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Light-beam propagation at planar thin-film nonlinear waveguides
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The light-beam scattering at a symmetric dielectrical waveguide formed by two interfaces between
three nonlinear focusing media is considered analytically and numerically. The problem of beam
transmission and reQection is e6'ectively analyzed in the framework of the so-called equivalent-particle
theory. It is shown also that the beam scattering may be accompanied by a strong emission of
radiation which is not taken into account by the equivalent-particle approximation. Radiative losses
of the scattering beam are calculated, and the applicability limits of the equivalent-particle approach
are discussed by making a comparison between numerical and analytical results. In particular, it is
shown that the incident beam may be captured by the thin-film waveguide to form a surface wave
due to radiation-induced losses.

PACS number(s): 42.65.—k, 42.79.Gn, 42.82.Et, 42.88.+h

I. INTRODUCTION

As is well known, an interesting application of nonlin-
ear optics is in waveguides where an intensity-dependent
refractive index can strongly affect the propagation of
the electric field. Many possible applications have been
suggested, including all-optical devices such as switch-
ers, scanners, limiters and thresholders, modulators, and
bistable logic elements. In the case of large nonlinear
index changes, the field structure is mostly determined
by the intensity-dependent contribution to the refractive
index, and this nonlinear feedback can lead to a rich
set of phenomena. One of the important effects is self-
localization of beams which leads to formation of finite-
width self-focused channels, as well as to creation of new
types of stationary nonlinear guided and surface waves in
thin-film planar waveguides and at dielectric interfaces
(see, e.g. , the recent review papers [1, 2], and references
therein). As was recently shown by Aceves, Moloney, and
Newell [3], the propagation of a self-trapped monochro-
matic cw light beam at an oblique angle of incidence to
one or more interfaces separating self-focusing nonlinear
media could be reduced to the study of the motion of
an equivalent particle in an efFective potential for certain
well-defined physical limits. It was established that many
of the numerical observations (e.g. , numerical simulations
of the Gaussian beam incidence at the interface separat-
ing linear and nonlinear dielectric media [4]) could be
qualitatively understood in the context of this equivalent
particle theory. One of the important examples is a pos-
sibility to explain a bifurcation behavior of a symmetric
thin-film waveguide as the power in the guided wave is
gradually increased, the effect being predicted in Ref. [5].
The problem with a linear guided layer was considered
numerically by Mitchel and Moloney [6], who character-
ized their numerical results in terms of the equivalent
particle approach.

The equivalent-particle theory replaces the problem of
a finite-width self-focusing channel by much simpler and
intuitively appealing problem of an equivalent particle
moving in an effective potential according to Newton's
equations of motion. This approach corresponds to the
adiabatic (lowest) approximation of the perturbation the-
ory for solitons [7]. Higher-order approximations allow us
to include radiative effects accompanying the nonlinear
beam scattering; the latter are important to calculate the
nonlinear reflection coefficient of the light beam [8].

The purpose of the present paper is to consider an-
alytically and numerically nonlinear dynamics of a self-
trapped light beam confined or scattered by a thin-film
nonlinear waveguide. We analyze the case when all me-
dia (substrate, guiding, and cladding layers) are nonlin-
ear Kerr-like dielectrics (see Sec. II for the model de-
scription). Our analytical approach is based on the soli-
ton phenomenology, and in Sec. III we show that this
approach allows us, in a simple way, to describe bifur-
cations of the stationary field structures. However, we
have found by numerical simulations a strong manifesta-
tion of radiation-induced effects which seem to be also
very important in the beam scattering, and they cannot
be taken into account by the equivalent particle theory.
In particular, in Sec. IV we describe the effect of the
radiation-induced capture of the scattering beam which
results in a surface (guided) wave. One of the impor-
tant issue of our analysis is to demonstrate applicability
limits of the equivalent particle theory. At last, Sec. V
concludes the paper.

II. MODKI

We consider the propagation of the TE electromag-
netic wave in the symmetric waveguide structure directed
along the z axis and bounded in the transverse z direc-
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tion. The optical media differ by refractive indices, which
we assume to be of the Kerr type. In this case the station-
ary field propagation is described by the slowly varying
field envelope satisfying the equation

02E
+ ~ . —IP' — '(* IEI') ]E = o (1)

where E(x, z) stands for the electric-field envelope. The
efFective wave number P can be interpreted as the wave-
guide index. Assuming a symmetric thin-film waveguide
structure, we take the refractive index as follows:

n'(* IEI') = n,'+ ~'IEI'

where j = 0 corresponds to the guiding layer (when ~x~ &

L/2, L being the layer width) and j = 1 to the equivalent
cladding and substrate layers (when x & L/2 a—nd x )
L/2) [see Fig. 1(a)].

After changing the variables we may reduce Eqs. (1)
and (2) to the standard form of the perturbed nonlinear
Schrodinger (NLS) equation for the renormalized enve-
lope e'(x, t) defined through the relation

E(x, z) = —4 (x, t) exp[ —i(p —n, )t],

where t = z/2P. The resulting NLS equation takes the
form

t
gt

+ ~, + 2I~'I'C' = U(x I@I')~'
. BC 8 C

where U is the steplike potential

~( )
—A+ A/4[ if fx/ & —,

0 otherwise

A:—2~ 1 ——~, A=no —ni.~i)
Equation (4) is written as the standard NLS equation;
however, it is necessary to remember that the normal-
ized time t plays a role of the coordinate z along the
wave guide.

For U = 0, i.e. , when the nonlinear medium is homo-
geneous, Eq. (4) has an exact solution in the form of a
self-localized channel, the soliton of the NLS equation,

Z &I

exp[ —2i(x + i8(t)]
4'~ x t = 2tp

cosh(2@[x —Xo(t)]) ' (7)

where 2p and 4g define the amplitude and velocity and
8(t) = 4(( —p2)t + b(0) and Xo(t) = 4(t + X—o(0),
the phase and coordinate of the soliton, respectively. In
the primary units, the velocity —4( of the soliton (7)
appears to be proportional to the sine of the beam angle
of incidence [see Fig. 1(b)]

n', + a, /E/' n(') + n()/E/' n, + n, /E/' sing; = 2(/P

and the soliton's amplitude 2p to the beam power defined
as

P= iEi dx = /+'/'dx = 8V/~i. (9)

(a) According to Eqs. (4) and (5), for U g 0 the waveguide
geometry leads to creation of a local (for ~x] & L/2) po-
tential in the NLS equation which changes the dynamics
of the beam (7). One of the main physically important
effects is capture of the beam by the waveguide to cre-
ate a guided (surface) wave. Stationary solutions of Eq.
(1) corresponding to such surface waves have been ana-
lyzed in [5] (see also [6]). In the present paper we are
mostly interesting in nonlinear dynamics of a scattering
beam trying to get a deeper physical insight into the
radiation-induced effects which accompany the dynamics
of scattering and confined beams.

III. EFFECTIVE POTENTIAL
AND BIFURCATIONS

FIG. 1. (a) Sketch of the thin-film waveguide geometry.
(b) Beam interaction geometry defined by the incident angle

If in the perturbed NLS equation (4) and (5) the pa-
rameters A and A turn out to be small, the beam dynam-
ics in the waveguide may be analyzed by the perturbation
theory for solitons [7]. For exainple, slow changes of the
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soliton parameters can be described in the framework of
the so-called adiabatic approximation, asuming that the
beam profile is still defined by the expression (7), but
its parameters are changing during the scattering. The
similar approach was called, in [3], the equivalent particle
theory.

Substituting the perturbation (5) into the equations of
the soliton perturbation theory [7], we obtain four equa-
tions for the soliton's parameters p, (, Xp, and b. As a
matter of fact, the equation for p is trivial and it gives
y, = const, but the equations for ( and Xp are combined
to yield a single equation

d2Xp dW
dt dX (10)

which may be treated as Newton's equation for a classical
particle of unit mass moving in the external potential,

W(Xp) = (4 —2p A) [tanh S —tanh S+]

+-p A tanh S —tanh S+
3

where

L'IS+—:2pl Xp+ —l. (12)

Introducing the variable Z and parameters l and p de-
fined as

2AZ=2pXo l = pI. p= p

we may rewrite the effective potential (11) in the form
V(Z) = W(Xp)/A, where

V(Z) = (1 —p) [tanh(Z —l) —tanh(Z + l)]

+—p tanh (Z —l) —tanh (Z + l)j,3
(14)

which is now defined by only two dimensionless parame-
ters l and p.

For small p the potential (14) has the only minimumV;„=—2tanh(l) at Z = 0, which corresponds to a
surface wave confined just at the middle of the wave-
guide. When the nonlinearity parameter p increases, new
minima may appear and all different shapes of the po-
tential V(Z; p, l) are defined by an interplay between two
parameters l and p.

In the case of a thin-film waveguide, the primary min-
imum splits via a bifurcation at which the beam position
at Z = 0 becomes unstable [see Fig. 2(a)]. To analyze
this bifurcation, we expand the potential (14) in small Z
to find

2 tanh l 1—
cosh l

27
cosh l

Zi, 2 = +v'ICI/2D. (20)

This bifurcation is a result of nonlinear properties of the
thin-film waveguide; it naturally changes the stationary
structure of a surface wave in the waveguide (see [5]). For
a fixed p the threshold value (19) determines the critical
width of the slab at which the bifurcation occurs, l'„=
cosh (i/2p). When the normalized width is not small,
say l )) l„,bifurcations may be observed even earlier (for
not small l), giving rise to a more complicated structure
of the effective potential and the stationary points [see
Fig. 2(b)].

The simple analysis shows that the bifurcations are
absent for the case AA & 0 and the effective potential is
always attractive for A & 0 and L ) 0 and it is always
repulsive for A ) 0 and L & 0.

As we will see from the subsequent results, the shape
of the effective potential V is a very important char-
acteristic which may be determined in the framework
of the equivalent-particle theory, and this function de-
scribes rather well the transmission and reflection prop-
erties of beams as well as stationary states correspond-
ing to guided waves. In particular, using this approach
we can find, in a simple way, the conditions for the to-
tal transmission or total reflection of the beam. Indeed,
the only thing we need to know for that is the maxi-
mum value of the effective potential V „=max(V), so
that the effective particle will pass the potential provided
Ek =

2 (d Xp/dt ) ) V „.Using such a consideration,
we can evaluate the required initial velocities of the par-
ticle (i.e. , in fact, the angles of incidence for the beam)
corresponding to the total beam transmission or reflec-
tion.

To investigate the transmission and refIection numeri-
cally, we solve Eqs. (4) and (5) by the well-known split-
step Fourier transform method [9]. The beam parameters
are defined as the coordinate of the centrum of mass and
velocity of the effective particle, respectively, by using
the following relation:

2 tanh l (3 + 8p) 15'+ 4 )0.
3cosh l cosh / cosh

As follows from Eqs. (15)—(18), when

1
p & p„=—cosh I,,

2

the potential (14) has a single minimum at the point
Z = 0. However, at p = p„(C= 0), a bifurcation
occurs and. for p ) p„two new minima appear at the
points

V(Z) = Vp+ CZ + DZ,

where

(15)
Xp —— x l@l dx lcl dx (21)

and

Vp ———2 tanh(l) (1 —p) + —tanh ly

3 and 4( = —Xp for the particle's velocity. One of the im-
portant characteristics of the beam scattering is the criti-
cal angle of the beam reflection which corresponds to the
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critical velocity of the equivalent particle. We have de-
termined this value from the energy balance given by the
equivalent-particle theory and also by means of numeri-
cal simulations. The comparison of the results is shown
in Figs. 3(a) and 3(b) where such a dependence separates
regions of re8ection and transmission for the equivalent
particle (shown as insert pictures in the plots). It is im-
portant to note that the numerical data presented by full
circles are below the corresponding values following from
the results of the equivalent particle approach, and this
clearly indicates that the energy balance equations have
to be corrected to include a part of the particle's energy
lost in such a scattering. As a matter of fact, such a cor-
rection is nothing but radiation-induced losses, which are
not taken into account by the equivalent particle theory.

Another type of the beam dynamics in the nonlin-
ear waveguides which may be treated by tools of the
equivalent-particle approach is the beam amplification in
the so-called active guides when there is a gain in the
wave-guide or in the guiding film [10]. The simplest prob-
lem is a homogeneous gain, which is described by the
term ig4 in Eq. (4), g being the gain parameter. In this
case the intensity integral j ~ci~ dx = N is not conserved

anymore, and its evolution is described by the exact re-
lation dN/dt = gN, i e ,. t. he pulse power is growing ex-
ponentially with the increment g. Let us treat the gain
effect as small; the latter means that the gain-induced
evolution of the beam is assumed to be slower that other
types of the beam dynamics. Then, from the equation for
the total beam intensity it follows the evolution equation
for the amplitude p, , p = p(0) exp(gt). Now, assuming in
the equations of the equivalent-particle approach that the
parameter p is slowly dependent on time, we may obtain
the conclusion that the main effect produced by the gain
is to deform the shape of the efjective potential according,
e.g. , to the set of the plots shown in Fig. 2(a) or 2(b). For
the case A & 0 and A & 0, we obtain that the potential
changes crossing the bifurcation point where the sym-
metric structure becomes unstable. Figure 4(a) shows
the case of a thin-film waveguide where the evolution of
the effective potential corresponds to the case shown in
Fig. 2(a). We can see how the beam is displaced to one
of the sides due to that bifurcation. For large values of
l the potential is changing, but it remains stable in the
vicinity of the point Z = 0, so that the amplified beam
is also stable [see Fig. 4(b)].
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IV. RADIATION-INDUCED EFFECTS

The slow change of the beam parameters can be de-
scribed in the framework of Eqs. (10) and (11). This ap-
proach may be considered as the first step of the regular
expansions of the soliton perturbation theory [7], but the
next step is to calculate the erst-order correction to the
adiabatic dynamics, which consists of the contributions
of two types: the erst type corresponds to a distortion
of the beam shape and the second type is the dispersive
wave packets propagating in both direction (reffected and
transmitted radiation). The simplest way to estimate the

I.S—

radiation-induced losses at the beam scattering is to use
the soliton perturbation theory [7] based on the inverse
scattering transform (IST) [ll]. According to the IST,
the total intensity of the radiation emitted at the moment
t is given by the expression

iCi d (22)

where the spectral density n(A, t) may be calculated in
the framework of the IST throught the so-called Jost co-
efficient b(A, t), n(A, t) = ——ln ~a(A, t)~2 = ——ln(1—
~b(A, t)] ) 7r ~b(A, t)~ . The spectral parameter A ap-
pearing in the IST is connected with the wave number
k(A) and the f'requency tu(A) of the generated linear waves
for which the dispersion relation w(A) = k2 = 4%2 is
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FIG. 3. The critical value for the normalized angle of
incidence (particle's velocity) for the beam transmission-
reHection vs the beam intensity. The dashed line shows the
result of the equivalent particle approach and the full circles
are given by results of numerical simulations which use the
formula 4( —Xo, where Xo is defined with the help of Eq.
(21): (a) A = 1.0, A = 1.0, and I = 0.1; and (b) A = 0.1,
A = 0.1, and I = 2.0. Note that for these two sets of the
parameters the ratio A/A is the same.
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FIG. 4. Beam evolution in the amplified guide at g
0.001 for (a) p, = 0.5 and I = 0.1, and (b) p = 0.25 and
I = 2.0. The cases (a) and (b) correspond, respectively, to
two diferent cases of the potential shape evolution shown in
Figs. 2(a) and 2(b), respectively.
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valid. The influence of the perturbation (5) leads to a
change of the IST spectral parameters including the Jost
coefficient b(A, t). If prior to the scattering the beam cor-
responds to a soliton, the initial condition for the equa-
tion describing the evolution of the b(A, t) may be taken
as b(A, t = —oo) = 0. Then the total intensity of the
emitted radiation is given by the relation

n(A)dA =—1 n(A, t = +oo)dA. (23)

7t

rad = 6-42

sin
i -[(y —1) +n]

i

dyG (y, n)
cosh

i

—(y' + n2 —1)
i

(24)

where

G(y, )= A —
~
1+

3 ( 4n2 )
4(4 —y)

[(~ —1)'+ ~'] (25)

and d = L(. The result (25) is useful to estimate
the radiation-induced refIection coefFicient of the beam,
and the similar results for one and two interfaces may
be found in [8]. One of the most important radiation-
induced effects is a trapping of the beam into a surface
wave due to radiation. This process is characterized by
a threshold value of the soliton velocity (i.e. , a thresh-
old value of the beam angle of incidence, in the primary
units). This threshold value may be found with the help
of simple physical estimates, for which we use the con-
servation laws of the power N and the system energy

The details of the method discussed may be found in
Refs. [7, 8, 12], but here we will give only the final result
for the total intensity which is lost due to radiation of
linear waves,

The result (27) determines the threshold angle of inci-
dence g, for the beam trapping,

sin g„= N—, s.P
(28)

In fact, to use the result (27) for an analytical estimation
of a critical angle @„wehave to calculate N, ~ in the
limit when the soliton (beam) has a zero velocity prior
to the scattering, and its evolution is described by the
equivalent particle approach, i.e., Newton's equations.

Radiation-induced trapping of the beam into a surface
wave can be easily analyzed numerically. We take the
case A = —1.0 and L = 1.0 when the effective potential
V(Z) is always attractive (for any I) and these values are
not small to make the radiation-induced effects more ob-
servable. The contour plot corresponding to the numeri-
cal simulation of the beam trapping is shown in Fig. 5(a)
where the formation of a surface wave through the pro-
cess of a strong emission of radiation may be clearly seen.
This effect may be also analyzed by studing evolution of
the beam coordinate Xo calculated numerically with the
help of the formula (21), and the corresponding phase
plane is shown in Fig. 5(b). The phase plane (Xp, X'0)
looks like that for a particle moving in an attractive po-
tential under the action of a friction force. Thus the
equivalent-particle approach is still useful to character-
ize different types of the beam scattering, but the theory
has to be modified by inclusion of an effective dissipation
which takes into account radiation-induced losses.

To calculate the critical velocity (, analytically, in the
general formula for the radiation power we have to take
into account the evolution of particle's velocity during
the scat tering that follows from the equations of the
equivalent-particle approach. This may be done only in a
few particular cases, e.g. , for a very thin linear slab when
A = 0, but I —+ 0, A —+ oo keeping the product IL = c
unchanged. In this latter case the motion equation for the
effective particle with Xo(—oo) = 0 may be easily inte-
grated to yield the result Xo ———(1/2p) sinh (4p~pt),
and the value N, p is calculated to be exponentially small

[Ic'*I' —Ic'I' —U (~) I
+'I']d*. (26)

Let us suppose that a soliton has a low velocity (angle)
(0 at t = —oo. After the scattering, i.e. , for t

+oo, we assume that the soliton is captured, so that the
energy of the full system contains, besides the energy
of the soliton at rest, the contribution of the radiated
energy carried away by linear waves. Therefore, we may
write 16((op —

s ps) = E, g —
s (p+ hp), where the left-

hand side is the energy of the soliton with the amplitude
2p and the velocity 4( and we have assumed that the
soliton changes its amplitude after the scattering in the
value bp. From the power conservation it follows that
4p = 4(p + bp) + N»s, where N»s has to be calculated
in the limit (0 ~ 0. It may be proved that the kinetic
energy E, p is much smaller than N, g, so that we may
omit E, g in the first relation to get the threshold value
(, for the beam trapping

/el ~

N s= p/ —
/

exp/ —2
4 2 &p)

In a general case the value N, d may be found numer-
ically, e.g. , by measuring the beam power lost through
emission of radiation. To calculate this value numerically,
we use the nonlinear spectral analysis based on the IST
to the NLS equation [11].We solve the Zakharov-Shabat
(ZS) eigenvalue problem numerically at each point of z
taking the beam profile as an effective potential in the
matrix method proposed in [13]. From that numerical
analysis we obtain the parameters p and ( of the soli-
ton as a position of the complex eigenvalue Ai ——(+i,p,
where Ai is a solution of the equation a(Ai) = 0, a(A)
being the so-called Jost coefFicient of the IST method.
The intensity of the radiation is calculated by using the
well-known formula of the IST method,

2=1—pN, s. (27) ln ia(A) i' dA.



YURI S. KIVSHAR AND MANUEL L. QUIROGA-TEIXEIRO 48

The numerical results obtained with the help of the ZS
eigenvalue problem are shown in Fig. 5(c) where N, ~

=
4 Re%i. As may be seen in Fig. 5(c), the process of
the radiation-induced trapping of the beam by a thin-
6lm waveguide may be treated as a transformation of
the kinetic energy of the equivalent particle into radiation
(N, g). If, however, we take larger angles of the incidence
(as it is shown in Fig. 6), the strong emission of radiation
is still clearly observed, but it is not enough to support
the trapping (see Fig. 6). The dependence of the critical
particle velocity (i.e. , the critical angle of incidence for
the beam) (, vs the beam intensity characterized by the
parameter p has been determined numerically, and the

result is shown in Fig. 7 where the region under the solid
curve corresponds to the beam trapping by the slab. As
may be seen from Fig. 7, the value („is not small for
the selected values of the waveguide parameters and it
displays a maximum at p = 2.5. These numerical results
are in a good qualitative agreement with Eq. (27) if
we will treat the value %, ~ in Eq. (27) as a result of
numerical simulations.

V. CONCLUSIONS

In conclusion, we have investigated analytically and
numerically the light-beam propagation at a symmetric
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for the beam intensity. (b) The phase plane for the beam parameters defined with the help of the formula (21). (c) Evolution
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dielectric waveguide formed by two interfaces between
three nonlinear self-focusing media. As has been shown,
the critical characteristics of the transmission and reHec-
tion may be found in the framework of the equivalent
particle approach that has been checked to be a rather
good approximation to calculate, e.g. , the critical angle
of the beam refIection. However, we have observed that
the beam scattering at small angles of incidence is accom-
panied by emission of radiation which is stronger for the
case AA ( 0 than for the case AL ) 0. We have pointed
out that such a radiation is indeed responsible for the
beam trapping into a surface wave, and we have deter-
mined analytically and numerically the threshold angle
characterizing such an effect. We believe that the analy-
sis and numerical simulations presented allow us to dis-
play the validity limits of the equivalent-particle theory.
As a matter of fact, in many cases we have investigated,

FIG. 7. The threshold value (, of the normalized angle of
incidence (velocity of the effective particle) for the radiation-
induced beam trapping vs the beam intensity parameter p, .
The waveguide parameters are the same as in Fig. 5. The
results of numerical simulations are consistent with Eq. (27)
provided that the value N, g is found from numerical simula-
tions [see, e.g. , Fig. 5(c)].

the beam scattering may still be characterized by motion
of a particle in an effective potential, but this motion is
modified by a friction due to emission of radiation.
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