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Effect of atomic coherence on the second- and higher-order squeezing
in a two-photon three-level cascade atomic system
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A three-level cascade atomic system is considered where atomic coherence can be achieved either by

applying an intense pump field or initially preparing the atoms in a coherent superposition of the states.

It is predicted that the system, under certain conditions, exhibits almost perfect squeezing outside the

cavity. By using the steady-state Q solution it is also shown that certain higher-order squeezing can also

be achieved inside the cavity, under a suitable choice of di6'erent parameters.

PACS number(s): 42.50.Dv

I. INTRODUCTION

A three-level atomic system in a cascade configuration
shows some important features where the crucial role is
played by the atomic coherence. As an interesting exam-
ple, Scully and Zubairy [1] considered a two-photon
noise-free amplification where atomic coherence is intro-
duced when atoms are initially prepared in the coherent
superposition of the top and bottom level. They predict-
ed that under certain conditions the added noise in one of
the quadrature of the field vanishes and in this manner it
is possible to amplify a super-Poisson signal into a sub-
Poisson output signal with some gain. In coherent super-
position of the states the two-photon three-level cascade
atomic system also exhibits the property of correlated
emission laser (CEL) [2]. In a two-photon CEL the spon-
taneously emitted photons are highly correlated and the
photon diffusion coefficient vanishes under different suit-
able conditions. Scully et al. [2] have recently shown
that such a system can produce not only light which is
free from the spontaneous emission Auctuations but also
phase squeezing can be obtained. Another possible way
to introduce atomic coherence in a two-photon three-
level cascade atomic system is to couple the top and the
bottom level by applying an intense field [3]. Ansari,
Gea-Banacloche, and Zubairy [4] considered this situa-
tion and they predicted that by applying an intense field,
the system shows phase-sensitive amplification and the
added noise in both quadratures of the field modes van-
ishes and the system behaves as a degenerate parametric
amplifier, under certain conditions. They also showed
different possible situations for a two-photon CEL. An
and Sargent [5] have developed a quantum theory of mul-
tiwave mixing in which they considered such a three-level
atomic system in the presence of two field modes and the
top to bottom level transitions are made possible with the
help of two photons of an externally applied intense field.
They predicted that such a system can give perfect
second-order squeezing outside the cavity. It is also
shown that this system gives phase-sensitive amplification
and when it is considered inside a cavity it shows certain
nonclassical effects [6,7].

The present aim of this paper is to analyze the effect of

atomic coherence when the top and bottom levels of a
three-level cascade atomic system are coupled by the in-
tense field and when they are initially prepared in the
coherent superposition of these levels, on the second- and
higher-order squeezing. Squeezed states of the elec-
tromagnetic fields, because of the reduced quantum Auc-
tuations below the standard quantum limit, in one quad-
rature, at the expense of increased Auctuations in the oth-
er quadrature, have an important application in com-
munication, weak-signal detection, optical amplification,
etc. [8]. It is also possible to obtain certain higher-order
squeezing and such a type of squeezing has been proposed
and predicted in many systems by Hong and Mandel
[9,10]. Another type of higher-order squeezing, namely,
amplitude-square squeezing, has been introduced by Hil-
lery [11]and has been predicted in second-harmonic gen-
eration [11]. Such a type of squeezing has also been pre-
dicted in a harmonic oscillator [12] and the multi photon
Jaynes-Cumming model [13,14].

In this paper we consider a three-level cascade atomic
system with both the above-mentioned conditions for the
atomic coherence. The transitions from the top to the
bottom level via the intermediate level comes out in the
form of two photons of equal frequency. We derive the
equations of motion of the expectation values of different
second-order moments, from the density-matrix equation
of motion for the field and evaluate their steady-state ex-
pectation values. With the help of these expectation
values we predict that such a system in both cases of
atomic coherence can give almost perfect squeezing out-
side the cavity under suitable conditions of detuning, in-
tense pump phase choice, and initial coherence phase
choice when they are prepared in coherent superposition
of the states and the linear gain coefficient. We also
evaluate an exact steady-state solution of the Fokker-
Planck equation of motion in the Q representation and by
using that solution we predict that higher-order squeez-
ing and amplitude-square squeezing along with the
second-order squeezing can also be obtained. In addition,
we evaluate the probability distribution function for
finding n photons in the field in such a system and show
the behavior of this function when the system behaves
classically and when it gives squeezing.
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Our paper is arranged in five sections. In Sec. II, we
will brieAy discuss the system under consideration and
find out the steady-state solution of the Fokker-Planck
equation in Q representation. Section III is divided into
three subsections which describe the second- and higher-
order squeezing and the amplitude-square squeezing. In
Sec. IV we discuss the photon statistics of the present
model and show its behavior. Finally in Sec. V, we will
conclude our discussion.

v,

LI

(a&

V r a
ib&

II. FOKKER-PLANCK EQUATION
OF MOTION FOR THE FIELD

FIG. 1. Systematic diagram for a three-level atomic system
in cascade configuration in the presence of the classical field.

We consider a three-level atomic system in cascade
configuration as shown in Fig. 1. The transitions from
level Ia ) to Ib ) and b) to Ic ) are dipole-allowed transi-
tions and they result in the production of two photons of
frequency v. The transitions from level a) to Ic) are
dipole-forbidden transitions and there are two ways to in-
troduce atomic coherence: (a) by applying an external
classical driving field [4] and (b) by injecting the atoms
into the cavity in the coherent superposition of levels a )
and Ic) [2]. In the remaining section we will discuss

briefly these two conditions and derive an equivalent
Fokker-Planck equation of motion in Q representation
and calculate its steady-state solution.

A. Classical pump field

The transitions from levels Ia ) to c ) can be made
possible by applying a sufticiently strong pump field
which couples these levels. Then the transitions from
a) to Ib) and Ib) to Ic) are treated quantum mechani-

cally up to second order in the coupling constant and Ia )
to c) classically up to all orders. The Hamiltonian of
the system can be written in terms of the unperturbed
and the perturbed parts as

H =Ho+ V,

where the interaction Hamiltonian is

V=1rg [(Ia &&bI+Ib &&c )a+a'(Ii &&al+Ic &&bl)

(e
' ""a &&cl+e' '"'Ic)&aI ] . (2)

Also a (a ) are the annihilation (creation) operator for
the field of frequency v, 0 is the Rabi frequency of the
driving classical field, P and v, are its phase and the fre-
quency, respectively, and g is the atom-field coupling con-
stant which is taken to be equal for both the transitions.
By defining the atom-field states

Il) =Ia, n —2),

I3&=lc,n),
(3)

here, for example, I3) = Ic, n ) implies that there are n
photons in the field of frequency v and the atom is in the
ground state, and

I
2 ) =

I b, n —I ) describes that the atom
absorbs a photon and is excited to the intermediate state.
Then by taking the trace over the atomic state, the re-
duced density matrix equation of motion for the field is of
the form [4]

pF= —[p11aa pF+p11pFaa —(p11+p11)a pFa] —[(pz2+I 1)a apF+(pz2+I 1)pFa a —(p22+p22+2I 1)apFa ]

[P12 PF +P2\PFaa —(P2, +/312)aPFa]e ' —[P2,a a PF +P,2PFa a —(P,2+P2, )a PFat]e '+, (4)

where I 1 is the cavity-loss term and different coefficients which appeared in Eq. (4) are

g r
P11

1 1 1 1 1

y i 0 y+i—(b, ,
—0/2) y y+iQ y+i (b, , +0 2/)

g ra
12 4

1 1

y i Q y i ( b,2+ 0/2—)— 1 1

y+i 0 y i (b,2
—0/2)—

g r~

4
1 1 1+
y y i Q y+i—(b, ,

—0/2)
1 1 1—+
y y+i A y+i (b, , +Q/2)

g ra
22 4

1 1 1+
y i 0 y i—( 62+ II /2) y—

1 1

y+i fI y i (b,~
—0/2)—
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where it is considered that atoms are injected to level ~a &

with a rate r, and y is the equal decay rate for all the
three levels. Also hi=~, —

cob —v, 62=m& —m, —v. The
physical interpretation of these terms are as follows. The
first and the last terms represent the gain and losses in
the system. The second and third terms are phase-
sensitive terms because of the coupling of levels ~a & and
~c & by the external classical field. Also C&=P+(v, 2—v)t
In case of exact two-photon resonance, i.e., v& =2v we get
4=/ which is the reference phase of the classical field.

We define the Q representation for the field as the ex-
pectation value of the density matrix in coherent state

Q(a, a')= —(a~pF ~a &,

where ~a & is the eigenstate of the annihilation operator a
for the field with eigenvalue n, i.e.,

aa =o. a
(7)

at~a&= + ~a&.
Bcx 2

Using Eqs. (4), (6), and (7), the Fokker-Planck equation of
motion in the Q representation for the field becomes

Q= nil a+022 a+ . +I321e
8

a —plze a+
z

+CC Q
a a' , a , a , a'

Bcx Bcx Bcx Bo! Ba Qa2

where Pz'z=Pzz+ I,. In order to get a steady-state solution of the above equation in Q, we define the complex quantities
in terms of real and imaginary parts

a=x&+ix2,

a 1 a . a
l

Bcx 2 Bx ) Bx

and

&» =~i+i~z

~zz 3'3+9'4 ~

~zie 3'~+'3'6

Pize'&=y, +iy, .

3x] + A4x2+ A5 + A6
BX2 Bx )

Then replacing Q (a, a* ) by M (x &,xz ) the resultant Fokker-Planck equation of motion reads as

BM(x&,xz)
A)x)+A2x2+A7 +A6 +

9t Bx&

(10)

.M(x „xz),

where

A
&

= —yi+y3+ys —
y7

A2=y2+y4 y6 y8

~3 (J 2+34+36+3 8)

A4 = y&+y3 ys+y7

y3+y7
5

y8
6

(12)

where

A6A3 —As A)8 1
A6 —AsA7

A6A4 —A5A282= 7

A6 —AsA7

6A) —A7A383=
A6 —AsA7

A6A2 —A4A784=
A26 —As A7

(14)

y3 y7'7
2

In steady state BM(x„xz)/Bt =0 Eq. (11) reduces to
equations

am = —(B,x, +Bzxz )M,
Bx)

BM = —(B3xi+B4xz)M,
BX2

The exact solution of Eq. (13) is of the form

1M(x„xz)=—exp
82 82

2 2
X)+ X2

82+83+
2

x)x2

under the condition 82 =83. To obtain this condition we
proceed as follows.
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The two-photon resonance condition implies that
6i+ 62 =0, and if we consider zero detuning, i.e.,
6,=62=0, which will be true if the intermediate level
I b ) is exactly at the middle, and co, —coi, =cob —co, =v is
satisfied. Also if we choose the phase P=vr/2 of the
pump field, then B2 =B3=0 and the steady-state solution
for the Q representation takes the form

lb&

ic)

1 1M(x„x~)=—exp ——(B,x, +B4x2) FIG. 2. Diagram for the system when the atoms are prepared
in the coherent superposition of the states.

For zero detuning and P= ~/2, B, and B4 become

4(4 2x—'+~'II'+50' +~'0' +~'0' +0' )Bi=
8 —2K'Q'+ 100' +3K'Q' +K'0' +20'

(17)
B

—4(4 —2v' —x'0'+ 5Q' +z'f), ' x'A—' +0' )
—8 —2K'Q' —10@' —3K'Q' +K'Q' —2Q'

The normalization constant N is

2'
"i/B iB„

(18)

where K'=K/I i and K=2r, g /y is the linear gain
coeKcient, 0' is defined as the Rabi frequency divided by
the laval decay constant y. In Q representation,

QB,B4 B,
Q (a, a*)= exp — (a+a')

277 8

+ (a —a*)B4
8

(19)

(F(a, a )) = JF(a,a')Q(a, a')d a . (20)

The expectation value of any high-order antinormal mo-
ment can be calculated with the help of this equation as

B. Coherent superposition of the states

Consider the same three-level atomic system in cascade
configuration but the intermediate level Ib ) is now de-
tuned with respect to the one photon of frequency v by
an amount 6, i.e., A=cob, —v and ~„=2v. The exact
two-photon resonant condition is satisfied as shown in
Fig. 2. Again, I

a )~ I
b ) and

I
b ) —+

I
c ) transitions are

dipole allowed and come out in two photons of frequency
v and la ) —+ Ic ) is dipole forbidden. The atoms are in-
jected into the cavity in a coherent superposition of the
states Ia) and c) with a rate r. Then we can define the
wave function as [15]

Ii/(t) ) =c.Ia )+c,e'i' c ), (21)

where c, and c, are the probability amplitudes of the
atoms in levels, Ia ) and Ic ), respectively, and p is the
relative phase. The interaction Hamiltonian in the
rotating-wave approximation at exact resonance is

I'=&g [at(lb ) (al+ Ic ) (bl)

+(la &(bi+lb &(cl)a] . (22)

As before, a (a ) are the annihilation (creation) operators
for the field of frequency v and g is the atom-field cou-
pling constant (equal for the three levels). Then, the
equation of motion for the reduced density matrix of the
field with frequency v is

I

p~= —[/3', *, aa pF+P'„pFaa —(P'„+P',;)a pFa] —[(P22+I, )a ap F+(P ~2+1, )p Faa —(P2~+P22+21 i)apFa ]

[p'i2aapF+p'2i—pFaa —(ppi+pi2)apFa] —[p2ia a pF+pi2ppa a —(pi2+p2i)a pFa ] (23)

The new coefficients of Eq. (23) are

Pl 1 2 KPaa

K4'2= 24„
K

(24)

I

tion of motion can be obtained by following the same
steps as in Sec. II A and it has the same form as in Eq.
(19) but with the condition of zero detuning, which corre-
sponds to level

I
b ) being exactly at the middle, and @=0.

The new coefficients are now of the form

2 —(p„—p„)+1

K
P2i= 2(P- .

The probabilities p„and p„are the initial populations of
levels

I
a ) and

I
c ), respectively, and the condition for

initial coherence is p„=p,*,= Ip„le'". Also /=1/(1
+id/y) and v=2rg /y is the linear gain coefficient, y
being the equal level decay constant for the three levels.

The steady-state solution of the Fokker-Planck equa-

Bi= —(p„—Ip„)+1

2 —(p„—p„)+1

—(p„+ I p., I)+1

(25)
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In the following sections we will use this steady-state
solution to evaluate certain high-order squeezing and the
photon distribution function.

Different second-order moments in Eq. (28) can be calcu-
lated from the density matrix equation of motion [Eqs. (4)
and (23)],

III. SECOND- AND HIGHER-ORDER
SQUEEZING

In this section we will evaluate the expressions for the
second- and higher-order squeezing for the two cases, (i)
in the presence of externally applied intense field and (ii)
in the coherent superposition of the top and bottom levels
of the atoms. We will also predict the regions where we
can get strong second- and higher-order squeezing.

A. Second-order squeezing

d (a a ) = Tr(pa a)
dt

(pi+pi )&a a &+p2&a" &+ps &a &+pii

similarly

d (a ) =2p, (a ) +2p2(a a ) —2Pz, e'",

(29)

(30)

(26)

The condition for second-order squeezing is

In order to calculate the minimum variance we define
the quadratures for the field of frequency v as

d =—(a+a )i

dz= —.(a —a ) .
2l

where

pz = (&is —
&2i )e'

pii=flii+illii .

(31)

(Sd )'=&d') —(d, )'&-'

By using Eq. (26), (27) becomes

s, =(bdi) =
—,'[2(ata )+(a )+(at2)]+—'

sz =—(bdz) =—'[2(a a ) —(a ) —(at ) ]+—,
'

(27)

(28)

The equation of motion for (a ) can be obtained by tak-
ing the complex conjugate of the Eq. (30). In steady state
the time dependence of Eqs. (29) and (30) vanishes and we
are left with three equations. After solving them simul-
taneously we get the steady-state expressions of di8'erent
second-order moments as

(pip213»e
' +c.c. )+p»lpil'

(a a&=
(p +p*)(~p.~'-

~p ~')

(pi+pi )( S»~' —~pi~')

(32)

The steady-state expression for (a ) can be obtained by
taking the complex conjugate expression of ( a ) .

1. Outside the cavity

The steady-state expression for the spectral density of
the second-order moments outside the cavity can be cal-
culated along the same lines as discussed by Holm and
Sargent [16].

The equation of motion for the expectation value of the
annihilation operator for the field mode is

where

aJ(t)=
a

Pi P2

pz pi

(35)

JXJ'=JJ, (36)

Then, the direct product of J and its transpose form a
2X2 matrix

„&.& =„&.)+„&.t& .
d

(33) where X corresponds to the direct product. The equa-
tion of motion for (JJ) can be obtained by expressing
Eqs. (29) and (30) into the matrix form

d (JJ)=—A(JJ) —(JJ)A +D,
dt

(37)
d
dt

(J(r)) = & (J(r)), (34)
where 3 is given by Eq. (35) and

Equation (33) and its complex conjugate can be written in
matrix form as
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3. Coherent superposition of the states

For the second case when atoms are injected in a
coherent superposition of the top and bottom levels into
the cavity, we get the same equation as Eq. (32) for the
steady-state expectation values of different second-order
moments except that now different P,'. 's are given in Eq.
(24). Also we define probabilities of having the atom in
different levels in terms of a parameter e, such that

1+a
PQQ

0 ~ 4-

0.2-

1 —e
Pcc (43)

0
-0 ~ 8 -0 ' 4

I

0
I

0.4 0 ' 8

where —1 + e 1. For the lower bound limit when
e= —I, p„=Ip„=O and p„= I, i.e., the atoms are in
the bottom level, for the upper bound limit the atoms are
in the top level Ia ), and in between values of e corre-
spond to superposition of the top and bottom levels and
give the phase sensitivity in the system.

Using Eqs. (28), (32), and (24), the expressions of
steady-state squeezing inside the cavity are obtained. In
Fig. 6 we have plotted such a second-order squeezing
against b, /y for n'=2, e= —0.6 and for p=O and vr/2.
From the graph we can easily verify that strong squeez-
ing can be obtained for the phase choice of initial coher-
ence p=0, around a small region at zero detuning. Also
for p=m /2 some amount of squeezing can be obtained
for negative values of the detuning and for its positive
values the quadrature exhibits no squeezing. In Fig. 7 we
have plotted such a second-order squeezing against e, for
p =0 and zero detuning. The maximum squeezing in this
case is achieved for e= —0.5 and there is no squeezing
for e) 0. This situation can be visualized by the fact that
for the positive values of e, the probability of the atoms
in the top level increases and this destroys the steady-
state squeezing inside the cavity.

The steady-state squeezing outside the cavity is ob-
tained by using Eqs. (24), (40), and (42). In Fig. 8 we have

FIG. 7. Second-order squeezing s& vs e, for ~'=2, 6'=0, and
p=0.

plotted such a steady-state squeezing outside the cavity
versus e for zero detuning, ~'=50 and 75. Again we can
predict the regions of the perfect squeezing outside the
cavity.

Figures 3 and 6 also illustrate that the three-level
atomic system in cascade configuration with two photons
of equal frequency v in the presence of an intense driving
field and in the coherent superposition of the states shows
identical behavior at zero detuning and for the proper
choice of the different parameters in order to give the
maximum squeezing inside and outside the cavity.

We have obtained the steady-state Q solution inside the
cavity which will be used to evaluate higher-order
squeezing and photon statistics. Thus, in the remaining
part of this paper we will restrict ourselves to discuss the
behavior of the system inside the cavity only.

B. Fourth- and sixth-order squeezing

Hong and Mandel I9] have obtained the relation for
the nth-order variance by using the Campbell-Baker-
Hausdorff identity,

0.35 0.8

O

0 ~ 25— 0.4

0.1 5

-10 -6 -2 0 2 10
s s s

/
s ~ s

f
s s s

J
~ s s j0

-0.8 -0 ' 4 0 0.4 0.8

FIG. 6. Second-order squeezing s, vs detuning 5/y, for
~' =2, e= —0.6, and p =0 and ~/2.

FIG. 8. Second-order squeezing (s& ),„,outside the cavity vs t

for ~'= SO and 75 and for the same parameters as used in Fig. 7.



EFFECT OF ATOMIC COHERENCE 0ON THE SECOND- AND . . 4693

(exp(xd ))=i:=(:exp(xd, ):)exp(x s/2)

where:: e nor
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In Fi . 9~a'g. ( ) we have plotted such hi her-

g
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Also for the sixth-or-order squeezing we d fi he net erelation

.,—= ~&:~d', :)+ 15 (:~d,':&+ 4' 'a, , + q.b,d, . ) &0, (48)

2l

The commu tation relation for thr ese operators reads as

[X„Xz]=i(2(a a)+1),
and the un certainty relation for the q

s amplitude is

~,~z & (ata )+—'
2

(51)

(52)

Thenen the condition for the am 1'

follows
or t e amplitude-square sququeezing

aX,'& (a'a &+-,' i =1,2),
the variances into th e two quadratures are

(53)

Another type of higher-order s u p
, can e obtained b d

tures in terms of th
y efining the quadra-

square of the field, i.e.,
o e real and ima

'
aginary parts of the

Q +Q
1 2

(50)
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and

bX =—'[((a +a ) ) —((a +at )) ]

=-'[(a 'a')+&a'a '&+(a')+&a" &

—(&a'&'+ &at')'+2&a'&(at') )] (54)
-0.04-

N yy

-0.08-

AX =—'[(a a )+(a a ) —(a ) —(a )

+ &
a' &'+ (a '&' —2& a'& (a")] (55) -0.1 2

After evaluating difFerent higher-order moments with the
help of Q(a, a*), the exact steady-state expressions for
the variances are

-0.1 6 I I I 1 1 I
I

I I
I

I I

0 2 4 6

and

2 + 2
82 82

AX
4

2 8(84

2

Bj
+1

84

' +1.
B4

(56)

(57)

0.2

0.1

When the atomic system is driven by the classical field
then different coefficients of Eqs. (56) and (57) are given
by Eq. (17), and second quadrature satisfies the condition
for the amplitude-square squeezing. In Fig. 10(a), we
have plotted LXz against 0' for ~'= l, 2. From the graph
we predict that when such a system is driven by the clas-
sical field, it exhibits amplitude-square squeezing, along
with the second- and higher-order squeezing. As dis-
cussed before, the region for the amplitude-square
squeezing is the same as for the strong second-order
squeezing inside the cavity.

In Fig. 10(b), we have plotted AXE against e, for
v'= l, 2, by using Eqs. (57) and (25), which corresponds
to the situation in which atoms are prepared in a
coherent superposition of the top and bottom levels. It is
clear from the graph that we can also obtain the
amplitude-square squeezing under the same condition for
e as for the second- and higher-order squeezing.

IV. PROBABILITY DISTRIBUTION FUNCTION

With the help of the steady-state solution of the
Fokker-Planck equation, we can also work out another
interesting property of the present system under con-
sideration, which is the probability of finding n photons
in the field. As has already been discussed, the solution
Q(a, a*) is obtained under the same conditions of the de-
tuning and the phase of the classical field and phase of
the initial coherence, when the atoms are considered in
superposition of the states, as in the case of strong

0

-0.1

-0.2 I I I
I

I ~

-0.8 -0.6 -0.4
I I j I I I

-0.2 0 0.2

second-order squeezing. So we can analyze the photon
statistics in the region of strong second-order squeezing.

The probability p(n) of finding n photons in the field
can be determined by using the relation

p(n)=(n~pF~n) . (58)

In terms of the Q representation Eq. (58) becomes

g2n
Qp(n)= [Q(a, a*)e' ~ ]ngen

o.=a =0)fc

(59)

On substituting the values of Q (a, a*) from Eq. (19) into
Eq. (59), it follows

FIG. 10. (a) Amplitude-square squeezing AX2 vs 0', for
~'=1,2, and for the same parameters as used in Fig. 4. (b)
Amplitude-square squeezing EX2 vs e, for K'=1,2, and for the
same parameters as used in Fig. 7.

$2n
p(n)= exp.t'8 8" 8) 84

8
(a+a") + (a —a*) + iai

8 @=a =0
(60)

When we define Q (a, a*) in terms of M (x i,x2), and using Eqs. (9) and (16), we can write

+BiB 2 2p(n)=
~2 +i~ [(Di+D2)"exp(aixi+azxz)]

1 2
(61)

where
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(i =1,2),

~, =].—Bi/2, a =1—B /2 .

ppy gt

p(n)= Qa, a„(—1)"
,
H2(„„&(0)H2„(0)(a2)"(a )"

After performin the nth-g th-order differentiation of Eq. (61) and a 1q. an a 1 in he condition of x =x =0i
—x2=, we nally get

(63)

H being the Hermite polynomial.
In case of intense field, B and

a d
, and 84 are given by Eq. (17)

an in case of coherent su era perposition of the states, by Eq.
n ig. 11(a), we have plotted p (n versus n

e p ot shows that the probability of findin n h
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t is value of 0', the s sth'
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e system shows no squeezing of any

kind and beh aves classically. But for 0'=2. 5, 5 it shows
the behavior of the photon st t' t' '
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amount of squeezing present.

InFi . 11b'g. ~ ), we have plotted p(n) vs n by usin E s.
(63) and (25), for e= —0.5 —0 2.2, and 0.4. Again we
have the same dependence of ( )

e aves classicall an
p n on n when the system

y d when it shows some amount of
squeezing.
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V DISCUSSIONS
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