—E, ; (3.43)

=E,, established

earlier). We see that these peak positions are not simply
multiples of the laser frequency but rather are displaced
by a variable amount that depends on the incident energy
and (by virtue of the appearance of the ponderomotive
shift) the laser intensity. Note that the resonance leads to
an enhancement of the radiation probability even when
the incident energy E, lies below the resonance energy
since the electron can absorb enough energy from the
field to bring it into resonance. This is in distinction to
the situation encountered earlier in the study of non-
resonant scattering where the field plays a rather minor
role, as seen from the sum rule (3.22).

(we have made use of the relation E 4

D. An application

As an aid in visualizing the effect of a resonance on
laser-assisted bremsstrahlung we shall adopt a very sim-

ple model of the scattering system and evaluate the cross
section (3.41). The frequency Q) of the spontaneous radia-
tion will be restricted to a range for which the low-
frequency approximation for the amplitude m in Eq.
(3.42) is valid. Then m may be represented in terms of
the physical (on-shell) scattering amplitude, as shown in
Eq. (3.5), but with p replaced by p(6,) and E, by
E,,=E,tA+no.

We assume that the scattering is dominated by a reso-
nance, of width T at energy E,, in the Ith partial wave.
The partial-wave scattering amplitude is then represented
as the sum of a smooth background, taken simply to be a
constant C!, and a resonant term of the Breit-Wigner
form; we have

1 —_ _ lei 1 F/2
t(Ep,T) (27) » C +(21+1)mE,—EP—iF/2

X Py(x) (3.44)

where P; is the Ith order Legendre polynomial and
x =1—7/4uE ;. To focus on the essential features of this
example we assume that the resonance is in the s wave
and we ignore contributions from other partial waves.
(These restrictions can be lifted.) We then find that

|m(p’,p(6,))|?

1

ey {lp't%E,)I*+|p(6,)t E,, —Q)[?

—2coséRe[p'p(60,%E,,)*

XtAE,,—Q)]} , (3.45)

where the angle-independent s-wave amplitude ¢° is now
expressed as a function of a single energy variable and
where £ is the angle formed between vectors p’ and
p(6,). After carrying our the integral over final-state
momenta in Eq. (3.42) we obtain the result

do,(Q) 172

dQ

E,,—Q
EP
X[(E,, —Q)t%E,,)|?

+E,,[t%E,,—Q)].

— (2} 16ue?
3¢3Q

(3.46)

This expression is now substituted into Eq. (3.41), yield-
ing an explicit formula, for this model problem, for the
laser-assisted bremsstrahlung cross section as a function
of radiation frequency ().

In our numerical evaluation of the expression for
do /d ) just obtained we choose the resonance energy E,
and with T to be 10 and 0.01 eV, respectively. The back-
ground amplitude C° in Eq. (3.44) is taken to be 0.2, a
value that leads to a relatively sharp resonance. The sys-
tem is exposed to a laser field, specified by the vector po-
tential A =a coswt, with ®=0.1 eV and a parallel to the
incident momentum p. We present numerical results for
two representative situations, in which the incident ener-
gy is either above or below the resonant energy. In
choosing the intensity of the field, 7 =9.0X 107 W/cm?,
we take care to ensure that the range of frequency Q for
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FIG. 1. Plots of the spontaneous bremsstrahlung spectrum
for field-free resonant scattering (dashed curve) and for laser-
assisted scattering (solid curve). The scattering energy is 10.5
eV, slightly above the resonance energy of 10 eV. The remain-
ing parameters (resonance width, laser frequency, and laser in-
tensity) are given in the text.

which the bremsstrahlung cross section is appreciable lies
well below the scattering energy, as required for the va-
lidity of the low-frequency approximation.

Figure 1 shows two plots of do /d (), corresponding to
scattering with and without the laser field present. In the
absence of the field the spontaneous radiation rate peaks
for frequencies near the energy 0.5 eV, reflecting the ex-
istence of the scattering resonant state. Additional peaks
appear when the field is turned on. In this case the scat-
tered electron either gains or loses energy in quanta that
are multiples of laser frequency w; this is revealed by the
positions of the peaks in the spectrum of the bremsstrah-
lung radiation. The field-free bremsstrahlung cross sec-

07} "'.‘. 1
0.6 ': 4
05K “\“ 4

0.4

do [d2 (arb. units)

03F

0.2+

0.1r
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FIG. 2. Plots of the spontaneous bremsstrahlung spectrum
for field-free resonant scattering (dashed curve) and for laser-
assisted scattering (solid curve). Peaks are seen even though the
scattering energy 9.975 eV is below the resonance energy of 10
eVv.

tion shows no resonance peaking if the scattering energy
is below the resonant energy. (The rise at very low fre-
quencies signals the familiar infrared divergence effect, a
general feature not directly relevant to this discussion.)
However, one expects that with the field turned on the
electron may absorb enough energy from the field to
bring it into the resonance region, thereby inducing a
peaking structure in the bremsstrahlung spectrum. This
is indeed confirmed by the calculations, as shown in Fig.
2.

As remarked above, the choice of field intensity in this
model problem is limited by the requirement that the
significant portion of the spontaneous radiation spectrum
be confined to the low-frequency domain. This restric-
tion can be relaxed in those cases for which the brems-
strahlung amplitude m can be evaluated without the aid
of the low-frequency approximation. Then, in the pres-
ence of fields of higher intensity, higher-order harmonics
of the laser frequency will appear in the spectrum.

IV. SUMMARY

The study of spontaneous bremsstrahlung accompany-
ing the resonant scattering of a charged particle has been
a subject of theoretical and experimental interest since
the time it was recognized [6] that such studies could lead
to effective procedures for determining resonance param-
eters. The nature of the radiation spectrum is radically
altered when the scattering takes place in the presence of
an external field. Specifically, the resonance-peak struc-
ture will in that case show a dependence on field intensi-
ty; moreover, there will be a replication of peaks (har-
monic generation in the continuum), and resonance peaks
will be induced by the field. In order to be able to exam-
ine these interesting effects using relatively simple analyt-
ic approximations we have limited ourselves here to a
consideration of laser fields of low frequency and have
adopted a variational description of the process. We take
advantage of the availability of a trial function that accu-
rately represents laser-assisted resonant scattering in the
low-frequency regime. This trial function [5] reduces to
the well-known Kroll-Watson wave function [2] when the
scattering is nonresonant (and to the Volkov solution
when there is no scattering potential at all). Trial func-
tions of this type account nonperturbatively for the virtu-
al absorption and emission of photons in the initial or
final state of scattering events, or in the final state of ion-
ization processes, and have been applied frequently to
multiphoton physics. We emphasize that, while the am-
plitude for spontaneous radiation is evaluated in first or-
der, the interaction with the laser field is treated nonper-
turbatively throughout the paper. In our numerical re-
sults, this is evidenced by the fact that the peak intensi-
ties for different orders are comparable, rather than rap-
idly decreasing in higher orders as would be the case in
the perturbative regime. The ponderomotive energy was
included formally in Eq. (2.8) to ensure the accuracy of
the trial function in the domain of intense fields. While
that energy shift may be negligible in some cases (as it
was in the model studied numerically in Sec. III D) its in-
clusion in the trial function is justified since the alterative
treatment based on perturbation theory is invalidated by
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the appearance of divergences.

It is a characteristic feature of low-frequency approxi-
mations that the cross sections of interest can be
represented in terms of the measurable cross section for a
process, of a simpler nature, taking place in the absence
of the low-frequency field. This feature is apparent in the
result obtained here. The bremsstrahlung spectrum in
low-frequency approximation, shown in Egs. (3.41) and
(3.42), takes the form of a sum of terms, each containing
as a factor the cross section for spontaneous bremsstrah-
lung accompanying field-free scattering. Two separate
derivation of this result were given, one suitable for non-
resonant scattering and the second adapted specifically
(through an appropriate choice of trial function) to ac-
count for the effect of a resonance. Peaks in the radiation
spectrum are predicted to lie at frequency values given in
Eq. (3.43). These values are not simply multiples of the
laser frequency, as they are in the case of harmonic gen-
eration from bound systems [1], but are shifted by an
amount that depends on the separation between the in-
cident energy and the energy of the resonance; there is
also a dependence on laser intensity through the appear-
ance of the ponderomotive energy shift. The resonant en-
ergy of the (field-free) scattering process can be indirectly
deduced from an observation of the peak positions in the
bremsstrahlung signals since Eq. (3.43) provides a rela-
tion between peak frequencies and resonant energy. The
magnitude of the cross section at each peak value is con-
trolled by a weighting factor that takes the form of the
square of a generalized Bessel function; in particular, it is
this (intensity-dependent) factor that introduces a cutoff
in the spectrum for high-enough values of the order-index
n appearing in Eq. (3.41).

The numerical example presented in Sec. III D serves
the purpose of exhibiting some of the general features dis-
cussed above, such as the generation of resonance peaks
under circumstances in which none would appear in the
absence of the field, as shown in Fig. 2. The calculation
was simplified considerably by the use of the Feshbach-
Yennie low-frequency approximation for the field-free
bremsstrahlung amplitude and the adoption of a simple
(Breit-Wigner) representation of the field-free scattering
amplitude. When calculations are performed for fields
that are of greater intensity than assumed in this exam-
ple, the spectrum will extend beyond the low-frequency
domain and this will require a direct evaluation of the
bremsstrahlung matrix element. Well-established numer-
ical procedures are available for such an evaluation [7].
Alternatively, if measured spontaneous bremsstrahlung
cross sections are available they may be used as input to
Eq. (3.41), thereby providing estimates of the
modification of the radiation cross section arising from
the presence of a low-frequency external field.

We remarked earlier on the connection between laser-
assisted bremsstrahlung radiation in resonant scattering
and high-order harmonic radiation from bound states.
We expect that the rate of bremsstrahlung emission in
electron scattering from a beam of atoms will be much
lower than that of harmonic generation by atoms in a
gas. Nevertheless, we anticipate that the effect in some
situations is still within the reach of observation. Brems-

strahlung in field-free scattering at electron energies
above 100 eV has been well studied [8], and the applica-
tion of an intense laser field does not substantially change
the emission rate. This is indicated by the result shown
in Eq. (3.41), which expresses the laser-assisted brems-
strahlung rate in terms of the corresponding field-free
rate. The weighting factors (Bessel functions) in the sum
are of order unity for parameters corresponding to exper-
imentally available laser sources. (This is the case, for ex-
ample, for the parameters chosen in our numerical calcu-
lation.) In addition, the existence of resonance peaks ris-
ing above the background is an aid in experimental detec-
tion. The numerical example we used serves to demon-
strate calculational procedures. The scale of parameters
adopted (e.g., 10 eV for the electron energy) is not restric-
tive. In order to achieve rates that are sufficiently high it
may be appropriate to study scattering from heavy atoms
or highly stripped ions, with resonant energies above 100
eV. Another potential application of the theory may lie
in the study of plasma heating by intense laser radiation
[9]. It is conceivable that the energy loss from brems-
strahlung in resonant electron scattering from ions in the
plasma must be accounted for in order to achieve a full
understanding of the efficiency of the laser-heating pro-
cess, and the availability of theoretical estimates of
energy-loss rates, such as the one developed here, may be
useful in this regard.
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APPENDIX

Here we derive a low-frequency approximation for
spontaneous radiation applicable to resonant scattering.
The result is equivalent to that given originally by Fesh-
bach and Yennie [6], but is obtained using a different ap-
proach. We present the alternative derivation for com-
pleteness and for the consistency of our formulation. At
the same time we are able to provide another illustration,
in addition to those given in the text, of the interesting
relationship that exists between stimulated and spontane-
ous radiation processes in the low-frequency regime. We
begin by considering the scattering of an electron in an
external field of arbitrary polarization. The vector poten-
tial is taken to be A(¢)=a,cos()t +a,cos(Qt +a), with a
being the phase difference. We then calculate, in low-
frequency approximation and in the weak-field limit, the
single-photon stimulated emission amplitude whose ana-
lytic form is identical to the spontaneous amplitude of in-
terest here. This procedure for generating approxima-
tions for spontaneous-emission amplitudes from an
analysis of scattering in an external field was introduced
by Brown and Goble [10]; additional applications were
found subsequently [11].

The amplitude for laser-assisted scattering may be
represented as [12]
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T(p',p; A)

=f_°° dtfdr

¥ (+)
DEVT

H—l—a—

J(+)
+[W o |Z57 (. @D

p’; sc]

. is the Volkov asymptotic solution

' 7y72
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where <I>p

— —3/2 T
D, (r,1)=(2m) exp |ip'r

b

(A2)

and ¥ ;,J“) is an approximation to the exact solution. We
shall adopt the trial function introduced earlier in Eq.
(2.7). Then, as seen from Eq. (2.13), the second term in
Eq. (A1) is proportional to the electric-field amphtude
We may therefore replace the exact scattered wave \I/p -sc
by the corresponding component of the trial function
(2.7). This leaves an error of second order in the field am-
plitude, which may be ignored in the determination of the
single-photon emission amplitude. We now carry out
these substitutions, gather terms that are of first order in
a, or a,, and select those corresponding to the emission
process. With this latter amplitude denoted (in the nota-
tion of Ref. [4]) as T_,, we find that

T_i(pp; A)=28(Ey —E,+Q)—a-fa(p',p), (A3

where a=a,+a,e'® and

A ’ —_ _ E, _ ’ .
m(p’,p)= ) Vo |1, P E,)
I I
+ ) Vp t(p,p,Ep,)
_ )
iQCu g lrlulll) . (A4)

The t matrix is formally defined as

t(p',p;E)=(p'|VIu,"(E)) , (AS5)

(+)(

where the function u b

in Eq. (2.12).

The result shown in Eq. (A3) may be applied to the
case of spontaneous emission by replacing the external-
field amplitude a/2 by the appropriate amplitude
Asp=(217'c2/ﬂL3 )1”%¢. [The factor 2 accounts for the
choice of the cosine forms used for the vector potential of
the external field A(z) while the spontaneous field has the
time dependence Aspem‘ for photon emission.] Compar-
ing Eq. (A3) with the corresponding spontaneous brems-
strahlung amplitude (3.3), we may make the identification

E) has the representation given

m(p‘,p)=—éﬁ1(p’,p) . (A6)

We emphasize that the resultant expression (A6) provides
an exact representation of the matrix element for spon-
taneous emission, valid for arbitrary photon energy (.
The expression may be simplified for Q <<E p since, if one
ignores terms of first order in ), the last term in Eq. (A4)
may be dropped. Expanding the off-shell ¢ matrices
about the corresponding on-shell values, we get

t(p',p;Ep>zz<pf>',p)—'f;—%'-vq'ﬂq',p)lq,:,,f,, . @7
t(p',p; Ep)=t(p’,p p)+‘u— Vot (p',q)| _ (A8)
where we have used the approximation

p'—p=—uQ/p'=—uQ/p to keep only the first two
terms in the expansions. The low-frequency approxima-
tion to Eq. (A4) can then be written as

ﬁl(P',P)E— t(q’,p)|q::Pi§,

J’——A'(A' V) + Vg
729

1P, Ql gy - (A9

fﬁﬂs(frvq)—vq

The single-photon bremsstrahlung amplitude -, with €
an arbitrary polarization vector, may now be expressed as

< ’ E_Elit N’
e-m(p’,p) 20 (pp’,p)

P X(€XP) Vgt (@', P g o

q=p'p’

(A10)

+%t(p’,p’ﬁ)-!-ﬁx(eXﬁ)'Vqt(p',q)

which is just the Feshbach-Yennie result [6] evaluated in
the dipole approximation. Here we have simplified the
derivation of this result by employing a method con-
sistent with that used in the text.

The above Feshbach-Yennie result can be put in an al-
ternative form which may be convenient for certain ap-
plications. We obtain this form by expressing the
momentum gradient in terms of derivatives with respect
to the scalar variables E, and 7=(p'—p)> The energy
derivative makes no contribution (by virtue of the orien-
tation of the triple-vector products) and we find, after
some rearrangement and with the vector € factored out,
that Eq. (A 10) is equivalent to

A Ve | P A
m(p’,p)= [yﬂ t2(p p)ar t(EP’T)lr=(p'~p)2
P - _
+l“9 +2(p p)aT]t(Ep QD -
(A11)

The error is of first order in ).
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