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A systematic theoretical and experimental study of focusing femtosecond light pulses by single
lenses is presented. By evaluation of the diKraction integral the interplay of spherical and chromatic
aberration is shown to determine the temporal as well as the spatial intensity distribution in the focal
region of a lens. Conditions are derived under which the eKect of spherical aberration dominates.
Here a temporally unbroadened, in-focus pulse occurs while the spatial distribution is that expected
from an annular lens aperture. If chromatic aberration is the major aberration, the in-focus pulses
are considerably broadened. Both efFects could clearly be measured with 100-fs pulses using a
modified Michelson interferometer. In an intermediate parameter range both chromatic and spherical
aberration contribute to the pulse broadening and to the spatial intensity pattern in a given plane
in the focal region. From Fresnel diKraction we expect a weak-intensity distribution to precede the
in-focus pulse on the axis. Another weak intensity peak is produced by the pulse traveling on axis.
By measuring its separation from the main pulse in the marginal focal plane one can estimate the
aberration parameters.

PACS number(s): 42.65.Re, 42.79.Bh, 42.25.Fx

I. INTRODUCTION

Many applications of femtosecond light pulses involve
focusing by lenses and lens systems, for example, to
achieve high on-axis intensities or for beam expansion.
Tight focusing producing well-defined wave and pulse
fronts is required for such applications as the genera-
tion of high field strengths in the focus of terawatt and
petawatt pulses [1] and imaging with ultrashort light
pulses [2—5]. With available pulse durations in the or-
der of 10 fs [6,7] the optimization of such setups has to
be performed not only with respect to the spatial inten-
sity distribution but also with respect to the temporal
intensity distribution.

It is well known that chromatic lens aberration leads
to a pulse stretching in the focal plane. This results from
different arrival times of pulses that pass through the
lens at different radial positions as it follows from geo-
metrical optics [8] and was measured in [9]. The effect on
the spatial intensity distribution can be explained as the
action of a time-dependent aperture. The actual space-
time distribution in the focal area is obtained by solving
the diffraction integral [10,11]. Using very short pulses
the group-velocity dispersion (GVD) in the lens material
has to be taken into account in addition. To minimize
the GVD effect the pulses can be suitably bias chirped.

Generally, a single lens is not free of spherical aberra-
tion. It was shown in [12] that with moderate and strong
focusing spherical aberration plays a dominant role for
the space-time Geld distribution in the focal region. Be-
cause of spherical aberration, only light passing through
a certain lens annulus is brought to a focus in a certain
plane. Therefore, the in-focus pulses have the same delay
and thus are not broadened if we can neglect GVD.

The aim of our paper is a systematic theoretical and ex-
perimental study of the interplay of chromatic and spher-
ical aberration in focusing ultrashort light pulses. In the

first part we shall discuss the theoretical approach to ob-
tain the field distribution and derive approximate analyt-
ical relations. This is followed by a numerical evaluation
of the intensity distribution in the focal region of typical
lenses. In the third part we then describe measurements
and compare them with the theory.

II. THEORETICAL BACKGROUND

Let us assume a uniform illumination of the lens aper-
ture with a parallel beam. The incident pulse can be
thought of as a superposition of monochromatic waves
E centered about a midfrequency uo. The effect of the
lens on a certain spectral component is simply a multi-
plication with the corresponding amplitude point-spread
function (APS) h. Integration over the entire frequency
spectrum yields the desired 6.eld distribution. The inten-
sity is the corresponding absolute value squared and, in
a plane xq, yq a distance z away from the paraxial focal
point, is given by

I(x„y„z) oc dAcue ' 'E(A(u)h(xg, yg, z; Ace)

h(rg z, A(u) = ——
A

G P2

s fp cos[arcsin(ar/fp)]
jk(s fo) jkC—

where Aw = w —~0. The problem reduces to finding
a suitable representation of the APS. According to the
Huygens-Fresnel principle the APS for a circular lens of
radius a can be written as
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O' = —Ar4c/~o,

where A is a dimensionless number characterizing the
spherical aberration. The quantity 4' is responsible for
the frequency dependence of the optical path length tra-
versed in the lens at radius ar and carries the information
about the chromatic aberration. As shown in [10], apart
from an unimportant constant factor, 4 can be written
as

Mp f c7T
@(r,Ace) = rr A~ ——

i

d-
c ( ~on')

x (n'/~p + n" /2) (Bur )
with

G &pn

2fo(n —1)c ' (5)

where n, n', n" are the refractive index and its first and
second derivative with respect to w, respectively, taken
at wp, and d is the center thickness of the lens. Basically,
the first term in Eq. (4) introduces a radius dependent
delay r, (r) = vr between—pulse and phase fronts while
the second term is responsible for pulse broadening due to
GVD. Note that Eq. (4) is a result of a Taylor expansion
of the optical path length up to second order in A~.

where fo is the paraxial focal length at coo, rq ——
V x~ + y~

is the radial coordinate, s = s(0, rq, r) is the distance be-
tween a point at the reference sphere and the observation
point at (rq, z), k = w/c, r is a dimensionless radius con-
stant, and 0 is the azimuthal angle; see Fig. 1(a). The
last two terms in Eq. (2) were introduced to account
for aberration. The phase k4 describes the deviation of
the wave front from a sphere of radius fo due to spheri-
cal aberration. It is responsible for the fact that to each
lens annulus r there corresponds a certain focal length
f (r ). Considering only the first correction term 4 can be
expressed as

Terms of higher order have to be added in the case of
strongly dispersive lens materials and/or extremely short
pulses (( 10—15 fs in the visible spectral range), which is
not to be discussed here.

To illustrate to what extent the pulse and wave fronts
just behind the lens are described correctly in Eqs. (3)—
(5) we compared them with the results of ray pulse trac-
ing. For two piano-convex BK7 lenses with fp: 100
mm, a = 10 mm, and d = 1.0 mm (lens 1) and fo ——200
mm, a = 10 mm, and d = 0.5 mm (lens 2), the relative
differences are shown in Fig. 2 for Ap ——620 nm. The cor-
responding parameters characterizing the chromatic and
spherical aberration are w = 73 fs, A = 28 and r = 36
fs, A = 4, respectively, where the value for A was deter-
mined in the thin-lens approximation [13,12]. Figure 2
suggests that the relative error in the case of moderately
focusing lenses is small. As far as pulse fronts are con-
cerned deviations small as compared to the input pulse
duration are acceptable, which is satisfied well for both
lenses. In contrast, critical phase differences are in the
order of vr. It is this requirement which limits the ap-
plicability of Eqs. (2)—(5). For a better coincidence with
the actual phase fronts and to describe systems especially
with large A one has to consider higher-order correction
terms in addition to the one proportional to r in Eq. (3)
or combine ray tracing with diffraction theory directly
[141

For simplicity we shall assume here that the lenses pro-
duce phase fronts as given by Eqs. (2)—(5). For the lenses
to be described this is a reasonable approximation since
the corresponding deviations of the lens surfaces from a
perfect sphere amount only to a few wavelengths. Even
without additional aberration terms the numerical inte-
gration of Eq. (2), i.e. , the exact propagation of the wave
from the exit plane of the lens to the observation point,
involves relative large expense.

As discussed in [15], for fo )& Ao sin (n/2)/2, where
cr = tan ~(a/fo) is the semiaperture angle, the diffrac-
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FIG. 1. Lens geometry for (a) the wave optical description
and (b) the geometric optical considerations.

FIG. 2. Relative error of the phase fronts (solid lines) and
pulse fronts (dashed lines) as compared with exact ray tracing
behind a BK7 lens with KA = 0.10 (lens 1) and NA = 0.05
(lens 2) vs height ar of the incident rays.
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tion problem can be solved in Debye approximation. This
is particularly useful for high aperture systems which can-
not be described in paraxial approximation. To do this
we approximate in Eq. (2) s —fo = —q. R where q is the
unit vector pointing from the paraxial focal point towards
the aperture and R, is the position vector to the observa-
tion point, see Fig. 1(a). The benefit is that the twofold
integration in relation (2) reduces to a single integration
over q within the lens aperture. The aberration terms in
Eq. (2) remain unchanged. For a quantitative estimate of
the range of validity of the Debye approximation under
the conditions of high spherical aberration let us require

I

the difference (s —fo) —(—q R) to be smaller than A/8
in the region between paraxial and marginal focal plane.
The limiting values were obtained at the focus of the
marginal rays and served to estimate a critical aberra-
tion parameter. Figure 3 shows the so defined maximum
A parameter as function of the numerical aperture (NA)
for lenses of different radii. For a particular lens it de-
termines an upper limit for the NA which can still be
treated in the frame of this approximation. An example
is given as inset in Fig. 3.

In Debye approximation, using the formalism de-
scribed in [14], the APS (2) can be written as

6(ri, z, A(d) oc «Jo ko
l

1+
I
ri »n(rci') exp jko l

1+ zcos(ro)
o/o ) o/o

x sin(ro) exp —j l
1 +

l

Ar —j iI/(r, Ao/) (6)

where ko = a/o/c and Jo denotes the Bessel function of first kind and zero order. Here we have approximated the
factor —j/A in front of the integral (2) by the constant term —j/A owith Ao ——2ac/o/o, which could then be omitted
in relation (6) together with other constant factors. It can be shown that the error introduced is negligibly small for
pulse durations ) 1O—15 fs and that this approximation is less severe than the neglect of the third-order dispersion
««he temporal and spatial field distribution in the focal region. This is not surprising since the material dispersion
appears in a phase term while —j /A is an amplitude term.

It should be mentioned that, if only the field distribution near the paraxial focus is of interest, Eq. (6) approximates
the APS from Eq. (2) very well even for large apertures. If, however, the field distribution in the entire focal region is
to be discussed the maximum possible numerical apertures become smaller. When the precondition for the paraxial
approximation are satisfied the APS can be written as

h(ri, z, Ace) oc
( Ace arri a'r'z

dr r exp —gko
l

1+ cos(0) + exp jAr
l
1+—

l

—j iI/(r, Ace)
o/o fo 2fo

(7)
After introducing the common optical coordinates v = koari/fo and u = koa z/fo we obtain

h(v, u, Ao/) oc
( Gal . , / Ao/) 4

r'

dr r Jo rv
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exp —jur /2 1+
l

exp jAr
l
1+ —

l
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Since we are not interested in absolute arrival times of the
pulse in a certain plane u =const corresponding factors
have been neglected.

Before discussing the actual field distribution in the fo-
cal region which implies a numerical evaluation of Eq. (6)
we want to derive some simple relations that allow us to
estimate the effect of chromatic and spherical aberration.
The total delay wt t of a pulse passing through the lens
at certain radius r and diffracted to a certain point (v, u)
can formally be written as

+tot +c + +s
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where w was the group delay resulting from chromatic
aberration while v; is the additional delay caused by
spherical aberration. Due to the choice of the time axis
this total delay ri i appears in Eq. (7) in those phase
terms which are linear in Lw. Following geometric-
optical considerations where we can restrict ourselves
to the x-z plane [cos(0) = 1] we obtain ri —— xi
(—z —[fo —f(r)])ar/fo, see Fig. 1(b). The focal length
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FIG. 3. Maximum amount of spherical aberration which
can still be treated in the Debye approximation. The inset
gives the range of possible parameters for piano-convex BK7
lenses and A0 ——620 nm.
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that corresponds to a lens annulus of radius ar can be
written as

cal aberration dominates and the in-focus pulses are not
broadened. This is expected to occur for

(10) (7Mp)

ger [1+(~or„)/(3vr)]
(14)

With these relations for ri and f (r) we obtain for the
delay between parts of the pulse front traveling through
the lens along the optical axis and at a distance ar and
arriving in a certain plane u=const from Eq. (7)

3A
r, , (r, u) = rr + — r +

2&p

7 r 3vr
A ( A, = max vr, 7r —

~

1—
7& ( ldpr

(12)

One can show that the maximum total delay in the parax-
ial focus (u = v = 0), which can serve as a rough measure
for an average pulse duration, is rt t (r = 1) = 3A/clap —7;
cf. Eq. (11). With the maximum aberration according
to Eq. (12), A;, this delay becomes

9'
r, t(r = l, u = 0) = —r

~

1+
((dpr) (caIprp)

3vr )

Obviously, for very short pulses the spherical aberration
can modify the pulse duration in the focus in addition to
the efFect of chromatic aberration (where rt t = —r).

The other limiting case (ii) can be expressed as the
condition ~A f (0, r~)

~

) z~ with r defined through
~rt~t (r, ) ~

) r~. Physically this means that in each plane
in the focal region only pulses whose delay is smaller than
the pulse duration are in focus. Here the effect of spheri-

Note that their v-values only coincide in the focal plane,
i.e. , at u = kpa—26f (r)/fo2

Equations (10) and (11) indicate a complex relation-
ship between spatial and temporal effects. Unlike with
monochromatic illumination only those parts of the orig-
inal wave front interfere the group delay of which is
smaller than the pulse length. To illustrate this let us
discuss two limiting cases. (i) If the impact of the spheri-
cal aberration on the spatial distribution is so small that
roughly all rays are in focus in the paraxial focal region
of the lens, Eq. (11) describes the temporal stretching of
the focused pulse. (ii) If the spherical aberration is large
so that rays from different lens annuli have well separated
foci, the original pulse duration (strictly speaking, some-
what afFected by the GVD of the traversed glass path)
will be measured in each focal point.

For a quantitative discussion let us require for case
(i) that Af(0, 1) = fp —f(r = 1) is smaller than the
focal depth zp formed by the central part of the beam
with radius r across which the delay is not larger than
the pulse duration 7„. The radius r can be estimated
from Eq. (11) by setting ~rt t~ = r„and u = 0. The
focal depth produced by an aperture of this radius is
zg 47rfo/(a kpr, ) Using Eq. (1.0) to express the shift
of the focal length, Af(0, r), condition (i) can be written
as a condition for the spherical aberration. We obtain

To derive this expression we proceeded as above. r, was
determined from Eq. (11) with consideration of (ii) and
inserted in Eq. (10). This in combination with (ii) and
zg yields the desired relation for A, cf'. Eq. (14). If
(dpr„/(37r) is large compared to 1, we can rewrite rela-
tion (14) as A ) ir(r/r„) .

In many practical situations the time-averaged inten-
sity distribution is of interest. With cw light it is con-
venient to define a so-called circle of least confusion in
between paraxial and marginal focal plane at a position
z~ ——

4& f (0, 1) [16]. An estimate of the temporal width
of the focused pulses in this plane can be obtained from
Eq. (11) to be

rtoi(zi) rq(zi) + r~(zi)
1.5A 4r —7r

Mp
(15)

With positive A and ~ the pulse duration in this plane
can expected to be shorter as if one aberration acts alone.
It should be mentioned that the optimum focal plane for
cw light does not necessarily coincide with the optimum
for pulsed illumination.

III. NUMERICAL RESULTS

Using ray tracing and evaluating the corresponding
group delay we can easily obtain the pulse fronts in the
focal region of a lens at difI'erent instants of time. Fig-
ure 4 shows several examples for lenses at a wavelength
of 620 nm. The time zero was chosen so as to correspond
to the arrival of the paraxial rays at their focus. The
result for an aspheric lens made from optical grown glass
with fp ——8.5 mm, a = 4 mm (referred to as aspheric lens
in the following) re8ects the effect of chromatic aberra-
tion. Here the pulse fronts arrive in the focal plane with
a radius-dependent delay r, = rr [Fig. 4(a)]—. The pic-
ture becomes more complex if spherical lenses are used
and spherical aberration acts in addition; see Figs. 4(b)
and 4(c). In Fig. 4(b) the results for a biconvex BK7 lens
with fp ——12.7 mm, a = 5.5 mm, and center thickness
d = 6.68 mm (in the following called biconvex lens) are
depicted. The relevant lens parameters characterizing
chromatic and spherical aberration are w = 175 fs and
A 1835, respectively. The lens used for Fig. 4(c) is a
piano-convex BK7 lens (referred to as piano-convex later
on) with fo ——100 mm, a = 10 mm, and center thickness
d = 1.2 mm, which means w = 73 fs and A = 28. With
nonzero spherical aberration, not only have pulses pass-
ing through difI'erent lens annuli difI'erent group delays,
but they also come to a focus at different positions on
the optical axis. In a given plane z=const their delay
with respect to on-axis pulses is 7g t. The change of the
pulse front even for a moderate value of spherical aber-
ration [Fig. 4(c)] as compared with the aspheric lens is
substantial. For this reason the results obtained in [11]
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assuming a single lens with w = 4.81 ps without taking
into account spherical aberration are questionable (the A
value would be = 5500 for a piano-convex lens).

For the actual space-time distribution of the inten-
sity in the focal region we need. to evaluate the diKrac-
tion integral (6). Here and in what follows in this sec-
tion we assume homogeneous illumination at 620 nm
with Gaussian-shaped input pulses of duration 7„= 24
fs so that E(Ace) = Ep expI —(TAw/2) ] where T
(21n2) ~ 7„= 20 fs. For the piano-convex lens the
intensity distribution in the paraxial and marginal focal
plane is depicted in Fig. 5. Note that a line connecting
the maxima would yield the pulse-front distribution as
discussed before, however, now in a certain plane rather
than at a certain instant of time. The curved pulse front
in the paraxial focus and the loop-shaped pulse front in
the marginal focus are a result of spherical aberration.

In Fig. 5(b) a small pulse preceding the main pulse can
be seen. In the paraxial focal plane, their separation is
given by At~ = —A/cup —w, which can be derived from

100prn
-1.67ps

-1.00ps

200fs

-0.33ps

100@m

-13.74ps

-0.58ps
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par axial
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focus

-1.85ps

Ops

200fs

paraxial
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FIG. 4. Pulse fronts (solid lines) in the focal region of dif-
ferent lenses obtained from pulse ray tracing. The dashed
lines indicate the propagation of the marginal and paraxial
rays. The dotted line in (a) represents the phase fronts. (a)
aspheric lens with r = 130 fs, (b) biconvex lens with r = 175
fs and A = 1835, and (c) piano-convex lens with 7 = 73 fs
and A = 28. The detailed lens parameters are given in the
text.

an analysis of the phase factors in Eq. (7). A similar
pulse was also found in [11] (called forerunner pulse) and
explained as result of boundary waves. Our explanation
is based on Fresnel diÃraction. From an arbitrary on-axis
point the lens aperture can be divided into a sequence of
Fresnel zones. Note that, neglecting aberrations, as seen
from the focal point, the lens aperture contains just one
Fresnel zone. The number of Fresnel zones increases if
we move away from the focus. If the temporal delay of
pulses passing the lens through neighboring Fresnel zones
caused by chromatic aberration is smaller than the pulse
duration their contribution to the on-axis intensity is ap-
proximately zero due to destructive interference. What
is generally left is a contribution from an annulus at the
lens rim which lacks a counterpart for destructive inter-
ference. Hence it gives rise to a pulse appearing at a time
when the pulses from the aperture edge pass the axis. As
we move towards (or away from) the lens we continuously
change the number of Fresnel zones and the size of the
"left-over" annulus. This suggests a periodic behavior of
the amplitude of the prepulse which is also expected if
the aperture radius is changed. Detailed numerical calcu-
lations (not shown here) reveal this behavior and support
this discussion. With spherical aberration the same dis-
cussion holds except that there is no on-axis position for
which the lens aperture seems to contain only on Fresnel
zone. This reBects the fact that there is no single focus.
The occurrence of a prepulse in the paraxial focal plane
for the particular lens chosen here is a direct consequence
of spherical aberration.

In general an on-axis observer in the focal region "sees"
different intensity peaks passing by (pl) a pulse cor-
responding to light which is in focus, (p2) a (weak)
pulse that travels along the optic axis, and (p3) the
(weak) "Fresnel" pulse. Their relative timing depends
on the position z of the observation plane and the aber-
ration parameters. The temporal separation At~ of
an in-focus pulse and the "Fresnel" pulse is given by
At~(r) = —A/wp(1 —r ) —r(l —r ). In the marginal
focal plane (pl) and (p3) coincide while in the paraxial
focal plane (pl) and (p2) are equivalent. The remaining
two maxima in these planes can be clearly seen in Fig. 5.

From a practical point of view it is interesting to inves-
tigate the temporal behavior of the pulse power, i.e. , the
intensity integrated over its spatial distribution in a cer-
tain plane in the focal region. To characterize the spatial
distribution it is convenient to analyze the pulse energy
contained in a circle of radius rq. Corresponding numer-
ical results for the piano-convex lens are shown in Fig. 6.
The temporal width of the pulse power, see Fig. 6(a), can
be well approximated with the analytical formula (11) for
v.

q t with r = 1. The eBective pulse duration is smallest
in the paraxial focus. As far as focusing is concerned, a
plane in between marginal and paraxial focus yields the
narrowest, integral spot size. To illustrate this we show
the energy distribution in the plane of least confusion
known from focusing of cw-light; see Fig. 6(b). It should
be noted. that this plane is not necessarily the optimum
one for ultrashort pulse focusing. With a lens that satis-
fies condition (ii), however, the intensity distribution near
the optical axis closely resembles that obtained with cw
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light. In contrast, for a lens of small 4 but ~ ) T„ the
focal spot becomes broader as compared with cw illumi-
nation [10].

As outlined in Sec. II if condition (ii) and relation (14)
are satisfied, the focal regions of pulses whose time delay
is longer than the pulse duration do not overlap. There-
fore in an experiment in which nonlinear light-matter in-
teraction favors the high in-focus intensities, the relevant
pulse duration is the original one (if GVD can be ne-
glected). This is despite the fact that the total delay 7«

can exceed w„several times. As a consequence, if such a
lens is used in an autocorrelator to focus onto the second
harmonic generation crystal, the undisturbed pulse du-
ration can be measured [12]. In the same setup with an
aspheric lens one would measure w, which can be much
larger than w„. For illustration we calculated the autocor-
relation width obtained with the piano-convex lens with
A = A;,. and ~ = 73 fs and compared it with that from
a lens with equal aperture but with A = 4 ( A, , and
7 = 36 fs (fo ——200 mn. ). While the former does not
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FIG. 5. Space-time distribu-
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from Eq. (10) with A = 1835. For comparison the result
of exact ray tracing is also shown.

Information on the group delay and pulse duration is
obtained by cross correlating the pulses from the two in-
terferometer arms in a nonlinear crystal for second har-
monic generation. Here the phase matching condition
imposes a selection of almost parallel wave fronts. Fig-
ure 9 shows the delay of mirror M2 at which the maxi-
mum cross correlation signal occurs versus the position
of the lens.

The zero was chosen for the paraxial rays being in fo-
cus. The dashed line corresponds to the delay parameter
according to Eq. (11) and the solid line was obtained with
exact ray pulse tracing. At a given position 4f the mea-
sured delay is the delay between pulses passing through
the lens center and those passing through an annulus of
radius ar in the corresponding focal plane. Note that al-
though the lens parameters are beyond the validity range
of our analytical formulas, the results for the total delay
are in qualitative agreement with the measurements. It
should also be mentioned here that we actually charac-
terize not the focusing by a single lens but the effect of a
telescope of magnifl. cation one consisting of two equiva-
lent lenses. It is easy to show, however, that the radius-
dependent phase and pulse delays simply double their
values in this case.

The normalized full width at half maximum (FWHM)
of the cross correlations is depicted in Fig. 10, which in-
dicates that there is (almost) no pulse broadening within
the experimental error.

This is not surprising because with the lens parameters
A = 1800 and w, = 175 fs we satisfy condition (14). For
comparison the FWHM of the cross correlation obtained
with the aspheric lens is shown too. Here relation (12) is
valid and the expected pulse duration is roughly w„' = ~ .
In fact, the measured pulse duration (assuming Gaussian
pulses) was 250 fs compared to the calculated value of

-~ 1.6

0&

CA
CAoo Q.5-
0&
hJ
CC$

E
C)

-4 -2 4

0.8
0

Af (mm)

FIG. 10. FWHM of the cross correlation normalized to the
FWHM of the autocorrelation of the input pulses obtained
with the biconvex BK7 lens (x) and the aspheric lens (~).
The inset shows the measured cross correlation in the paraxial
plane (x) and at A f = 2.75 mm (~ ) for the biconvex lens. The
solid line represents the autocorrelation of the input pulses.

2w, 265 fs (note the factor 2 results from the
double passage through the lens).

Typical cross correlation traces for the spherical lens
are depicted as inset in Fig. 10 for Af = 2.75 mm
(ar = 5.25 mm) and Af = 0. A small satellite pre-
ceding the main peak can be clearly seen in the curve
with Af = 2.75 mm. It represents the cross correlation
between reference pulse and the pulse traveling along the
optical axis through the lens. The temporal separation
between the two correlation peaks thus equals 7g t as ex-
pected from the discussion above.

1,000

800—

600—

400—

a 200—

0

-200
2

(mm)

FIG. 9. Position of the cross correlation peak vs distance
of Mz from the paraxial focus [~ measurement; solid line, ray
tracing; dashed line, result according to Eq. (11)j.

V. CONCLUSIONS

The focusing of femtosecond light pulses with single
lenses was studied theoretically and experimentally. The
unavoidable interplay of chromatic and spherical aber-
ration determines the space-time characteristics of the
intensity distribution in the focal region. Conditions
are derived under which spherical aberration dominates.
Here a temporally unbroadened, in-focus pulse occurs
while the spatial distribution is that expected from an
annular lens aperture. If chromatic aberration is the ma-
jor aberration the in-focus pulses are considerably broad-
ened. Both efFects could clearly be observed with 100-fs
pulses. In an intermediate parameter range both chro-
matic and spherical aberration contribute to the pulse
broadening and to the spatial intensity pattern in a given
plane in the focal region. From Fresnel diKraction we
expect a weak-intensity distribution to precede the in-
focus pulse on the axis. Another weak-intensity peak is
produced by the pulse traveling on-axis. By measuring
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its separation from the main pulse, for example, in the
marginal focal plane one can estimate the aberration pa-
rameters. If two lenses are used for beam expansion the
pulse front behavior, in particular the radius-dependent
delay, can simply be estimated adding the corresponding
values for rq~q(r) of the two lenses.
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