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Microwave multiphoton Rabi oscillations
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We have made direct observations of microwave multiphoton Rabi oscillations between two
Rydberg states in potassium in the strong-radiation-6eld regime, sphere a perturbative treatment
of the atom-6eld interaction becomes invalid. The results of measurements of the Rabi oscillation
frequency are presented and compared @faith results calculated using Floquet theory, which predicts
a very diII'erent 6eld dependence for the Rabi frequency than is typical in the perturbation-theory
limit.

PACS number(s): 32.80.Rm, 32.30.Bv, 42.50.Md

I. INTRODUCTION

During the past several years, experiments with mi-
crowaves have demonstrated that resonant multiphoton
processes can be driven in Rydberg atoms using field in-
tensities only a fraction of those required for ionization
of the atom [1,2]. Most recently, it was shown that the
transition amplitudes which result &om traversing a mul-
tiphoton resonance during the rising and falling edges of
a microwave pulse can interfere constructively or destruc-
tively leading to interference &inges analogous to those
observed using Ramsey's method of separated oscillating
fields [3,4]. These experiments confirm that semiclassical
Floquet theory can be used to describe the response of
a Rydberg atom to an intense pulsed microwave field as
an evolution (adiabatic or diabatic) of the atomic Flo-
quet modes, or dressed atomic levels, through avoided-
level crossings encountered during the rising and falling
microwave field [5]. Although there is little hope of ob-
serving these same interference eKects using lasers, the
issue of diabatic versus adiabatic traversal of dressed-
state avoided-level crossings is equally important in high-
intensity pulsed-laser experiments [6,7].

Essential for any quantitative description of the evo-
lution of atomic states in the presence of intense ra-
diation is detailed knowledge of the magnitude of the
avoided dressed-state level crossings, which are simply
the multiphoton Rabi frequencies. Indeed, the Rabi fre-
quency is the fundamental parameter which character-
izes the strength of the atom-radiation interaction, and
Rabi oscillation, or optical nutation, is the most ba-
sic resonant atom-radiation interaction process. Hence
measurements of multiphoton Rabi oscillations at non-
perturbative intensities, in a system which can be treated
with a relatively straightforward semiclassical Floquet
model, are especially important for understanding more
complicated multiphoton phenomena. It should be
noted that microwave multiphoton Rabi oscillations have
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been observed previously [8,9], but that in these experi-
ments the microwave field intensity was well within the
perturbation-theory regime.

In this report we present precise measurements of the
Rabi &equency for microwave multiphoton transitions
between two bound Rydberg states in potassium (K),
made by directly observing Rabi oscillations between the
states as a function of time following an initial excita-
tion laser pulse. In the following two sections we briefly
introduce the K energy levels under study and review
the Floquet theory of multiphoton resonance in this sys-
tem. Then we describe the experiment in greater detail,
present the results of the measurements, and compare
them with the predictions of Floquet theory.

II. MICROWAVE MULTIPHOTON
TRANSITIONS

All the experiments described in this paper have been
done in K using microwave multiphoton transitions be-
tween the 21s and 19,3 states in combined static and mi-
crowave electric fields. The 19, l state is the state which
is adiabatically connected to the n = 19 zero field state
of orbital angular momentum l, so that the 19,3 state is
adiabatically connected to the 19f state at zero field. In
Fig. 1 we show an energy-level diagram of the relevant
K states of azimuthal orbital angular momentum m = 0
and. 1 as a function of static electric field. The 19,3 states
exhibit a linear Stark shift and the 21s state has a small
quadratic Stark shift due mostly to Stark mixing with
the 21p and 20' states. As indicated in the inset to Fig.
1, the 19,3 states and the 21s state have avoided cross-
ings at fields of 304.2 V/cm for m = 0 and 307.9 V/cm
for m = 1, due to short-range interactions between the
Rydberg electron and the K+ core.

We are interested specifically in the resonant mi-
crowave multiphoton transitions which occur &om the
2ls state to the 19,3 state with m = 0, at static fields
less than the avoided-crossing field. In Fig. 1 we indi-
cate by arrows the static fields at which the one-, two-,
four-, and eight-photon resonances occur for a microwave
&equency of 9.1 GHz. The resonances are observed by

10SO-2947/93/48(6)/4742(8)/$06. 00 4742 Qc1993 The American Physical Society



MICROWAVE MULTIPHOTON RABI OSCILLATIONS 4743

-304
—305

I

E -306
~~ —307
c 308

-309
—310

100 200
Electric Field (V/cm)

300

I I I I I I I I I

I

I I I I I I I I I

I

I I I I I I I I I

I

I I I I I-303— limitations. The additional resonances in Fig. 2 corre-
spond to 218-19,l transitions, with / ) 3. Absent from
Fig. 2 are resonances involving the 19,3 state with m = 1.
Despite the polarization of the radiation field along the
static field direction, such Am = 1 transitions are al-
lowed in our experiment because of the relatively strong
spin-orbit coupling in K, evidenced by a small but non-
zero avoided crossing of the 2ls and 19,3 (m = 1) states,
which is not resolved in the inset of Fig. 1. Nevertheless,
our selective field ionization detection method cannot dis-
tinguish the signals &om these two states, due to the di-
abatic traversal of their avoided crossing in the rapidly
rising ionization field.

III. FLOQUET THEORY OF RESONANCE

FIG. 1. Energy levels in K near n, = 19 with m = 0, 1 as
a function of static electric 6eld. Only the lowest member of
the stark manifold (19,3) is shown. The arrows indicate the
locations of the one-, two-, four-, and eight-photon resonances
at 9.1 GHz. The inset shows the region of the avoided cross-
ings on an expanded scale. Oo is the magnitude of the m, = 0
avoided crossing.

Microwave resonance transitions between the 19,3 and
218 states can occur whenever atoms initially in one state
can absorb or emit an integral number of microwave pho-
tons giving them an energy equal to that of the other
state. Ignoring for the moment the off-diagonal core cou-
pling between these two states, denoted 4]Q 3 and 4 2i„
their energies TV in a static field E are

scanning the static electric field. Initially, atoms are ex-
cited to the 218 state in the presence of the microwave
field, which is then slowly turned off, causing resonant
transitions to the 19,3 state [3]. A large electric-field
pulse is then applied, ionizing only those atoms which
have made the transition [10]. Recording the ion current
while scanning the static field produces a series of mul-
tiphoton resonances such as those shown in Fig. 2 for a
microwave &equency of 9.1 GHz.

The many resonances shown in Fig. 2 illustrate the
fact that stronger microwave fields are required to drive
the higher-order transitions, which occur at lower static
fields. Amid the many resonances, the series of tran-
sitions to the 19,3 (m = 0) state, marked with arrows
separated by about 16 V/cm, is clearly distinguishable.
Beginning with the single photon transition at 287 V/cm,
the resonances extend to lower field strengths ending with
the 18-photon resonance at about 23 V/cm, the highest-
order transition observable given our microwave power
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FIG. 2. Microwave multiphoton resonances at 9.1 GHz.
The arrows indicate the 21s-19,3 resonances of 1—18 photons.

Wig 3 = Wig 3(0) —kE,

W2i, ——Wzi, (0) — E, —
2

where Wig 3(0)/2vrc = —304.28 cm and W2i, (0)/27rc =
—309.84 cm are the zero-Beld binding energies, I(c/27r =
605 MHz(V/cm) is the electric dipole moment of the
19,3 Stark state, and n/2m = 0.195 MHz(V/cm) 2 is the
dipole polarizability of the 218 state. In all expressions
throughout this paper we will use the convention h = 1.
In the static field the stationary-state wave functions are

@»3(r, t) = @»3(r)e '

+. .(,&) = ~-.( ) (2)

(3)

where J (x) is the mth-order Bessel function. Similarly,
the 218 state wave function becomes

Explicitly assumed in Eq. (2) is that the spatial parts of
the wave functions are independent of the field. This ap-
proximation ignores both the small admixture of p state
into the 218 state as well as the nonlinear field depen-
dence of the 19,3 Stark state, evident in Fig. 1, at fields
below about 15 V/cm.

If we now add to the static field a radio frequency (rf)
field with the same polarization, the total field becomes
E + E,r cos(wt). The addition of the rf field modulates
the energy of the 19,3 state about Wig 3(E). As first
indicated by Townes and Merritt [ll], just as modulating
the frequency of an optical or radio wave breaks it into
a carrier and sidebands, modulating the energy of the
19,3 wave function breaks it into a carrier and sidebands.
Accordingly, the 19,3 state can be expressed as a Fourier
series in the rf &equency,
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E2()) J-
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in the presence of the microwave field [12]. Typically, the static and microwave fields in this experiment satisfy the
inequality 8E &) E,&. In this case the sidebands of the 218 state generated by the curvature of its energy as a function
of field [represented by the second Bessel function term in Eq. (4)] can be neglected, and the 21s wave function can
be approximated by

( )
—i(w'gg, cxE,t/—4)t @ ( ) ) ~ J

I

~ &&
~l inst

) (5)

A general approach to problems involving Hamilto-
nians which are periodic in time using Fourier analy-
sis was introduced in 1955 by Autler and Townes [12]
and has since become known as Floquet theory [13].
When the Hamiltonian H is time dependent, its eigen-
states are not stationary states of single frequency. Still,
they resemble stationary states in that they are com-
posed of a single &equency part multiplied by a func-
tion periodic in time. Such solutions are often called
quasiperiodic. Indeed the quasiperiodic solutions for the
wave functions in our system, expressed in Eqs. (3)—(5),
have this very specific form, 4'(r, t) = exp( —ist)C'(r, t),
where 4? is periodic in tiine. In 1965 Shirley [14] showed
that the solutions 4(r, t) satisfy a quasienergy eigen-
value equation 'R4 = sC, where 'R = H —iO/Bt is
called the Floquet Hamiltonian, which, when Fourier ex-
panded, becomes a time-independent matrix eigenvalue
equation for &. In fact, this particular separation of
the time dependence in the quasiperiodic wave functions
is not unique. Equivalently we could use the solution
4'(r, t) = exp[ —i(s+qm)t]4'(r, t), where 4 ' = exp(iqurt) 4
is also periodic and q is any integer. Because of this
equivalence there are infinitely many quasienergies (and
eigenstates 4) associated with a particular atomic state
@ interacting with an oscillating field, all of which are
equal modulo the photon energy w.

In Fig. 3 we show a quasi-energy-level diagram of the
19,3 and 218 states as a function of static field. The pri-
mary (q = 0) 21s and 19,3 states are shown as solid
lines with an avoided crossing at Ep —— 304.2 V/cm,
while the broken lines depict the other (dressed state
or sideband) quasienergies of the 19,3 state. At spe-
cific values of the static field, the multiphoton reso-
nance Geld E~, the 218 state crosses the qth-order side-
band of the 19,3 state. At these values of static field

the system exhibits a multiphoton resonance, as de-
scribed in Sec. II. It is important to note that if
the quasienergy states C'~ = 4 exp(inst) are orga-
nized according to the magnitude of their quasienergy

= R' + neo, then the Floquet Hamiltonian matrix
elements (w/2m) f «(C'~ I'KEIR& ) will be not only
diagonal but also (2x2) block degenerate at the reso-
nances. Here the labels n and P represent either 2ls or
19,3.

In the solutions for the wave functions in Eqs. (3) and
(5), and in the quasienergy plot of Fig. 3, we have ignored
the ofF-diagonal core coupling. When it is included, each
of the quasi-energy-level crossings of Fig. 3 becomes an
avoided crossing, similar to the one in a purely static
field Eo. In the static case, the level separation 00 at the
avoided crossing is

where H~ is the ofF-diagonal part of the core coupling
Hamiltonian. Including this coupling in the Floquet
Hamiltonian with the rf field present lifts the degener-
acy of the quasienergies at the multiphoton resonances.
Treating the coupling as a perturbation to our Floquet
quasienergy eigenvalue problem will therefore require an
application of degenerate perturbation theory. In fact,
if the resonances are distinct and not overlapping, then
to a very good approximation the (2x2) blocks may be
diagonalized independently, permitting a nearly exact so-
lution for the quasi-energy-level separations near a res-
onance. Because the Hamiltonian H~ is time indepen-
dent, in Shirley's Floquet theory the matrix elements in
each degenerate block couple only the time-independent
Fourier components of the scalar product of the two wave
functions,

2'

«&C"i'. (r t) III~I@ip,s'r t)) =
2 l (d ) ( M ) 27l

i [(vn+p —q) —(n+p)]~t

(7)
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onance. If the 21s state is initially excited at a static
Geld far from a resonance and the levels are then tuned
through the resonance by rapidly sweeping the static
field, the transition probability to the 19,3 state is pre-
dicted by the Landau-Zener formula [17],
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FIG. 3. Quasi-energy-level diagram as a function of static
electric Geld, with zero rf field amplitude.

dA dE= —(k —o.Eq)dt dt
(13)

where the last relation results from the orthogonality of
the Fourier expansion functions. . The double summation
can be further simplified [15] so that the resonant quasi-
energy-level or dressed-state avoided crossings are

2'
Oq—:2 dt(42i, (r, t)le lC, g s (r, t))

2K p

(8)

is the sweep rate of the detuning. By observing the
Landau-Zener transition probability P(t) as a function of
the sweep rate 4, the Rabi frequency can be determined
using Eq. (12). In practice we found that this method did
not yield results as reliable as those obtained by directly
observing Rabi oscillations. In fact, the transition proba-
bility observed was not exponential in time, as predicted
by Eq. (12), but instead exhibited evident substructure,
possibly associated with the traversal of other resonances
during the sweep of the detuning.

Before leaving this section we emphasize the fact that
our Floquet analysis of multiphoton resonance has re-
quired a high-frequency approximation,

, t'(n,'+ z', )-'tl
sin (9)

where Oq is called the p-photon-resonance Rabi fre-
quency, and

Aq = Wig s —W2i. —q(u = (k —o.Eq)(Eq —E) (10)

is the detuning from resonance. At resonance (Aq = 0),
Eq. (9) reduces to

P(t) = sin
~ l

= —[1 —cos(Oqt)],
. , (Oqth 1

2 ) 2

and the probability oscillates in time between the reso-
nant 21s and 19,3 states with frequency Oq. There is,
in principle, an alternative approach to observing res-

Note that this result is independent of p so that each
dressed-state avoided crossing is equivalent. Floquet the-
ory has therefore reduced our multiphoton resonance
problem to a simple static two-state system involving
only the original 21s and 19,3 states coupled by the in-
teraction expressed in Eq. (8).

Solving the two-state problem using standard tech-
niques produces solutions which exhibit quantum beats,
when prepared in the appropriate initial state. These
quantum beats, or oscillations, between two orthogonal
superpositions of the nearly degenerate dressed states
are simply resonant Rabi oscillations, or optical nuta-
tions [16]. If atoms are excited initially to one of the
states (21s), at some later time t there is an oscillating
probability P(t) of finding the atoms in the other state
(19,3). Explicitly,

Oq ( Op &( (d) (14)

IV. EXPERIMENTAL APPROACH

In order to observe the multiphoton resonances and
accurately measure their Rabi frequencies, we require a
system which can produce large pulsed microwave fields,
high voltage ionizing Gelds, and tunable homogeneous
static electric Belds. As demonstrated by Stoneman,
Thomson, and Gallagher, a resonant microwave cavity
constructed by closing the ends of a piece of waveguide
can produce microwave Gelds large enough to observe
resonances involving more than 20 photons [1]. By in-
cluding inside their cavity a copper septum placed per-
pendicular to the microwave Beld and insulated from the
waveguide, they could also create both the ionizing and
tunable static electric fields required. In fact, the appa-
ratus we used is essentially the same as the one used by
Stoneman, Thomson, and Gallagher, with a few signif-
icant improvements. In particular, the microwave cav-
ity has been enlarged to improve the Geld homogeneity.
The new cavity is a piece of WR 229 (S band) waveguide
8.32 cm long, closed at both ends. The inside dimensions
are 2.92 x 5.80 x 8.32 cm. There are 1.0 mm diameter
holes in two of the cavity's sidewalls to admit the atomic

ensuring that the resonances be distinct and well re-
solved. For the states we have chosen this requires an
rf frequency greater than 1 GHz. At lower frequencies
a similar treatment must include the contributions from
several neighboring, nearly degenerate quasienergy states
simultaneously, which would tend to shift and broaden
the resonances.
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and laser beams, and there is a 0.3 mm diameter hole
in the center of the top of the waveguide to allow ions
to escape. The septum is a copper plate 3.1 mm thick
supported by insulating Teflon supports in the four cor-
ners of the cavity. The cavity itself is dc insulated from
the rest of the vacuum system so that it can be biased
as well. The distance &om the septum to the top of the
waveguide is 7.36 mm. The center of the atomic beam
passes approximately midway between the septum and
the top of the cavity. %Kith this arrangement we are able
to obtain a field homogeneity of 0.007% over the region
of detection, almost two orders of magnitude better than
the previous experiment.

The cavity was operated in the TEio5 mode near
9.26 GHz. With the septum in place the mode struc-
ture of the empty cavity is altered slightly, with sev-
eral diferent resonances associated with this mode oc-
curring at slightly lower frequencies. The cavity's time
constant of 28 ns resulted in a quality factor Q of about
1600. Microwave power is coupled into the cavity using
a coaxial probe inserted from the bottom of the cavity.
Maximal coupling is achieved by adjusting the length
of the probe. For some of the measurements the cav-
ity was oeemoupled, which reduced. its tim. e constant to
only 8 ns. The microwave power originates in a Hewlett-
Packard (HP) 83508 sweep oscillator with an HP 83550A
X band plug-in. After passing through a mixer used to
pulse modulate the microwaves, the pulses are amplified
in a Hughes 1277H traveling-wave-tube amplifier. The
amplified microwave pulses are attenuated and then tra-
verse a waveguide, a four-port dual-directional coupler,
and a semirigid coaxial cable before reaching the cavity.
A dc-blocking capacitor is used to isolate the ground of
the coaxial cable &om the cavity. The directional coupler
allows for measurement of both the incident and reflected
microwave powers using an HP 432A power meter. With
this arrangement we estimate that we can determine the
microwave field inside the cavity to within 15'Fo.

The experiment is performed inside a vacuum chamber
with a background gas pressure of less than 10 Torr. A
beam of K atoms &om a resistively heated source enters
the microwave cavity through the hole in one sidewall.
Light from two pulsed dye laser beams tuned. to the 48-
4p and 4p-218 transitions in K enters the identical hole
on the opposite sidewall and is focused at the center of
the cavity where atoms are exited to the 218 state. The
light is polarized along the electric-field direction so that
only the m = 0 states can be excited. The rf pulse is
applied to the cavity about 300 ns before the arrival of
the laser pulses to ensure that the microwave field has
reached its steady state when the 218 atoms are created. .
The falling edge of the rf pulse is followed in several hun-
dred ns by a high voltage field ionization pulse applied
to the septum in the cavity. The precise voltage and rise
time of this pulse are chosen so as to ionize only atoms
in the 19,3 state, not those in the 21s state [10]. The
voltage pulse required is about 2.2 kV, with a typical
rise time of 1 ps. The ions from atoms directly under
the 0.3 mm hole in the top of the cavity then acceler-
ate in the ionizing field are ejected &om the cavity and
impinge upon the microchannel plate particle multiplier
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FIG. 4. Experimental timing scheme.

E„=

0o- ~)=
N

0

42 V/cm I
i r

34 Vy cm

0 ]00 200
Detuning Pu1se Delay Time (ns)

FIG. 5. Rabi oscillation signals for the four photon reso-
nance.

above the cavity. In addition to the ionizing field pulse
&om the septum. , a small, rapidly rising Beld pulse pro-
duced by applying voltage pulses to the cavity can be
used to detune the atoms &om resonance in the time be-
tween the laser pulse and the falling edge of the rf field
pulse. Figure 4 summarizes the basic timing scheme used.
in the experiment.

Rabi oscillations are observed directly by fixing the
static field exactly on resonance and applying a ( 1 V)
negative voltage detuning pulse to the cavity, delayed
some fixed time from the laser pulses. This detuning
pulse is generated with a HP 8112A programmable pulse
generator with a rise time of 4.5 ns, whose delay time
is computer controlled. through a GPIB interface. By
stepping the delay of this pulse between laser shots, the
time the atoms spend in resonance can be scanned as the
19,3 Beld ionization signal is recorded, producing Rabi
oscillation signals such as those shown in Fig. 5 ~ Here the
delay step time was 1 ns, and the signal at a given delay
was averaged. over many laser shots to increase the signal
to noise ratio. This method of rapid Stark detuning of the
levels from resonance to generate Rabi oscillations was
also used in previous measurements [8,9] and is similar to
the one used by Brewer and Shoemaker who were the first
to observe optical nutation in molecular resonances using
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CO2 laser radiation [18]. A similar technique has also
been used to generate quantum beats between Rydberg
states at level crossings in static electric fields [19].

V. RESULTS AND DISCUSSION
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FIG. 6. Measured Rabi oscillation frequencies for (a) the
one-, two, and four-photon resonances and (b) the 8-, 13-, and
18-photon resonances. As mentioned in the text, the rf field
amplitudes of the data in (a) have been scaled (lower by 15%
on average) to provide best fits to the calculated results

We have observed Rabi oscillations such as those il-
lustrated in Fig. 5 for a selected subset of the 21s-19,3
multiphoton resonances shown in Fig. 2 at many differ-
ent rf field strengths. By fitting the observed signals to
a sinusoidal oscillation for positive laser-detuning pulse
delay times, the Rabi &equency can be determined with
great accuracy, typically to within 2%%uo. The results are
shown as a function of rf field for the one-, two-, and
four-photon resonances in Fig. 6(a) and for the 8-, 13-,
and 18-photon resonances in Fig. 6(b). The solid curves
in the figures indicate the predictions of Floquet theory
expressed in Eq. (8). Here we use a value for the static
field avoided crossing of 00 ——323 MHz, which was cal-
culated &om a direct solution of the energy eigenvalue
problem for a K atom in an electric field using measured
values for the quantum defects [20]. This value for Ao is

also consistent with previous measurements [21].
The agreement between the measurements and the pre-

dictions of Floquet theory is remarkable for the lower-
order resonances, extending over a great range of both
static and rf fields. Furthermore, it is important to
note that, unlike previous work [8,9], our experiment in-
cludes results for the strong-field regime, where perturba-
tion theory does not apply. Our measurements therefore
strongly support the validity of this nonperturbative Flo-
quet treatment of resonance. For the 13- and 18-photon
resonances, there appears to be a systematic disagree-
ment between the calculations and the measurements.
In fact, the simple two state model we used in Sec. III
should be expected to break down in these cases. This is
because our calculations have ignored other states in the
Stark manifold which are coupled at zero field, and the
total field certainly passes through zero during measure-
ments involving these resonances.

Aside from the striking agreement between theory and
experiment, the most notable feature of Fig. 6 is that,
for particular values of the rf field strength, the Rabi fre-
quency of a given multiphoton transition vanishes. This
occurs for the same reason that sidebands in the power
spectrum of a frequency modulated sine wave vanish at
certain modulation amplitudes. A nearly identical ef-
fect was also observed in the transverse optical pump-
ing experiments which first demonstrated the effective-
ness of the dressed-state approach to problems involving
atoms in rf field [22]. While a more detailed theoreti-
cal treatment predicts that the Rabi &equencies actually
pass continuously through zero, &om positive to nega-
tive values, our experiment is not sensitive to the sign
(or orientation) of the Rabi nutation. We can determine
only the magnitude of the nutation frequency through
the expression in Eq. (9) for the transition probability.

Another noteworthy feature of Fig. 6 is the limited
&equency range of the measurements. Rabi oscillations
of &equency greater than about 70 MHz are impossible
to generate with our current approach due to the finite
width of the laser pulse. Upon excitation at a multipho-
ton resonance, atoms are created in a superposition of
the two energy eigenstates, which then oscillates between
the 218 and 19,3 states. The finite time of the laser pulse
produces atoms with a distribution of different starting
times for the oscillation. The net signal is then an av-
erage over starting time or, equivalently, over a range of
phases. With a very long Rabi oscillation period, this
range of phases is small and the effect is insignificant.
However, as the oscillation period becomes comparable
to the laser-pulse width, the phase average begins to de-
crease the amplitude of the oscillation. The observed
upper limit of our Rabi oscillation &equency gives an es-
timate of 5—10 ns for the dye laser-pulse width, in good
agreement with its measured value of 10 ns.

In addition to an upper limit for the measurements
presented in Fig. 6, there is a less apparent lower limit
as well, caused by the presence of inhomogeneity in the
applied electric fields. In general, field inhomogeneity re-
sults in a damping of the observed Rabi oscillations. One
reason for the damping is simply the inhomogeneous dis-
tribution of detunings from resonance [A~ of Eq. (10)]
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produced by the spatial inhomogeneity in the static Geld
E and the Gnite volume of the laser foci. However, aver-
aging the oscillation expressed in Eq. (11) over detunings
produces a relatively slow damping. In fact, for Rabi
&equencies much smaller than the nominal inhomoge-
neous detuning, the damped oscillations closely resem-
ble a Bessel function, which damps as t ~ . Such slow
damping does not pose a limitation to the experiment
if the signal to noise ratio is suKcient to overcome the
overall loss of oscillation amplitude which also results.
The observation of many oscillations is then still possi-
ble, providing for an accurate determination of the Rabi
frequency.

The type of damping just discussed is often referred to
as inhomogeneous damping and must be distinguished
&om the inherent relaxation of the oscillation process
which results &om atomic motion in the presence of the
field inhomogeneity [23]. It is this relaxation damping
which ultimately determines the lower limit of the Rabi
&equencies we are able to observe. Because the atoms
in the atomic beam have a Gnite velocity of roughly
0.4 mm/ps, they move through the region of detection
in less than 1 ps. In the presence of a static Geld in-
homogeneity, they are efFectively shifted into and out
of resonance as they move through the cavity. Even
a very small field inhomogeneity of hE/E = 0.01% re-
sults in a comparably large distribution of detunings
A~ = (k —o.E~)bE 16 MHz for the lower-order res-
onances. Atoms whose Rabi &equencies are less than
this will be shifted into and out of resonance in less than
1 ps, setting an upper limit on the time over which Rabi
oscillations may be observed. Requiring at least two com-
plete oscillations for an adequate fit of the &equency sets
a lower limit of about 10 MHz for our measurements.
Of course, a much more sophisticated approach can be
applied to determine the actual time dependence of relax-
ation damping. However, without detailed knowledge of
the inhomogeneous field distribution, such a quantitative
analysis is unwarranted.

An rf field inhomogeneity can also present a problem
for observing Rabi oscillations. This is especially true for
measurements made near the zero crossings, i.e., near the
zeros of the Bessel function which determines the Rabi
frequency's dependence on rf field strength in Eq. (8).
We estimate that, because of the cavity's mode structure,
the rf field is inhomogeneous at the level of a few percent
over the region of detection. Near a zero crossing this can
result in a distribution of Rabi &equencies over a range of
about 5 MHz, which would damp a 10 MHz oscillation in
about one cycle. In general, such estimates are consistent
with the observation that damping is more severe near
the zero crossings than for measurements at much lower
rf Gelds, suggesting that the rf inhomogeneity dominates
in these cases.

All damping effects have been accounted for empiri-
cally in our analysis by including an exponential decay
rate factor e ~ in our Gt to the oscillations. In those
cases in which many oscillations are observed, the inclu-
sion of such a factor had an effect of only a few percent
on the result for the oscillation &equency. Typically, the
rate constant v which best Gt the data was greater than

100 ns, again suggesting 10 MHz as a lower limit for our
measurements.

Although we can measure the Rabi &equencies with
great accuracy, a similar level of accuracy is not possi-
ble for the calibration of the applied rf field. Indeed, the
largest uncertainty in many microwave experiments in-
cluding this one is the determination of the microwave
field strength. In this experiment the sensitivity of the
Rabi frequency to the rf Geld near the zero crossing is
extreme. Consequently, rf field calibration error presents
an unusually diKcult problem when comparing our mea-
surements with the calculated results of Sec. III. What
follows is a description of our treatment of this problem.

The data presented in Fig. 6 were collected during runs
on many difFerent days, each run lasting several hours. At
the beginning and end of each run, the rf Geld was cal-
ibrated against a microwave ionization threshold in the
K atom (see Ref. [24] for experimental details) so that
data of different runs could be matched together. The
run to run variance in the measurements of this thresh-
old field was only 3.7%. However, the overall system-
atic uncertainty in the measurement is dominated by the
estimated microwave power measurement uncertainty of
15%. In particular, our result for the calibration of the
microwave ionization threshold field for the 28d (m = 0)
state at 9.1 GHz is 1106 4+ 16 V/cm.

In addition, the rf field can be calibrated by observ-
ing the small shift of the resonance associated with the
ac Stark shift of the 2ls state, AW, = nE, &/4, where
o. is the polarizability of the 21s state defined in Eq.
(1) [1]. We have measured these shifts for both the
one- and four-photon resonances, obtaining a calibrated
ionization threshold field for the 28d (m = 0) state of
115 + 3 + 2 V/cm. The systematic error is small be-
cause the resonance fields can be measured very accu-
rately. However, this calibration depends on t,he assump-
tion that the ac Stark shift of the 21s state is simply its
time averaged shift in the presence of the rf field, which
may not be valid at the level of a few percent. Neverthe-
less, this calibration is in agreement with the original mi-
crowave power calibration and therefore provides a check
of our power measurements.

Therefore, while the precision of the relative rf Geld
calibration for all the measurements is good, the abso-
lute field calibration contains a rather large systematic
uncertainty. As a result, the data presented in Fig. 6(a)
have been scaled to provide a best Gt to the theory. The
rf electric fields for these data have been multiplied by the
factors 0.81, 0.87, and 0.87 for the one-, two-, and four-
photon resonances, respectively, suggesting a systematic
error in the absolute rf field calibration of 15% and a 4%
relative uncertainty. Therefore, these scalings are con-
sistent with both the estimated rf power measurement
uncertainty and the run to run scatter of the threshold
measurements. The data of Fig. 6(b), which are not as
sensitive to the rf field calibration, have all been scaled
by 0.85, the average scaling factor &om the data in Fig.
6(a). As a final note, we conclude that, given a suffi-
cient level of confidence in the Floquet calculations of
Sec. III, our Rabi &equency measurements can provide
a calibration of the microwave field amplitude which is
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far more accurate than possible with techniques which
involve power measurements in the microwave system.

VI. CONCLUSION

Our measurements have clearly demonstrated that the
two-level Floquet model of Sec. III accurately describes
resonant microwave multiphoton transitions between the
K (n+ 2) s states and n, k Stark states in combined static
and microwave fields. As a consequence, one can use the

calculated Floquet quasienergy modes, or dressed levels,
and their avoided crossings to determine the response
of this system to pulsed microwave radiation in future
experiments.
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