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Variational calculation of ground-state energy of positronium negative ions
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The ground-state energy of positronium negative ions, Ps, is calculated using double-basis-set Hyl-
leraas functions in which four nonlinear parameters are used. The optimized result of
E = —0.524010 140465 7 Ry obtained by using 744-term function represents the lowest variational ener-

gy for Ps in the literature to date to our knowledge. The wave function is then used to calculate the
positron annihilation rate for Ps

PACS number(s): 36.10.Dr, 31.20.Di

Recently there has been considerable interest in pre-
cision calculations of the ground-state energy of posi-
tronium negative ions, Ps . A positronium negative ion
is a three-body atomic system interacting via Coulomb
forces. Calculations on the ground-state (the only known
bound state) energy has attracted considerable interest
ever since the early work of Wheeler [1]. From the ex-
perimental side, positronium negative ions have been ob-
served in the laboratory by Mills [2]. The observation
opens up possibilities to study various properties of this
purely leptonic system. For example, the positron-
annihilation rate for Ps was determined in the laborato-
ry [3], and was found to be in good agreement with the
theoretical decay rates [4,5]. Progress has been made to
try to improve the measurement of the annihilation rate
in the laboratory [6].

From the theoretical side, there has been a long history
of theoretical investigations of ground-state energy of
Ps . For earlier developments of theoretical calculations
readers are referred to reviews on studies of this system
[7—9]. The latest investigations include variational calcu-
lations using Hylleraas functions [10] and exponential
variational functions [11,12], and a nonvariational calcu-
lation using hyperspherical harmonic functions [13]. The
most accurate value for the ground-state energy in the
literature was obtained by using 900-term variable ex-
ponential functions [12]. The error estimate of the
ground-state energy is about 10 ' Ry [11]. This com-
pares with the error of about 10 ' Ry when a 946-term
Hylleraas function was used [10]. Such a difference in ac-
curacy raises an interesting theoretical question about
whether the use of Hylleraas functions would be capable
of producing ground-state energy with an accuracy
within errors of less than 10 ' Ry. In order to improve
calculations using Hylleraas functions, we have to under-
stand the shortcomings of employing the traditionally
used single-basis expansion set. By using one set of non-
linear parameters, the wave function is forced to be well
represented in one region in the configurational space.
Apparently if we are interested in an extremely precise
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value of the ground-state energy, the wave function must
be accurately represented in all regions, including the
highly correlated inner region and the outer asymptotic
region. From the computational aspect, the use of a
single-basis set of Hylleraas functions may also have the
well-known ill-conditioned numerical difBculties. When
the basis set is sufFiciently large, any additional terms
may behave in the numerical sense linearly dependent of
previously used terms. This would create numerical
singularity in the process of solving eigenvalue problems.

In a related development of precision calculations of
helium energy levels [14,15], double-basis sets of Hyl-
leraas functions were used. By using two distinctive sets
of nonlinear parameters, the wave function in the inner
and outer asymptotic regions were well represented.
Drake was able to obtain extremely accurate energy lev-
els of helium atoms [16]. The estimated errors of energy
levels in helium were found to improve by about a factor
of 1000 when double-basis-set functions were used, as
compared with the use of the usual single-basis sets. Fur-
thermore, the use of double-basis sets would diminish the
ill-conditioned numerical difhculties in using Hylleraas
functions. Since the two basis sets divide the wave func-
tion into two well-separated configurational spaces, they
are hence numerically independent of each other.

In the present calculation double-basis sets of Hyl-
leraas functions with four nonlinear parameters are used
to calculate the ground-state energy of Ps . Up to 744
terms are used. The use of optimized wave functions en-
ables us to obtain the lowest variational energy of Ps to
date. The wave functions are also used to calculate the
positron annihilation rate as well as expectation values of
various interparticle distances.

The Hamiltonian of the positronium negative ion is
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where 1, 2, and p denote the electrons 1, 2, and positron,
respectively; I,. and q; are the mass and charge, respec-
tively, for particle i; and r,-. represents the distance be-
tween particles i and j. Atomic units are used in this
work, with energy expressed in rydbergs. Hylleraas-type
wave functions of the form
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We multiply by (%~ and let r;~ ~0, and taking the aver-
age over the coordinates that do not involve r, , we obtain
the integral form of the cusp condition between particles
i and j [21,22]:

X(r',pr2p+ri~r2 ) (2)
(6)

are employed to represent the system, where
(0+i+m ) c~, with k, I, m, and co being positive integers
or zero.

One of the experimentally interesting parameters is the
annihilation rate I given in units of ns
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=100.6174809(51 ) . (3)

2 1 1+ +q;q %)=0.
7";J m; m J 07",J.

(4)

This leads to the cusp condition

+p;~q;qj ~%') =0 .
BT(J.

In Eq. (3), the correction term proportional to a is due to
the triplet lifetime [17] and the leading radiative correc-
tion to the singlet lifetime [18]. Absent in Eq. (3) are
bound-state and relativistic effects, which have not yet
been calculated.

The qualities of the wave functions can be tested by
calculating the electron-positron and electron-electron
cusp values. For a system interacting through Coulomb
forces, H%/%=E has a constant value for exact wave
function V. However, if 4 is inexact, H%/4 is singular
when r,"~0 [19]. In order to have the singularities can-
celled [20], the terms involving r,j in Eq. (1) would satis-

fy the following condition:

where p," is the reduced mass for particles i and j. The
exact values for v&2 and v,z are +0.5 and —0.5, respec-
tively. The present calculations have been performed us-
ing quadrupole-precision arithmetic (about 30 digits) on
an IBM 3090.

Table I shows the convergence behavior for the
ground-state energy of Ps when different expansion
lengths for the wave functions are used. The nonlinear
parameters are optimized for a given N. The optimized
nonlinear parameters a, and Pi for the first basis set are
found to have nearly constant values of 0.5 and 0.3, re-
spectively, throughout all the expansion sets used in
Table I. It is seen that this basis set represents the outer
asymptotic region of the wave function. The second ex-
pansion sets are found to have much larger optimized
nonlinear parameters. The values of az and P2 are found
nearly equal to each other, and they increase from about
0.84 to 1.5 as co is increased from co=9 to 14. The second
basis set hence represents the highly correlated inner part
of the wave function. It is evident that the two optimized
sets of basis do represent different regions of the wave
function in the configurational space, and the computa-
tional difficulties due to the ill-conditioned aspect of us-
ing Hylleraas functions are also reduced.

The results shown in Table I also indicate that conver-
gence is quite fast. The optimized 406-term function al-
ready produces the ground-state energy value that is
lower than that obtained in Ref. [10] in which a single-
basis 946-term Hylleraas function was used. Also, the
present optimized 616-term function is capable of pro-
ducing a result which is lower than that in Refs. [11]and

TABLE I. Convergence behavior for the ground-state energy of Ps . The nonlinear parameters are
optimized for a given N. The digits inside the parentheses in E,„, represent the uncertainty of the last
digits quoted.

E (Ry)

250
322
406
504
616
744
Eeet

9
10
11
12
13
14

0.490
0.499
0.501
0.503
0.502
0.503

0.292
0.298
0.298
0.298
0.298
0.298

0.84
0.927
1.096
1.295
1.38
1.505

0.83
0.93
1.10
1.295
1.38
1.505

Present calculation
—0.524 010 140 201 76
—0.524 010 140403 81
—0.524 010 140452 77
—0.524 010 140462 70
—0.524 010 140465 14
—0.524 010 140465 71
—0.524 010 140465 88(17)

Other calculations
—0.524 010 116'
—0.524 010 140464
—0.524 010 140 41'

'References [13].
References [11,12].

'Reference [10].
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TABLE II. Expectation values of various functions involving interparticle distances.

Ref.

Present
calculation'

[10]'
[11]'
[13]'

&8(r„)&

0.020 733 1980
0.020 733 302 3
0.020 733 190
0.020 733 02

Vjp

—0.500 000 20
—0.500 02
—0.499 997 08
—0.5

5.489 633 252
5.489 631 88
5.489 633 2525
5.488 81

48.418 937 2
48.418 842 7
48.418 937 227
48.390

0.339 821 023 06
0.339 821 03
0.339 821 023 05
0.339 827 8

&(r&, r&, )

0.090 935 346 528 9
0.090 935 35
0.090 935 346 42

Present
calculation'

[10]b
[11]'
[13]'

&8(r») &

1.709 971 5[ —4]'
1.710 105[—4]
1.709 985 0[—4]
1.710 131[—4]

0.499 977 3
0.499 68
0.499 929 3

8 ~ 548 580 655
8.548 577 94
8.548 580 655
8.546 99

93.178 633 80 0.155 631 905 653
93.178 445 6 0.155 631 91
93.178 633 849 0.155 631 905 65
93.121 0.155 643 6

&lr|,r„) '&

0.060 697 690 295
0.060 697 69
0.060 697 690 32

'744-term Hylleraas function, double-basis set.
Ho [10],946-term Hylleraas functions, single-basis set.

'Frolov [11],800-term exponential variational expansion.
Krivec et al. [13],225 hyperspherical functions.

'Results shown in this column A [ 8] impli—es 3 X 10

[12], in which up to 900-term exponential variational
functions were used. It seems that the explicit optimiza-
tion of the four nonlinear parameters used in the present
calculation has an advantage over the use of exponential
variational functions in which the nonlinear parameters
have been generated randomly. Our present result ob-
tained using the optimized 744-term function represents
the lowest variational ground-state energy of Ps to date,
to our knowledge. In Table I we also show the extrapo-
lated energy value obtained by using the formula [23]

(E —Q )(Q —Q )
cxt

1 0 2
(7)

where Eo, E„and E2, are the energy eigenvalues ob-
tained by using the 504- (to=12), 616- (co=13), and 744-
(to= 14) term wave functions, respectively. We obtain the
extrapolated energy as

E,„,= —0.524010 140465 88 Ry .

In comparing with the 744-term result, we estimate that
the uncertainty in our calculation is within 1.7X10
Ry. A comparison of the ground-state energy of Ps
with other recent calculations is shown in Table I. Ear-
lier results can be found in Ref. [10].

Once the energy-minimized wave functions are ob-
tained, they are used to calculate ( 5, ) and then the pos-
itron annihilation rate l, by using Eq. (3). We obtain a
value of 0.020733 198 0 for (5, ) by using the 744-term
wave function. Results are shown in Table II. This com-
pares with Frolov's value of 0.020 733 190 [11]. Our posi-
tron annihilation rate is determined as 2.0861222+5
X 10 . The uncertainty is estimated by calculating the
results using the 504-, 616-, and the 744-term wave func-
tions. Frolov [11]has obtained a value of 2.086121, and
Krivec, Haftel, and Mandelzweig [13] have determined a
rate of 2.08610+0.000 06 using a nonvariational ap-
proach. We summarize the recent calculations of the
positron annihilation rate in Table III. Earlier calcula-

TABLE III. Positron annihilation rate in Ps calculated by
using Eq. (3).

Author

Ho [10]
(946-term Hylleraas function)

Frolov [ll]
800-term exponential
variational expansion

Krivec et al. [13]
225 hyperspherical functions

Ho (present calculation)
744-term Hylleraas functions,
double-basis set

Mills [3]
experiment

I (nsec ')

2.086 13 —0.500 02

2.086 121 —0.499 997 08

2.086 10 —05
+0.00006
2.086 122 2 —0.500 000 20
+5 X 10

2.09+0.09

tions can be found in Ref. [10].
To test the quality of our wave functions, we have also

calculated the positron-electron and electron-electron
cusp values. Results for v&z and v&2 are shown in Table
II. For the 744-term wave function we obtain
v&

= —0.500 000 20 and vi2 =0.499 977 3. These values
are compared with the exact values of —0.5 and 0.5, re-
spectively. Our best cusp values lie slightly closer to the
exact ones than those of Frolov [11], who obtained—0.49999708 and 0.499929 3 for v,~ and v, 2, respective-
ly. Our good results for cusp values in the integral form
indicate that our 744-term wave function is quite accu-
rate in the overall configurational space.

In this work we also use the optimized wave functions
to calculate expectation values of various functions in-
volving interparticle distances. The results involving r]
and r&z are shown in Table II. Comparisons with recent
calculations are also shown in fable II. In general, our
results agree very well with those of Frolov [11]. Earlier
calculations of the expectation values of interparticle dis-
tances can be found in Ref. [10].
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In summary, we have carried out an elaborate calcula-
tion of ground-state energy of positronium ions. By using
double-basis four-parameter Hylleraas functions with up
to 744 terms, we have obtained the lowest ground-state
energy to date. The optimized wave functions are then
used to evaluate the positron annihilation rate as well as
expectation values of various functions involving inter-

particle distances. It is hoped that these results will
motivate further experimental activities to improve the
measurement of the positron annihilation rate, which in
turn will provide a stringent test on further theoretical in-
vestigations of the corrections due to bound-state and rel-
ativistic effects.
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