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A three-level cascade atomic system is considered where atomic coherence can be achieved either by
applying an intense pump field or initially preparing the atoms in a coherent superposition of the states.
It is predicted that the system, under certain conditions, exhibits almost perfect squeezing outside the
cavity. By using the steady-state Q solution it is also shown that certain higher-order squeezing can also
be achieved inside the cavity, under a suitable choice of different parameters.

PACS number(s): 42.50.Dv

I. INTRODUCTION

A three-level atomic system in a cascade configuration
shows some important features where the crucial role is
played by the atomic coherence. As an interesting exam-
ple, Scully and Zubairy [1] considered a two-photon
noise-free amplification where atomic coherence is intro-
duced when atoms are initially prepared in the coherent
superposition of the top and bottom level. They predict-
ed that under certain conditions the added noise in one of
the quadrature of the field vanishes and in this manner it
is possible to amplify a super-Poisson signal into a sub-
Poisson output signal with some gain. In coherent super-
position of the states the two-photon three-level cascade
atomic system also exhibits the property of correlated
emission laser (CEL) [2]. In a two-photon CEL the spon-
taneously emitted photons are highly correlated and the
photon diffusion coefficient vanishes under different suit-
able conditions. Scully et al. [2] have recently shown
that such a system can produce not only light which is
free from the spontaneous emission fluctuations but also
phase squeezing can be obtained. Another possible way
to introduce atomic coherence in a two-photon three-
level cascade atomic system is to couple the top and the
bottom level by applying an intense field [3]. Ansari,
Gea-Banacloche, and Zubairy [4] considered this situa-
tion and they predicted that by applying an intense field,
the system shows phase-sensitive amplification and the
added noise in both quadratures of the field modes van-
ishes and the system behaves as a degenerate parametric
amplifier, under certain conditions. They also showed
different possible situations for a two-photon CEL. An
and Sargent [5] have developed a quantum theory of mul-
tiwave mixing in which they considered such a three-level
atomic system in the presence of two field modes and the
top to bottom level transitions are made possible with the
help of two photons of an externally applied intense field.
They predicted that such a system can give perfect
second-order squeezing outside the cavity. It is also
shown that this system gives phase-sensitive amplification
and when it is considered inside a cavity it shows certain
nonclassical effects [6,7].

The present aim of this paper is to analyze the effect of
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atomic coherence when the top and bottom levels of a
three-level cascade atomic system are coupled by the in-
tense field and when they are initially prepared in the
coherent superposition of these levels, on the second- and
higher-order squeezing. Squeezed states of the elec-
tromagnetic fields, because of the reduced quantum fluc-
tuations below the standard quantum limit, in one quad-
rature, at the expense of increased fluctuations in the oth-
er quadrature, have an important application in com-
munication, weak-signal detection, optical amplification,
etc. [8]. It is also possible to obtain certain higher-order
squeezing and such a type of squeezing has been proposed
and predicted in many systems by Hong and Mandel
[9,10]. Another type of higher-order squeezing, namely,
amplitude-square squeezing, has been introduced by Hil-
lery [11] and has been predicted in second-harmonic gen-
eration [11]. Such a type of squeezing has also been pre-
dicted in a harmonic oscillator [12] and the multi photon
Jaynes-Cumming model [13,14].

In this paper we consider a three-level cascade atomic
system with both the above-mentioned conditions for the
atomic coherence. The transitions from the top to the
bottom level via the intermediate level comes out in the
form of two photons of equal frequency. We derive the
equations of motion of the expectation values of different
second-order moments, from the density-matrix equation
of motion for the field and evaluate their steady-state ex-
pectation values. With the help of these expectation
values we predict that such a system in both cases of
atomic coherence can give almost perfect squeezing out-
side the cavity under suitable conditions of detuning, in-
tense pump phase choice, and initial coherence phase
choice when they are prepared in coherent superposition
of the states and the linear gain coefficient. We also
evaluate an exact steady-state solution of the Fokker-
Planck equation of motion in the Q representation and by
using that solution we predict that higher-order squeez-
ing and amplitude-square squeezing along with the
second-order squeezing can also be obtained. In addition,
we evaluate the probability distribution function for
finding n photons in the field in such a system and show
the behavior of this function when the system behaves
classically and when it gives squeezing.
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Our paper is arranged in five sections. In Sec. II, we
will briefly discuss the system under consideration and
find out the steady-state solution of the Fokker-Planck
equation in Q representation. Section III is divided into
three subsections which describe the second- and higher-
order squeezing and the amplitude-square squeezing. In
Sec. IV we discuss the photon statistics of the present
model and show its behavior. Finally in Sec. V, we will
conclude our discussion.

II. FOKKER-PLANCK EQUATION
OF MOTION FOR THE FIELD

We consider a three-level atomic system in cascade
configuration as shown in Fig. 1. The transitions from
level |a) to |b) and |b ) to |c ) are dipole-allowed transi-
tions and they result in the production of two photons of
frequency v. The transitions from level |a) to |c) are
dipole-forbidden transitions and there are two ways to in-
troduce atomic coherence: (a) by applying an external
classical driving field [4] and (b) by injecting the atoms
into the cavity in the coherent superposition of levels |a )
and |c) [2]. In the remaining section we will discuss
briefly these two conditions and derive an equivalent
Fokker-Planck equation of motion in Q representation
and calculate its steady-state solution.

A. Classical pump field

The transitions from levels |a) to |c) can be made
possible by applying a sufficiently strong pump field
which couples these levels. Then the transitions from
la) to|b) and |b) to |c) are treated quantum mechani-
cally up to second order in the coupling constant and |a )
to |c) classically up to all orders. The Hamiltonian of
the system can be written in terms of the unperturbed
and the perturbed parts as

H=H,+V, 8
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FIG. 1. Systematic diagram for a three-level atomic system
in cascade configuration in the presence of the classical field.

where the interaction Hamiltonian is

v=#g[(|la){b|+|b){c])a+al(|b){al+]|c)(b])

—%(6 i¢ wltld)(C’+€l¢+wltlc><a|)] ) (2)
Also a (a') are the annihilation (creation) operator for
the field of frequency v,  is the Rabi frequency of the
driving classical field, ¢ and v, are its phase and the fre-
quency, respectively, and g is the atom-field coupling con-
stant which is taken to be equal for both the transitions.
By defining the atom-field states

|1>=|a’n_2> )
2)=|b,n—1), (3)
13)=le,n ),

here, for example, |3)=|c,n ) implies that there are n
photons in the field of frequency v and the atom is in the
ground state, and |2)=|b,n —1) describes that the atom
absorbs a photon and is excited to the intermediate state.
Then by taking the trace over the atomic state, the re-
duced density matrix equation of motion for the field is of
the form [4]

pr=—[Btaa TPF +/3’11PF‘1‘1T_ (B +Bi)a TPFa]_ [(B5+T))a T‘IPF +(BptT)pra fa — (Bp+By+2l, )apFaT]

—[Bhaapr~+Bypraa —(By +Bh)aprale TP [B31a Ta TPF +Bpra TdT"(ﬁ12+ﬁgl Ja TPFaJr]ei(1> ’ 4)

where I is the cavity-loss term and different coefficients which appeared in Eq. (4) are

2

87 | |1 1 1 1 1 1

= —+ + |—+

Bu=— y—iQ | y+i(A,—Q/2) y  y+iQ | y+i(A+Q/2) |
5 _ & 1 1 1 1

24 y—iQ | y—i(A,+Q/2) y  y+iQ | y—i(A,—Q/2)

(5)

5 _g’r, 1 1 1 1 1

A4 y—iQ |y+i(A,—Q/2) y  y+iQ |y+i(A,+Q/2)

2
g, — 8 1 1 L1 1
2 4 y—iQ |y—i(A,+Q/2) y  y+iQ | y—i(A,—Q/2)
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where it is considered that atoms are injected to level |a )
with a rate r, and y is the equal decay rate for all the
three levels. Also A\ =w, —w, —v, Ay=w, —w.—v. The
physical interpretation of these terms are as follows. The
first and the last terms represent the gain and losses in
the system. The second and third terms are phase-
sensitive terms because of the coupling of levels |a ) and
|c ) by the external classical field. Also ® =¢+ (v;—2v)t.
In case of exact two-photon resonance, i.e., v;=2v we get
® =¢ which is the reference phase of the classical field.
We define the Q representation for the field as the ex-
pectation value of the density matrix in coherent state

J

2
o, @
da da da*

A a M
o= {_Bll‘é;a"‘ﬁzz

+B;19i¢a~?;a* _3126i¢
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Q(a,a*)=%<alpFla> : )

where |a ) is the eigenstate of the annihilation operator a
for the field with eigenvalue «, i.e.,

ada)=ala) ,
(7)

*
9 ,a*

da 2 la)

a'la)=

Using Egs. (4), (6), and (7), the Fokker-Planck equation of
motion in the Q representation for the field becomes

2
B ., B

Yy ) +c.c.

Q, ®)

where 85, =p,,+T". In order to get a steady-state solution of the above equation in Q, we define the complex quantities

in terms of real and imaginary parts

a=x,+ix, ,

8 _1|a .8

aa 2 axl axZ ’
and

Bii=yit+iy,,

’r

Byn=y;+iy, ,
Bye P=ys+iy, ,
Be'*=y;+iyg .

Then replacing Q (a,a*) by M (x,x,) the resultant Fokker-Planck equation of motion reads as

d d

aM(xl,xZ) _ a
ot

Aix + A, x,+ A +4
ax, | T AT Ay T Y6k,

where
A==y +ystys—yq,
A=y tys—ys—Vs»
As=—(ytystystys),

Ay=—y,+y;—ysty;, (12)
py
=2

In steady state oM (x,,x,)/dt =0 Eq. (11) reduces to
equations

oM
——~ax1 =—(B;x,+B,x,)M ,
(13)
oM
E:*(B3XI+B4X2)M N

9
(10)
9 9 d
ax2 A3x1+A4x2+A5aTz+A6‘é;T ]M(xl,xz),
(11)
[
where
 AgA;— A4,
Y 42— 444,
AgA,— As A
B,= 624 %2
Ag— As A,
(14)
B _ A6A1—A7A3
P Ar—As4,
AgA,— A, A
B,= 622 445
Aé—AsA-]
The exact solution of Eq. (13) is of the form
1 Bi , Bi
M(xy,x;)=rexp | = | Zoxi+ =
B,+B;
+Tx1x2 S (15)

under the condition B, =B;. To obtain this condition we
proceed as follows.
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The two-photon resonance condition implies that
A,+A,=0, and if we consider zero detuning, i.e.,
A;=A,=0, which will be true if the intermediate level
|b) is exactly at the middle, and v, —w, =w, —©,=v is
satisfied. Also if we choose the phase ¢=m/2 of the
pump field, then B, =B;=0 and the steady-state solution
for the Q representation takes the form

M(xl,x2)=—]i7—exp —%(B]x%+B4x%) . (16)

For zero detuning and ¢=m/2, B, and B, become

B, = 4(4—2"+K' Q' +507+'Q?*+ k03 + Q%)
8—2«'Q +10Q7+3k' Q2 +x'Q7 +20* 7 1)

B, = —44— 2% KU H507 402 =05+ Q")
—8—2¢'Q'— 1007 —3x'Q?+ k' Q% —20*

The normalization constant N is

N=—2T_ (18)
v'B,B,

where «'=«/T"; and k=2r,g?/y* is the linear gain

coefficient, )’ is defined as the Rabi frequency divided by

the laval decay constant y. In Q representation,

VBB
Q(a,a*)Z# exp

B,

—?(a-i-ot"‘)2

B
+ 2 (a—a*)?

g . (19)

The expectation value of any high-order antinormal mo-
ment can be calculated with the help of this equation as

(Fla,a")= [F(a,a*)Q(a,a*)d% . (20)
J
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FIG. 2. Diagram for the system when the atoms are prepared
in the coherent superposition of the states.

B. Coherent superposition of the states

Consider the same three-level atomic system in cascade
configuration but the intermediate level |b) is now de-
tuned with respect to the one photon of frequency v by
an amount A, ie., A=w,, —v and o, =2v. The exact
two-photon resonant condition is satisfied as shown in
Fig. 2. Again, |a)—|b) and |b)—|c) transitions are
dipole allowed and come out in two photons of frequency
v and |a)—|c) is dipole forbidden. The atoms are in-
jected into the cavity in a coherent superposition of the
states |a ) and |c) with a rate . Then we can define the
wave function as [15]

ltl/(t)):ca\a)+ccei“|c> R 21)

where ¢, and c, are the probability amplitudes of the
atoms in levels, |a) and |c ), respectively, and u is the
relative phase. The interaction Hamiltonian in the
rotating-wave approximation at exact resonance is

v=tg[a'(|b){al+|c){b|)
+(laY{b|+|b){c|)a] . (2

As before, a (a') are the annihilation (creation) operators
for the field of frequency v and g is the atom-field cou-
pling constant (equal for the three levels). Then, the
equation of motion for the reduced density matrix of the
field with frequency v is

pr=—B%aa"pp+B)praa’— (B}, +B11)a pral — (B +T)a app+(By+Tppa’a —(Byy+By% +2T Dappa’]
~[Bi3aapy+Bypraa — By +B%)apral—[Byia’a’pp+Bprata’— (B, +B5)a pral . (23)

The new coefficients of Eq. (23) are
, K
Bll - Egpaa ’

, _K
/322 2§Pcc ’ (24)
, K
ﬁlZ_Egpca ’
r K
BZI_Eé‘Pac .

The probabilities p,, and p,. are the initial populations of
levels |a) and |c), respectively, and the condition for
initial coherence is p,. =pk =lpsle™. Also £=1/(1
+iA/y) and k=2rg?/y? is the linear gain coefficient, ¥
being the equal level decay constant for the three levels.
The steady-state solution of the Fokker-Planck equa-

[
tion of motion can be obtained by following the same
steps as in Sec. II A and it has the same form as in Eq.
(19) but with the condition of zero detuning, which corre-
sponds to level |b ) being exactly at the middle, and u=0.
The new coefficients are now of the form

2 %(pcz " Paa )+1
Bx= ’ b

K
—2_(pcc_ |pac N+1

(25)

’

2|5 (Pec =Paa) T 1

Kl

2 (pcc+|pacl)+l



4690

In the following sections we will use this steady-state
solution to evaluate certain high-order squeezing and the
photon distribution function.

III. SECOND- AND HIGHER-ORDER
SQUEEZING

In this section we will evaluate the expressions for the
second- and higher-order squeezing for the two cases, (i)
in the presence of externally applied intense field and (ii)
in the coherent superposition of the top and bottom levels
of the atoms. We will also predict the regions where we
can get strong second- and higher-order squeezing.

A. Second-order squeezing

In order to calculate the minimum variance we define
the quadratures for the field of frequency v as

d,= %(a +ah),
¥ (26)
zz‘z—i(a —a').
The condition for second-order squeezing is
(Ad;)*=(d?)—(d;)>< L. (27)
By using Eq. (26), (27) becomes
s, =(Ad, )22%«[2(aTa )+(a2>+(an)]+% ,
(28)

5, =(Ad,)?= [2¢a’a Y—{(a?)—{(a™) ]+

ISP

is
4

(ata)= (p1paBare P +e.c)+pulpi

(p1+p1 |P2|2—1P1|2)
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Different second-order moments in Eq. (28) can be calcu-
lated from the density matrix equation of motion [Egs. (4)
and (23)],

;Id?(aTa )= Tr(pa'a)

:(Pl"‘P’f)(“T‘l>+P2<012>+P;<‘12>+P11 ’

(29)
similarly
i(c12)=2 (a?)y+2p,{ata)—2B%e'*, (30)
dt P1
where
P1=Bn—B5»—T,,
p2=(Bia—B3e’?, 31)

pu=B1+BT -

The equation of motion for {a '2) can be obtained by tak-
ing the complex conjugate of the Eq. (30). In steady state
the time dependence of Egs. (29) and (30) vanishes and we
are left with three equations. After solving them simul-
taneously we get the steady-state expressions of different
second-order moments as

(a2y = P2l Bhie =t lp1+pT B e —piBue " —puipips

(p1tp1)p2>—1pi1?)

The steady-state expression for (a2} can be obtained by
taking the complex conjugate expression of {a?).

1. Outside the cavity

The steady-state expression for the spectral density of
the second-order moments outside the cavity can be cal-
culated along the same lines as discussed by Holm and
Sargent [16].

The equation of motion for the expectation value of the
annihilation operator for the field mode is

g;(a>=p1<a>+p2(aT) . (33)

Equation (33) and its complex conjugate can be written in
matrix form as

-d—<J(t)>=A<J<t)> , (34)
dt

(32)
[
where
_|a
J(t)= e
(35)
= P1 P2
Pr P

Then, the direct product of J and its transpose form a
2 X2 matrix

IXJT=Jr (36)
where X corresponds to the direct product. The equa-
tion of motion for (JJ) can be obtained by expressing
Egs. (29) and (30) into the matrix form

%(JJ)=—A(JJ)—<JJ)AT+D , 37

where A is given by Eq. (35) and
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"23;1@i¢ P11
P11 —2Bye "

The spectral density for the steady-state expectation
values of the second-order moments for the field is calcu-
lated from the relation [16]

L,=(A4+io) 'D(AT—iw)™". (39)

The different elements of the matrix L, , corresponding

to the spectral density of (a'a ), (a?), etc., are (0 =0)
_2(PTZB;,‘1ei¢ +pippn +P§f321e —i)

L= ,
1 (p 12— |pa 27
Lo 2(pipafBare PHc.c )+ pi 2+ 1pal Py 40)
2 (lp1]2=1pa*? ’
Lyp=LY .

Outside the cavity the spectral density can be obtained by
multiplying L;, by the damping constant which is the
cavity line width 2T, i.e.,

Lout=2F1Lin . (41)

The expression for the second-order squeezing outside
the cavity is
1

r
(Sl)outz“z‘l‘(ZL12+L11+L22)+Z . (42)

Different matrix elements are given in Eq. (40).

2. Classical pump field

In case of classical pump field we notice that the exact
resonance condition implies that A;+A,=0 or
A, =—A,=A, i.e., the middle level is not exactly one-
photon resonant but the two-photon resonance condition
is still valid. In Fig. 3 we have plotted s; from Eq. (28) by
using Eqgs. (5) and (32) against dimensionless detuning
A/y for the phase choice of the pump field ¢ =n/2 and
0, respectively, Q'=5 and «'=2. It is evident from the

0.5 -
4 $=0
0.4
L 1 - $=W/2
0.3
0.25
o ] NI
: T .
-10 -6 -2 o0 2 6 10

A/

FIG. 3. Second-order squeezing s; vs dimensionless detuning
A/y, for k=2, Q'=5,and $=0 and 7 /2.
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0.4
0.3
v 0.25
0.2 \\_’////’-"’/_’/4
0.1 T T T T
0 2 4 6 8 10

Q/v

FIG. 4. Second-order squeezing s; vs Rabi frequency of the
classical field ', for k'=2, A/y =0, and ¢=1/2.

figure that the strong squeezing is obtained around a
small region at A/y =0 and ¢ = /2, while for =0 very
small squeezing is obtained for the positive values of the
detuning. In order to see the dependence of the strong
squeezing on the dimensionless Rabi frequency (', at
zero detuning and for ¢ = /2, in Fig. 4 we have plotted
s, vs Q', for k'=2. This figure shows that first amount of
squeezing increases with ' and has a maximum value at
Q’'=2.5 and then it starts decreasing for further increas-
ing values of Q'.

The steady-state expression for second-order squeezing
outside the cavity may be obtained by using Egs. (5), (40),
and (42). In Fig. 5, we have plotted the steady-state
squeezing outside the cavity against )’ for zero detuning,
k'=50,75 and ¢=m/2. The plot illustrates the region
where we can get almost perfect squeezing outside the
cavity. Thus in this manner we can predict that the sys-
tem exhibits almost perfect squeezing outside the cavity
for the particular choice of the Rabi frequency and the
reference phase of the intense driving field, when the in-
termediate level of the atomic system is exactly one-
photon resonant.

0 T T T T
0 20 40 60 80 100
Q/y

FIG. 5. Second-order squeezing (s;),, outside the cavity vs
Q', for k'=50 and 75 and for the same parameters as used in
Fig. 4.
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3. Coherent superposition of the states

For the second case when atoms are injected in a
coherent superposition of the top and bottom levels into
the cavity, we get the same equation as Eq. (32) for the
steady-state expectation values of different second-order
moments except that now different ; ;’s are given in Eq.
(24). Also we define probabilities of having the atom in
different levels in terms of a parameter €, such that

_ 1+e€
paa 2 >
1—e
Pee =" > (43)
_ V'1—e?
Ipacl =L
where —1<e€=<1. For the lower bound limit when

€=—1, pou=1pas!=0 and p, =1, i.e., the atoms are in
the bottom level, for the upper bound limit the atoms are
in the top level |a ), and in between values of € corre-
spond to superposition of the top and bottom levels and
give the phase sensitivity in the system.

Using Egs. (28), (32), and (24), the expressions of
steady-state squeezing inside the cavity are obtained. In
Fig. 6 we have plotted such a second-order squeezing
against A/y for k'=2, €e=—0.6 and for p=0 and 7 /2.
From the graph we can easily verify that strong squeez-
ing can be obtained for the phase choice of initial coher-
ence =0, around a small region at zero detuning. Also
for u=m/2 some amount of squeezing can be obtained
for negative values of the detuning and for its positive
values the quadrature exhibits no squeezing. In Fig. 7 we
have plotted such a second-order squeezing against €, for
pn=0 and zero detuning. The maximum squeezing in this
case is achieved for e=—0.5 and there is no squeezing
for € >0. This situation can be visualized by the fact that
for the positive values of €, the probability of the atoms
in the top level increases and this destroys the steady-
state squeezing inside the cavity.

The steady-state squeezing outside the cavity is ob-
tained by using Egs. (24), (40), and (42). In Fig. 8 we have

0.35 - M=W/2
o
0.25
0-15 T T T T
-10 -6 -2 0 2 6 10

A/v

FIG. 6. Second-order squeezing s; vs detuning A/y, for
k'=2,e=—0.6,and p=0 and 7/2.
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0.2

-0.8 -0.4 0 0.4 0.8

€

FIG. 7. Second-order squeezing s, vs €, for k' =2, A'=0, and
n=0.

plotted such a steady-state squeezing outside the cavity
versus € for zero detuning, k'=50 and 75. Again we can
predict the regions of the perfect squeezing outside the
cavity.

Figures 3 and 6 also illustrate that the three-level
atomic system in cascade configuration with two photons
of equal frequency v in the presence of an intense driving
field and in the coherent superposition of the states shows
identical behavior at zero detuning and for the proper
choice of the different parameters in order to give the
maximum squeezing inside and outside the cavity.

We have obtained the steady-state Q solution inside the
cavity which will be used to evaluate higher-order
squeezing and photon statistics. Thus, in the remaining
part of this paper we will restrict ourselves to discuss the
behavior of the system inside the cavity only.

B. Fourth- and sixth-order squeezing

Hong and Mandel [9] have obtained the relation for
the nth-order variance by using the Campbell-Baker-
Hausdorff identity,

FIG. 8. Second-order squeezing (s, )., outside the cavity vs €
for k'=50 and 75 and for the same parameters as used in Fig. 7.
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(exp(xd;)) =(:exp(xd;):) exp(x25/2) , (44)

where :: denotes the normal ordering and
s=(1/2i)[d,,d,]=+. Expanding both sides of the above
equation as a power series of x and comparing the
coefficient of x"/n! gives the nth-order variance. Hence
the state of the field is squeezed to the fourth order if it

satisfies
a,=[(:(Ad):) +8(:(Ad;)%:)]<0 (i=1,2), (45)
where

(:(Ad1)4:)=L[(d‘l‘)+(d’{4>+6(d’{2d%>

16

+4({dia?)y+aPa, N1, (46)

and {:(Ad,)*) can be obtained from Eq. (28).

By using the steady-state solution for the Q representa-
tion we can calculate the fourth-order moments which
are essential for the fourth-order squeezing. At this stage
it is important to mention that the exact steady-state
solution of the Fokker-Planck equation of motion is ob-
tained at zero detuning and for the classical pump phase
choice ¢=m/2 and the initial coherence phase choice
1w=0, in case of superposition of the states. For such
choices we can also obtain the strong second-order
squeezing (which is clear from Figs. 3 and 6). This im-
plies that by using the Q solution we have the higher-
order squeezing in the region of strong second-order
squeezing. By using the Q solution from Eq. (19) to
evaluate the higher-order moments as in Eq. (20), we get

_ 1 1
a;=CAdt)y = g7,

47)
GAdi) =3 |5 =gty

Also for the sixth-order squeezing we define the relation
aﬁzl(:Ad?:)-l-—l%(:Adf:)+%(:Ad,~2:) <0, (48

where

1545 45 15 49)

:AdS: )=
(:adis) B3 2B? 4B, 8

In Fig. 9(a) we have plotted such higher-order squeez-
ing along with the second-order squeezing, by using Egs.
(17), (47), and (49), against Q' for «'=2. This figure pre-
dicts that such higher-order squeezing are possible when
we drive the three-level atomic system by some externally
applied intense field and the regions for the fourth- and
sixth-order squeezing are the same as of the strong
second-order squeezing. Figure 9(b) represents such
higher-order squeezing versus €, for k'=2, when atoms
are prepared in the coherent superposition of the states
and by using Egs. (25), (47), and (49). Again the regions
for the higher-order squeezing are the same as for the
strong second-order squeezing and follow the same condi-
tions as discussed for the second-order squeezing.

'
N

/v

-2 T T T T T

-0.8 -0.4 0 0.4

FIG. 9. (a) Higher-order squeezing a, vs Q’, for the same pa-
rameters as used in Fig. 4. (b) Higher-order squeezing a, vs ¢,
for the same parameters as used in Fig. 7.

C. Amplitude-square squeezing

Another type of higher-order squeezing, amplitude-
square squeezing, can be obtained by defining the quadra-
tures in terms of the real and imaginary parts of the
square of the field, i.e.,

2 f2
X,= a -;a ’
(50)
. — az__a’rz
2 2

The commutation relation for these operators reads as
(X,,X,]=i(2¢a%a)+1), (51)

and the uncertainty relation for the quadrature for the
square of the field’s amplitude is

AX AX,>(ata)+1L . (52)

Then the condition for the amplitude-square squeezing
follows

AxP<(a'a)+1 (i=1,2), (53)

the variances into the two quadratures are
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AX?=1[{(a*+a"™)?)—((a*+a"™))?],
=7}[(aT2a2)+(azaT2)—|—<a4)+(aT4)
—((a®)?+(a™)2+2(a®)(a™))], (59
and

AX%=%[(aT2a2)+(aza”)——(a“)—(a“)
+(a2)2+(a)2=2(a®)(a™)]. (59

After evaluating different higher-order moments with the
help of Q(a,a*), the exact steady-state expressions for
the variances are

+-5 -2 (56)

AXI=—"—— = 2 41, (57)

When the atomic system is driven by the classical field
then different coefficients of Egs. (56) and (57) are given
by Eq. (17), and second quadrature satisfies the condition
for the amplitude-square squeezing. In Fig. 10(a), we
have plotted AX3 against Q' for «’=1,2. From the graph
we predict that when such a system is driven by the clas-
sical field, it exhibits amplitude-square squeezing, along
with the second- and higher-order squeezing. As dis-
cussed before, the region for the amplitude-square
squeezing is the same as for the strong second-order
squeezing inside the cavity.

In Fig. 10(b), we have plotted AX3 against €, for
k'=1,2, by using Eqgs. (57) and (25), which corresponds
to the situation in which atoms are prepared in a
coherent superposition of the top and bottom levels. It is
clear from the graph that we can also obtain the
amplitude-square squeezing under the same condition for
€ as for the second- and higher-order squeezing.

IV. PROBABILITY DISTRIBUTION FUNCTION

With the help of the steady-state solution of the
Fokker-Planck equation, we can also work out another
interesting property of the present system under con-
sideration, which is the probability of finding n photons
in the field. As has already been discussed, the solution
Q (a,a*) is obtained under the same conditions of the de-
tuning and the phase of the classical field and phase of
the initial coherence, when the atoms are considered in
superposition of the states, as in the case of strong

|

aZn

T
———— | exp
n! | 9a"da™*"

p(n)=——'[

B B
- (ata* P+ =Ha—a*P+laf
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FIG. 10. (a) Amplitude-square squeezing AX% vs ', for
k'=1,2, and for the same parameters as used in Fig. 4. (b)
Amplitude-square squeezing AX3 vs ¢, for «'=1,2, and for the
same parameters as used in Fig. 7.

second-order squeezing. So we can analyze the photon
statistics in the region of strong second-order squeezing.

The probability p (n) of finding n photons in the field
can be determined by using the relation

p(n)={nlpgln) . (58)
In terms of the Q representation Eq. (58) becomes

aZn
da"da*"

p(n)=i

nl [O(a,a*)e!®] . (59

a=a*=0

On substituting the values of Q (a,a*) from Eq. (19) into
Eq. (59), it follows

[
a=a¥*=0

When we define Q (a,a*) in terms of M (x;,x,), and using Egs. (9) and (16), we can write

v'B,B,

p(n): 2(2n+1)n!

where

[(DI+D3)"expla;xi+arx3)le —x,—0»

(61)
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D;=— | = 172 >
boox; & )
(62)
a;=1—B,/2, a,=1—B,/2.
After performing the nth-order differentiation of Eq. (61) and applying the condition of x; =x, =0, we finally get
VEBB(-1)" o .
pin)= 2(2n+1) = ri(n __r)!HZ(n—r)(O)HZr(O)(aZ)r(al)n r, (63)

H being the Hermite polynomial.

In case of intense field, B; and B, are given by Eq. (17)
and in case of coherent superposition of the states, by Eq.
(25). In Fig. 11(a), we have plotted p (n) versus n, by us-
ing Egs. (63) and (17), for Q'=0.5, 2.5, and 5 and k' =2.
The plot shows that the probability of finding n photons
decreases smoothly with the increasing n for Q’'=0.5. At
this value of (', the system shows no squeezing of any

0.
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0.6 ‘\
£ 0.4
a
0.27 <.
= \\\ T~ - - -_— T — e L
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oo T é AR A ' é ] )
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FIG. 11. (a) p(n) vs n for Q'=0.5 (—-—-.—.), 2.5 (—-—>-),
and 5 (—— ) and for the same values of parameters as used in
Fig. 4. (b) p(n) vs n for e=—0.5 (— —. —. ), —0.2 (—-—-),
and 0.4 ( ) and for the same values of parameters as used in

Fig. 7.

[

kind and behaves classically. But for Q'=2.5,5 it shows
the behavior of the photon statistics when there is some
amount of squeezing present.

In Fig. 11(b), we have plotted p (n) vs n by using Egs.
(63) and (25), for e=—0.5, —0.2, and 0.4. Again we
have the same dependence of p (n) on n when the system
behaves classically and when it shows some amount of
squeezing.

V. DISCUSSIONS

In this paper we have considered a three-level atomic
system in a cascade configuration where top to bottom
level transitions are dipole forbidden. There are two
ways to introduce atomic coherence, either by coupling
these levels by externally applied intense field or by pre-
paring the atomic system in the initial coherent superpo-
sition of the top and bottom levels. The transitions from
the top level through the intermediate level result in the
production of two photons of equal frequency. By using
the density matrix equation of motion, which is obtained
under both the conditions of atomic coherence, we de-
rived an equivalent Fokker-Planck equation of motion.
The exact steady-state solution in the Q representation is
obtained under zero detuning and the proper choice of
the intense pump field’s phase and phase of the initial
coherence. We have predicted that such system can give
almost perfect squeezing outside the cavity for some par-
ticular values of Rabi frequency of the pump field, the pa-
rameter € which gives the probability for the atoms being
in different levels, and the linear gain coefficient. We
have also shown the region for strong second-order
squeezing inside the cavity. In addition, we have also
predicted that such a system under both conditions of
atomic coherence exhibits certain higher-order and
amplitude-square squeezing. With the help of the Q solu-
tion we have also determined the probability distribution
function for finding n photons and predicted its behavior
when the system behaves classically and when it shows a
certain amount of squeezing inside the cavity.
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