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Phase-difference operator
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We introduce a unitary operator representing the exponential of the phase difference between
two modes of the electromagnetic field. The eigenvalue spectrum has a discrete character that is
fully analyzed. We relate this operator with a suitable polar decomposition of the Stokes parameters
of the field, obtaining a natural classical limit. The cases of weakly and highly excited states are
considered, discussing to what extent it is possible to talk about the phase for a single-mode field.
This operator is applied to some interesting two-mode fields.

PACS number(s): 42.50.Dv, 03.65.—w

I. INTRODUCTION

The problem of a correct definition in quantum me-
chanics of the phase variable has a long history and has
provoked many discussions [1]. Given the relevance of
such a variable, there have been numerous attempts to
solve this problem and. certainly very interesting progress
has been done in the last years [2—4].

A few experiments [5—7] have been also reported in
which phase Huctuations for a monomode laser were mea-
sured, and attempts have been made to test some of the
definitions [8—10, although unfortunately no clear con-
clusion emerged [11].

However, most of this work has been devoted to the
properties of the phase operator for a one-mode quantum
Geld or, equivalently, for a single harmonic oscillator. In
this case, the absence of a proper phase operator is usu-
ally ascribed to the semiboundedness of the eigenvalue
spectrum of the number operator.

On the other hand, from a practical point of view an
absolute phase has no meaning and all measurements
must be made relative to the phase of a reference sys-
tem. Therefore, it seems that the most proper way to deal
with the phase should be as a phase difference between
the state considered and some reference phase state. One
could think that this phase-difference operator should be
just the difference of phase operators for each field as it
were a position or momentum difference. But, given the
periodic character of this variable, this statement must
be taken with care.

It is worth mentioning that the variable canonically
conjugated to the phase-difFerence operator is the num-
ber difFerence, that is not bounded from beloiv. So, it is
reasonable to expect the existence of a phase-difference
operator free from the problems arising in the one-mode
case. This is to say, it is possible to have a definite phase
difference between two independent oscillators for a fixed
number of quanta in the two systems.

Moreover, if a phase measurement must be thought of
as a measurement of the phase difFerence, this phase-
difference operator could give to what extent and in
which terms we can talk about the phase of a one-
dimensional system.

The aim of the present paper is just to show how to
introduce a well-behaved phase-difference operator and
to study its main properties.

II. PHASE-DIFFERENCE OPERATOR

A. Polar decomposition of the amplitudes of two
oscillators

aia = Ei2/&i(N2 + 1), (2.1)

where aq and a2 are the annihilation operators for both
modes. We shall see that Eq. (2.1) has unitary solu-
tions for Ei2, that is, Ei2 ——exp(i@i2), @i2 being the
Hermitian relative-phase operator.

As in the one-dimensional case, the polar decomposi-
tion does not completely define the exponential of phase.
In our case the matrix elements (ni, O~Ei2iO, n2) are un-
defined and thus Ei2 cannot be uniquely determined by
the unitarity requirement. We must impose then further
conditions, the most adequate being the commutation
relations.

For a classical harmonic oscillator the action (j)
and phase (P) variables verify the fundamental Poisson

Our purpose here is to find an operator Ei2 exponential
of the phase difference between two independent oscilla-
tors like two modes of the electromagnetic field.

Let Ei and E2 be the Susskind-Glogower phase op-
erators [12] for the two oscillators. Given the classical
expression exp'(Pi —P2) = exp(i/i) exp( —i/2), we may
be tempted to introduce a relative exponential phase op-
erator as EqEz, that commutes with the total-number
operator N = Ni+ N2, Ni and N2 being the number op-
erators for each mode. Unfortunately, EiE2 annihilates
the state ~O, n) = ~0) I3 ~n) in the subspace with fixed
total number of quanta n, and this precludes the exis-
tence of eigenstates for this operator. This is an obvious
consequence of the lack of unitarity of Ei and E2.

In order to avoid this problem, let us try a polar de-
composition of the complex amplitudes of the two modes
as
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bracket

b &}=1
so, for two independent oscillators we have

(2.2)

in fact X commutes with all the operators in (2.6).
The total Hilbert space of the problem 'Ri (3'R2 can be

expressed then as direct sum of the subspaces invariant
under these angular momentum operators,

(2.3) n=O
(2.9)

((j1 —j2)/2 0 »}= 1,

[u, v] ++ ih(u, v }, (2 4)

we have that the quantum counterpart of I)'112 commutes
with the total number operator. Thus the commuta-
tor associated with the second Poisson bracket should be
verified on the finite-dimensional spaces with fixed total
number n, but this is not possible.

The quantum translation of (2.3) in terms of the ex-
ponential of phase difference is

[E12,K1 + 1V2] = 0, (2.5a)

where ItI12 is the classical phase difference. With the stan-
dard prescription that operator commutators are related
to classical Poisson brackets via

ln1, n2) =
lZ = (n1+ n2)/2, m = (n1 —n2)/2) . (2.10)

From Eq. (2.6) one gets immediately that

J+ ——J~ + iJ„=aia2,

Z' JJJ aia2&
t

(2.11)

and then Eq. (2.1) can be recast as

J = E»QJ+ J (2.12)

Each Q having fixed total number n is spanned by the
2j + 1 = n + 1 vectors

l j,m), simultaneous eigenstates
of 3 and J . The number eigenstates ln1, n2) in 'R

correspond to the
l j, m) basis as follows:

[E12 (~1 ~2)/2] —@12 (2.5b)

J.=-' a,-.+a,-. ,
2

J„=— a2ai —aia2
2

t t
2

(2.6)

satisfy the commutation relations for the Lie algebra of
the three-dimensional rotation group SU(2):

the second one can be recognized as the analogous of the
well-known Lerner criterion [13].

It should be noted that there is a nonunitary solution
for Ei2 verifying simultaneously these two commutation
relations, namely the Susskind-Glogower phase-difference
operator EiE&. The lack of unitarity of this solution
is a reminiscence of the incompatibility in the quantum
translation of (2.3). Recently Ban [14] and Hradil [15]
have introduced a unitary exponential of phase operator
verifying (2.5b) but neither (2.5a) nor a polar decompo-
sition. Therefore, we shall consider the polar decomposi-
tion (2.1) together with the condition (2.5a), which leads
to a unique (up to an arbitrary global phase) unitary
solution for (2.1).

Instead of solving Eq. (2.1) directly, we can take ad-
vantage of the fact that the operators [16]

Since the operator Ei~ commutes with the total nurn-
ber N, we may rather study its restriction to each sub-

space '8 . Calling E1z this restriction, Eq. (2.12) can
be easily solved obtaining the unitary SU(2) exponential
of phase operator [17—19]

m=- j+1
l~ m —1)(j ml+"'""'~ l~ j)(~ —jl

(2.13)

@(~)
l

y(n) )
iP("}

l

y(n) ) (2.14)

with r = 0, . . . , n. These states can be expressed in the
number basis as

) being an arbitrary phase. Note that the crucial ex-
tra term in Eq. (2.13), which establishes the unitarity of

Eiz, is precisely based on the finite number of states. For
the harmonic-oscillator operators such decomposition is
unattainable because the number states are extended to
infinity and no extra term projecting the upper state to
ground state exists (unless one truncates, as in the Pegg-
Barnett approach, the infinite ladder of the oscillator and
creates an upper state). Therefore, in each subspace 'R

there are n+ 1 orthonormal states verifying that

[Jk, Jl] = Xekl J (2.7)
(2.15)

The Casimir invariant for this group can be put into the
form

where, by taking the same 2' window in each subspace,
we have

2 i2 ) (2.8) ~(~} ~
7I r

n+ 1
(2.16)
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The expression for E&2 on the whole space is just made
of infinity many copies of the SU(2) exponential of phase
operator

can be defined [24]:

So = aya1 + a2a2

(2.17)

) ~ E(~) ) ) ly(n)) i+&"& (y(n)
l

n=o n=o v'=0
oo n n

) ) ) lk k) i(k —k'+1)P("i
n+ 1n=o ~=0 k, A. "=0

x (k', n —A, "l,

S~ —— a&a2 + a2aq

S2 ——i a2ag —a~ a2

S3 —— a~ ay —a2a2

(2.19)

which is very reminiscent of the operator introduced by
Levy-Leblond [20] in a diff'erent way.

Since E~2 is unitary, it defines a Hermitian phase-
difFerence operator

)~ ) ly(n)) y(n) (y(n)
l

n=o ~=0
(2.18)

and we have E12 ——exp(i@12).
This operator difFers from other approaches, mainly

because it cannot be obtained from a previous construc-
tion of phase operators for the individual oscillators in-
volved. Unlike in the Susskind-Glogower approach, Eq2
is unitary.

On the other hand 412 has discrete eigenvalues (for
each subspace 'R there are n+ 1 uniformly distributed
in the interval [0, 2vr]), in comparison with other for-
malisms [21,22] that give continuous spectrum in the in-
terval [0, 47r].

The situation presents the same qualitative features as
in the Carruthers and Nieto definition of phase difFer-
ence by means of relative sine and cosine operators [1].
However, in this approach of Carruthers and Nieto, the
eigenvalues of the phase difFerence are in the upper half
circle for the cosine case, and on the right one in the sine
case.

In the limit of high n this spectrum becomes dense,
as Inight be expected. But, the case with n = 0 is es-
pecially relevant, since the state l0, 0) is an eigenstate of
Eq2. The unitarity requirement makes the corresponding
eigenvalue to be an arbitrary phase.

In the next section we shall try to understand this be-
havior (in both limits of small and high n) by means
of a simple relative phase-sensitive arrangement for the
electromagnetic field.

Note that, apart from a factor of 2, the operators S;
(i = 1, 2, 3) coincide with the operators (2.6) of an angu-
lar momentum, while So represents the total number ¹

The noncommutability of the Stokes operators precludes
the simultaneous measurement of the physical quantities
represented by these operators. The S, may be viewed
as the generators of a group of transformations locally
isomorphic to the three-dimensional rotation group and
which leave the operator So invariant. This may be con-
sidered as the sound basis for the close relation between
Stokes parameters and the Poincare sphere introduced
in the classical description of light. Note that the eigen-
states of So belong to spaces which under the action of
rotations transform according to some irreducible repre-
sentation of this group.

In order to show that the operators (2.19) are the ana-
log of the classical Stokes parameters, let us compute
their mean values for a two-mode coherent state

n1 n2

Qni! n2!

(2.20)

that has special significance in describing the classical
limit of the system. It is easy to get [25]

Bp = (~1 ~2l~pl~i ~2) = 1~ii'+ I~21'

» = (~i ~2l~il~i ~2) = 2l~ill~2I cos(@1 —@2)

(2.21)
82 ——((Xl, A2lS2 i&1, o.2) = —2lnillo. 2l sin($1 —p2),

Bs = (~i ~2
1
~s

I
~i ~2) =

I

~il' —1~2 I'

B. Stokes parameters

In order to gain physical insight into the previous polar
decomposition, we shall relate it to the Stokes parame-
ters. It is well known that in classical optics to character-
ize the polarization ellipse of two orthogonal oscillations
of the same frequency, three independent quantities are
necessary: the two amplitudes and the phase difFerence.
For practical purposes, it is customary to characterize
the resultant oscillation by the Stokes parameters, which
are directly measurable quantities [23].

In the quantum treatment of the two-mode field con-
sidered here, the following Hermitian Stokes operators

1

2

0!y 0!

Bp + Bs 81 + 282

( Bi —182 Bp —Bs

~le
—i(4'i —4'~) )

(2.22)

where n; = ln;l exp(iP, ), P, being the classical phase of
the state It is evi.dent that (2.21) are exactly the Stokes
parameters for two classical oscillations of amplitudes ln,

l

and phases P, .
As discussed in Ref. [26], for a given state of the two-

mode field, the classical polarization properties can be
described by the coherency matrix that, in terms of the
Stokes parameters, can be written as
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If we denote s~ = (si 6 is2)/2 then the classical phase
difference between the two modes is unambiguously ob-
tained as

s+ ——e ' ~' ~'
~o. i~~o. 2~

= e 'l~' ~' gs s+. (2.23)

The quantum analog of the separation of the complex am-
plitude into a real part and a phase factor is just (2.12),
which seems to be a natural way to characterize the phase
difference with a clear counterpart in the classical limit.

III. LIMIT OF WEAKLY EXCITED STATES

We shall try, in first place, to justify the discrete char-
acter of the phase difference in the quantum case, whose
efFects will be more evident in the limit of small number
of photons.

Perhaps, the simplest arrangement sensitive to the rel-
ative phase is a homodyne detection [27,28] schematized
in Fig. 1. The beam splitter couples the input modes
1 and 2 transforming them into the output modes 1, 2
whose photon numbers N», N2 are measured. Fluctua-
tions in the modes therefore get coupled, which causes
the appearance of intriguing behaviors.

For a linear, lossless, and passive beam splitter the
number operators at the output can be expressed. in terms
of the operators J and J, and so the action of the beam
splitter can be visualized as the process of measuring the
rotations of J [29]. The parameters of such an action
depends on the particular choice for the transmission and
reflection coefI»cients of the beam splitter.

The lossless beam splitter conserves the total energy
in the pair of modes and therefore we have

states to be a product of number states ~ni, n2) with
n = ni + n2. Due to (3.1) the output state will be an
eigenstate of ¹ As it is well known, the photon num-
bers at the output are no longer sharply determined. The
beam splitter coupling has brought about noise in the
photon number of each mode, although the total photon
number in both modes is invariant and free noise [30].

The state ~ni, n2) transforms into a highly correlated
superposition of states with n total number of photons
in the two modes, namely the states ~n, 0), n —1, 1), ~n—
2, 2), . . . , ~0, n), and then the number of possible out-
comes in the measurement of N» and N2 are just n + 1.
Since we have considered the incident states with well-
defined amplitudes, the number of outcomes can only
depend on the number of possible values for the phase
difference, so we can observe just n+1 values which is pre-
cisely the same number predicted by the phase-di6'erence
operator for a state in a Q subspace, as it is the case.

Although there are reasons for requiring the phase dif-
ference between number-state fields to be completely ran-
dom [21], in our approach only in the limit of ni or
n2 high enough is it to be expected that the measured
phase difference is uniformly distributed over the interval
[0, 27r], and this is in agreement with the theoretical and
experimental results of Noh, Fougeres, and Mandel [11].

Moreover, when the incident state is ~0, 0), we have
clearly just only one outcome. This is consistent with
taking it as a phase-difference eigenstate. This strange
situation could be understood considering its field fluc-
tuations due only to the ones of the phase sum. This
is equivalent to ascribe the field fluctuations of the vac-
uum in the one-mode case to the phase and not to the
amplitude.

N1 + N2 —N1 + N2. (3.1)
IV. LIMIT OF HIGHLY EXCITED STATES:

PHASE FOR A ONE-DIMENSIONAL SYSTEM

Since N» and N2 are linear combinations of J and J, the
fluctuations in the output number of photons are due to
fluctuations in the amplitudes and in the phase d.ifference
of the incoming states, but not in their phase sum.

To focus on the behavior of the phase difference, we
shall consider incident fields with nonfluctuating ampli-
tudes. So, for definiteness, we consider the initial photon

Actually, the more extended use of the arrangement
discussed in the preceding section makes use of a very in-
tense state of well-defined phase (for example a coherent
state of high mean number of photons) in one of the inci-
dent modes, say 2. This scheme can be used to measure
the properties of the field in mode 1, and in our case, its
phase properties.

Our aim is to study the behavior of the phase-difference
operator by means of a suitable approximation for a high
number of photons. Since we expect a continuous char-
acter, in this limit we can approximate the r sum in ex-
pressions like (2.17) and (2.18) by an integral. For defi-
niteness, we shall consider the operator E»2, and we have

'(e+I —k') y,C i(X+A:—A. ") „' ",

n+ 1
(4 1)

that will be replaced by

2 1

2 7t

po+27t-
i(1+k—k')Q (4.2)

FIG. 1. Outline of the beam splitter geometry used in a
phase-sensitive measurement of the electromagnetic field. While the integral gives bg+k k 0, the sum gives zero
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Op+2m Pp+2~
dP l0+ $, 0) e' ~(0+ $, 0l,

(4 3)

where l0+ $, 0) denotes a two-mode Susskind-Glogower
phase state

I

unless +" &" is an integer m, , taking in this case the

value e'
The approximation in replacing (4.1) by (4.2) is tanta-

mount to considering that the contribution when m g 0
is negligible. Looking at (2.17) this will be the case when
the spread of the photon number distribution is small
compared with the mean value of the total photon num-
ber n, assumed high enough. This can be verified, for
example, when just only one mode is in a coherent state
of high mean photon number and the other one involves
a small number of photons in comparison with the co-
herent one, but otherwise arbitrary. This condition is
verified as well when the two modes are intense coherent
states.

With all this in mind, this replacement gives an ap-
proximate expression for E~2 in the form

1 (for example, by means of the arrangement discussed in
Sec. III), and the results obtained from 4i2 can be inter-
preted as information about the phase in mode 1. Taking
P2(0) to be an arbitrarily narrow function of 0, centered
for simplicity on the value Po, we have from (4.7)

(f(C'»)) = d4 P.(4)f(4 —0o). (4.8)

V. PHASE DIFFERENCE PROPERTIES OF
SOME TWO-MODE FIELD STATES

What we get is nothing but the Pegg-Barnett phase ap-
proach for the one-mode case, which is often considered
as giving the expected results, even for the vacuum. El-
linas [18] also derived similar results in an elegant way
performing a polar decomposition of the SU(2) algebra
and taking the group contraction in the limit j ~ oo.

Finally, we must stress (according with the comments
made in the Introduction) that this procedure cannot
be understood as giving a phase operator for the one-
mode problem. In fact, the Pegg-Barnett formalism, re-
produced here in the limit of a practical observation of
phase, does not give such operator in the infinite Hilbert
space.

I0+& 0) =
2 ).

n1,n2 ——0

in'(9+/) in28l i ) 2 (4.4)
A. Two-mode coherent states

Therefore, in this limit we recover the equivalent version
of the Susskind-Glogower phase-difference operator:

@12 —(Ei@2) (4.5)

and we lost the unitarity of the operator. Incidentally,
we note that, for an arbitrary function f, we have

f(&») W f(@i&2). (4.6)

As we can see, in this limit we get expressions for
the phase difference resembling the ones from other ap-
proaches starting from a one-mode analysis. To discuss
this resemblance we use (4.3) to obtain the mean value of
a periodic function of phase difference f(@i2) on a state P, (0) = ln, l

exp —
l

'
(0 —@,)

(ln;l'
2

(5.1)

Among other basic properties, coherent states have a
special significance describing the classical limit of a sys-
tem and they are the prototype for the radiation emitted
by a classical current source [31].

Here we are going to study their phase-difference prop-
erties in the limit of high excitation, so we are in the con-
ditions of application of (4.7) to the two-mode coherent
state (2.20).

In the limit of large coherent amplitudes the P, (0) func-
tions can be approximated by the Gaussian distributions
l3]

14) = ldi 42)

(&If(c'») I&) =
Op+2~ @p+2vr

d4 Pi(&+ 0)

xP2(0)f(p), (4.7) (f(C'»)) = deaf(&)P(&) (5.2)

where n; = ln, le'~*, and we can extend to koo the limits
of integration in (4.7) without significant error.

Then, we have

where P(0) = l(0lvj)l is the phase probability distri-
bution function of the Pegg-Barnett formalism for the
one-mode case.

To some extent, expression (4.7) is an expected result,
since it is valid for high photon numbers, and all phase
approaches coincide in this limit. However, in the two-
mode case, this limit can be reached when only one of
the modes is highly excited, while the other one can be
one of few photons.

If we consider in mode 2 a state whose phase distribu-
tion P2(0) is narrow enough, we are in the proper condi-
tions for the observation of the phase properties of mode

P(&) =

1
2

We finally get

where P(P) is the Gaussian distribution

(5.3)
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1 1
(5.4)

of any f(4'i2) is

n=O r=O

that is an expected result that could be obtained from a
semiclassical analysis of Buctuations.

It can be recognized in (A@i2) the sum of the uncer-
tainties of the individual phases. This could be obtained
in many ways, since all phase formalisms coincide in this
limit, including the one described here simply by taking

+ oo respectively.

B. Two-mode squeezed vacuum state

Two-mode squeezed states are the prototype of non-
classical states of light, having strong quantum correla-
tions between the modes that are responsible for intensity
correlations and for the squeezing property itself. They
have an impressive list of fundamental properties [32], to
which it can be added their beautiful phase properties.

They are de6ned by applying the two-mode squeeze
operator on the vacuum state

I() = exp((*aIa2 —gagaz) IO, 0),

where

(2„) (t h )

(2n + 1) cosh s
(5.8)

N
(C'r2) = do+~ N+1

This last expression, being independent of r, shows
that on every Axed A2 subspace the two-mode squeezed
vacuum state can be found with every allowed phase
value with the same probability. However, the discrete
character, especially relevant when n = 0, makes the
main difference here with other continuous approaches
like the one based on the Pegg-Barnett formalism, which
gives a continuous uniform phase distribution [21,33].
Then, we can expect coincident results for high values
of the mean photon number, but differences in the case
of small photon numbers.

The expressions for the phase difference and its uncer-
tainty are

and their expression in the number basis is
47I 1V(% + 1/2)

3 (K+ 1)2
N

%+1

I() = ) exp(in()In, n),
(tanh s)

n=o

where the squeezing parameter is ( = s exp(i(), and they
contain only even total photon number states. We can see
that their projection on each subspace Q2 is precisely
a number difference eigenstate, so we can expect some
uniform distribution in phase difference. The mean value

The form of the mean values in this equation shows
that in the limit of high values of 8 they tend to 1, so
((A@i2) ) ~ u /3, as expected for a continuous random
variable. When s tends to zero, ((AC'i2) ) —+ 0. This
happens because I() is then closer to the IO, O) state. In
Fig. 2 we have plotted the phase-difference uncertainty
as a function of the mean total photon number, showing
these two behaviors.

O.8

0.6—
FIG. 2. Variance of the phase di6'erence as

a function of the mean total photon number
for a two-mode squeezed state. The values
of ((&C zz) ) have been normalized to 7r /3,
which is the limit expected for a continuous
random variable.

0.2—

0.0
50 150 200
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VI. CONCLUSIONS

In this paper we have investigated an appropriate op-
erator for the quantum description of the relative phase
difference of two modes of the electromagnetic fi.eld. We
have identified this operator with a proper polar decom-
position of the Stokes operators for the system, showing
a clear counterpart in the classical limit.

The eigenvalue spectrum of this operator is discrete,
having n + 1 possible values, n being the total num-
ber of quanta in the system. We have justified this be-
havior on the grounds of a phase-sensitive measurement.
As expected, in the limit of high n we recover a dense
spectrum, and the operator gives the same predictions of
other approaches.

The behavior of this operator for some interesting two-
mode real states has been compared with other operators,
finding a good agreement for high number of photons.
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