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One-dimensional model of a negative ion and its interaction with laser fields
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We describe a two-electron "atom" in one space dimension. This one-dimensional system is treated
fully quantum mechanically and with full electron correlation. Its bare eigenstates and eigenenergies are
determined numerically by solving Schrodinger s equation on a spatial grid. When the electron-electron
interaction (of soft-core long-range Coulombic form) is taken equal in strength and opposite in sign to
the electron-proton interactions, this atom is found to have only one bound state, and is similar in other
ways to a negative ion. We give a Z-correlation diagram, showing the relation of the system s energy
spectrum to those of its isoelectronic partners, which are one-dimensional analogs of He, Li, etc. We
also calculate a large number of fully correlated two-electron time-dependent wave functions for the sys-
tem under excitation by a laser field, and exhibit a number of results, including one-photon and multi-

photon photodetachment rates, ac Stark shifted threshold closings, photoelectron spectra, and above-
threshold detachment spectra, single-electron and double-electron ionization probabilities, and light-
scattering spectra.

PACS number(s): 32.80.Rm, 32.80.Fb, 31.20.Di, 31.15.+q

I. INTRODUCTION

In the last decade a wealth of strong-field phenomena
have been observed for the first time in the multiphoton
interaction of atoms and atomic electrons with strong
laser pulses [1]. Even though observed in many-electron
atoms, there are one-electron effects prominent among
these phenomena, which include above-threshold ioniza-
tion (ATI) and its related processes [2] and very-high-
order harmonic generation [3]. Multielectron effects
have also been observed, particularly multielectron ion-
ization in both the multiphoton [4] and tunneling [5] re-
gimes.

All of these experimental findings initiated theoretical
calculations. The laser-atom-electron interaction is not
easy to treat from a theoretical point of view. Analytic
calculations are typically characterized by one or more
approximations regarding the electron (classical dynani-
ics, nonrelativistic, spinless), the atom (restricted level
structure, non-Coulombic or short-range potential,
featureless continua), the laser field (nonquantized, con-
stant amplitude, zero bandwidth) and also the atom-field
interaction (dipole or other inexact couplings). In order
to obtain physical insight from analytical solutions fur-
ther assumptions (rotating-wave approximation, pertur-
bative or quasiclassical or Keldysh-type treatments) are
unfortunately necessary.

In the domain of strong-field interactions a number of
these approximations can be accepted confidently. For
example, the dipole and nonquantized field approxima-
tions remain excellent. However, it is generally agreed
that approximations that treat the laser intensity as con-
stant in time, or sufficiently weak to permit perturbative
calculations, must be treated very cautiously. The prob-
lem is not that such approximations always lead to errors
in strong laser-atom interactions, but that their range of
validity is difficult to assess. Furthermore, experimental

work is currently occurring in just the most difficult area,
that of short laser pulses with high peak intensities. In
reaction to these theoretical difficulties, purely numerical
methods have begun to be adopted to determine atomic
response, capitalizing on the availability of supercomput-
ers and efficient algorithms that permit for the first time a
direct numerical solution of the full time-dependent
Schrodinger equation. Kulander [6] first presented nu-
merical solutions for the wave functions and ionization
rates of multielectron atoms using time-dependent
Hartree-Fock and frozen-core methods, and we began to
explore the advantages of a one-dimensional approach to
one-electron strong-field processes [7], motivated by cal-
culational efficiency and the almost exclusively one-
dimensional nature of an electron's response to a linearly
polarized strong laser pulse. These and other similar
efforts were based on the philosophy of testing the
Schrodinger equation directly for atomic systems without
dynamical or weak-field approximations in the course of
its solution. In order to distinguish this from the tradi-
tional approach the numerical calculations can be called
computer experiments.

Computer experiments not only provide the opportuni-
ty for confirmation of laboratory results, but also allow
direct and unambiguous tests of approximate theories.
Examples include a critique of the Keldysh-Faisal-Reiss
(KFR) theory for photoelectron spectra [8], a check of
the Bunkin-Fedorov-Kroll-Watson approximations intro-
duced for strong-field electron-atom scattering [9], a test
of the time-dependent Hartree-Fock approximation for a
two-electron system [10],agreement between various pre-
dictions and observations of multiphoton effects in hydro-
gen [11], and parallel laboratory and computer experi-
ments on high-order harmonic generation [12]. In addi-
tion, computer experiments have entered domains that
are thus far inaccessible to laboratory experiments and in
which novel phenomena are predicted to occur. Two ex-
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amples are the predictions of atomic stabilization and
electron localization in superstrong fields [13], and the
existence of regularly-spaced "replicas" of threshold
cusps in photoelectron spectra [14].

There are several reasons to expand the applications of
numerical experiments. In the first place, significant im-
provements in approximate analytical strong-field
methods are not yet in sight. Second, computer experi-
ments for real atoms have been mostly restricted to
single-electron systems so far, but laboratory studies of
multielectron atoms in strong fields are being pursued vi-
gorously. It is obvious that the behavior of multielectron
atoms remains centrally interesting in strong-field phys-
ics, not only in respect to obvious questions such as the
mechanism for double ionization, but even in respect to
the ejection of a single electron which is affected by its
correlation with other electrons. Correlation effects are
strongest in the negative ions, and we have begun to
study a one-dimensional analog of H that is a direct ex-
tension of the one-electron system mentioned already.
For this analog the solution of the time-dependent
Schrodinger equation can be performed on a large spatial
grid, without new approximations or restrictions regard-
ing laser pulse shape or intensity. At the same time, im-
portant progress is being made [15,16] in theoretical stud-
ies of multiphoton processes in the true three-
dimensional H . Up to the present time, however, these
are restricted to perturbative regimes of intensity, and are
not yet able to address questions such as the relative roles
of direct and sequential double-electron ejection path-
ways [17], the possibility of low-intensity stabilization re-
gimes [18,19], or the interplay of strong-field photon
dressing and electron correlation [20].

The numerical advantages of one dimension are obvi-
ous. A 1 000 000—component wave function can
represent one million space points for a single electron
and 1000 space points each for two electrons. This is
barely sufficient to describe relatively high-energy elec-
trons during ionization or detachment with sufficient
resolution. If the system were described in two dimen-
sions there could be only 1000 points on each axis for one
electron and only 32 points on each axis for each of two
electrons. For a three-dimensional system of two elec-
trons, the 1000000 numerical points would permit only
10 grid points in each direction.

Of course, the physical disadvantages of a one-
dimensional atom are readily apparent even in the one-
electron case, where there are no angular distributions in
the usual sense, circular polarization cannot be treated,
there are no level degeneracies, etc. However, as is well
known by now, our model has well-defined selection rules
based on parity, its Coulombic potential leads to normal
Rydberg spacing of high-lying bound levels, and so on,
and most of the strong-field dipolar response is linear
anyhow. Nevertheless, it was not clear at the outset
whether a similar two-electron system would make sense
as an "atom. " However, there are apparently no severe
difficulties. For example, the soft core of the quasi-
Coulombic potential that we use [7] permits the electrons
to pass each other along the axis of motion (which is
determined physically by the polarization axis of the

II. THE MODEL SYSTEM FOR NEGATIVE IONS

Let us begin with a description of our two-electron sys-
tem. It is characterized by a nucleus of positive charge
fixed at the origin at x =0 and two electrons whose spa-
tial coordinates are x, and xz. It is a one-dimensional
analog of a negative ion [21] and its bare Hamiltonian is
(in atomic units, a.u. )

Ho= —,'p, + —,'p2+ V(x, )+ V(xz) —V(x, —x2), (2.1)

where the soft-core Coulomb potential has been chosen
as

1V(x)—:—
+x +1

(2.2)

This potential governs both the attractive electron-
nucleus and the repulsive electron-electron interactions.
Note that this potential permits the two electrons to
move past the nucleus and past each other so the entire x
axis is available to both electrons, making parity a good
quantum number. In Fig. 1 we show the potential energy
as a function of x& and x2. The potential is symmetric
with respect to the x, = —x2 and x, =x2 diagonals. The
spine along the line x& =x2 indicates that it is energeti-
cally not favored to find both electrons on the same side

laser). The first strong-field results on one-dimensional
two-electron systems have already appeared [10,17—20],
and they are encouraging.

The main objective of this paper is to present a descrip-
tion of the properties of this two-electron system and also
to present some details about our numerical methods.
The eventual goal of our studies is to obtain a physically
realistic picture of two-electron atoms responding to
strong radiation fields.

The paper is organized as follows. In Sec. II we intro-
duce the bare Hamiltonian of the two-electron system, its
symmetries and its interpretations as a prototype model
for negative ions. In Sec. III we mention some computa-
tional details. Section IV discusses the bare properties of
the two-electron system in the absence of the laser field.
We stress the universality of the model Hamiltonian and
show how scaling properties can generalize our results to
different two-electron systems. Section V provides a link
between the static bare-atom results and time-dependent
features of the fully laser-dressed two-electron wave func-
tions. We compute the bound-free dipole moment matrix
element to compare the predictions of Fermi's golden
rule with numerically observed one-photon detachment
rates, and in Sec. VI we investigate detachment rates in
the multiphoton regime. We confirm earlier predictions
about the behavior of the rate as a function of laser inten-
sity in the neighborhood of ponderomotive channel clos-
ings. In Sec. VII we discuss various ways of calculating
photoelectron energy spectra and show various above-
threshold detachment (ATD) spectra. In Sec. VIII we in-
vestigate the time dependence of single and double ion-
ization probabilities and various bound-state populations.
Section IX presents scattered light spectra in a regime of
laser intensities where double ionization is significant.
We close with a summary of our investigations in Sec. X.
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FIG. 1. The total potential V(xl, x2) as a function of the two
one-dimensional electron coordinates x I and x&.

of the nucleus. The "Hat" area close to the x I
= —x2 di-

agonal (electrons on opposite sides of the nucleus) would
be associated with the Wannier ridge [22] in the usual hy-
perspherical representation of the potential surface for a
three-dimensional (3D) ion. The potential, and thus the
bare Hamiltonian Ho, is invariant under the two symme-
try operations

HQ(xl, xp)=HO(xp, xl )

HQ(xl x2):HQ( XI xp)

(2.3)

(2.4)

Thus, the time-independent Schrodinger equation for the
bare energies E and eigenfunctions C&E (x „xz ) can be
decomposed into four noninteracting subspaces. Rela-
tion (2.3) allows for a separation into wave functions
which are either symmetric or antisyrnmetric under ex-
change of the electrons's spatial coordinate. The lowest-
energy eigenstate is nondegenerate and belongs to the
symmetric (spin singlet) even-parity manifold as is the
case for the ground state in a three-dimensional negative
1on.

The time-dependent Hamiltonian H(t) that describes
the interaction of the ion with a laser field is given by

H(t) =Ho+(x, +x2)8(t)sin(cot ), (2.5)

III. TECHNICAL ASPECTS

For the purpose of solving Schrodinger's equation nu-
merically, the two-electron wave function is represented
spatially on a two-dimensional grid where each electron's
spatial coordinate is discretized as x, = ( —

—,
' N +

i —
—,')hx, i =1,2, 3, . . . , N. Here, b,x =L/N denotes the

grid-point spacing, L the length of the numerical box,

where the time-dependent term represents the dipole cou-
pling of the two electrons to the laser's electric field. The
electric field envelope is 6"(t) and the laser frequency is
denoted by co. Given the spin independence of the laser-
atom interaction, we have restricted our analysis to sym-
metric states corresponding to spin singlets. The second
invariance (2.4) refiects a spatial parity which is the 1D
counterpart to angular momentum [23]. The laser field in
dipole approximation couples the corresponding odd-
and even-parity subspaces. We denote by 'p(x „x2,t ) the
general two-electron wave function that is the solution of
the time-dependent Schrodinger equation.

and N the total number of grid points inside the spatial
interval [ L—/2, L/2]. Depending on accuracy require-
ments L was varied between 100 and 1000 a.u. , and the
spatial grid spacing Ax was taken in the range 0.01—0.98
a.u. Our highest-accuracy results have been obtained for
N=1024 grid points, corresponding to a two-electron
wave function with 1024X 1024 components. Note that
in such a spatial basis the corresponding Hamiltonian
would have about 4 (1024/4) nonzero matrix elements
which because of the astronomical computer storage re-
quirements prohibit any conventional direct diagonaliza-
tion.

The time evolution of the wave function under the bare
Hamiltonian Ho is formally trivial but computationally
useful in several ways. Given an initial wave function
@(xI, xz ), its time evolution is effected by the familiar un-
itary operator Uo(t —to)=exp[ —iHo(t —to)] which, for
a small time increment At, can be decomposed into a
three-step sequence by "splitting" the kinetic-energy
term T=—,'p, + —,'pz,

Uo(ht ) =exp[ i ( T+ V—)b, t ]

=exp[ i Tht /—2]exp[ i Vht—]exp[ i Tht /2]—
+O(ht') . (3.1)

This symmetric split decomposition is quite advantageous
[24,25]. The action of the kinetic-energy operator on the
wave function can be performed easily in Fourier space.
It is important to note that in contrast to the usual ap-
proximations of the second derivative by three- or five-
point formulas the action of the kinetic-energy operator
on the spatial grid can be performed exactly here. This
allows for much larger spatial grid-point spacing Ax than
used with the traditional Crank-Nicholson —type
methods. The application of the spatial fast Fourier
transform (FFT) routine automatically leads to periodic
boundaries. The middle part of the evolution operator
describes the action of the potential energy alone and cor-
responds to a simple multiplication of the wave function
in coordinate space.

The time step At can be chosen comparatively larger
than in Crank-Nicholson —type calculations. For most
simulations a time step At =0.2 a.u. was sufficient. Pro-
grams runs consist of up to 40000 consecutive Fourier
transformations which can be performed quite efficiently
on a supercomputer. We have mainly used a Cray-Y
which fast-Fourier-transforms (FFT) a 1024X 1024 com-
plex matrix within about 0.56 s of CPU time by using
very efficiently vectorized routines from software li-
braries.

The ground-state wave function 4& (x „x2 ) and its en-
ergy E can be computed directly by replacing the time
increment b.t in Eq. (3.1) by an imaginary time step—iAt. Any arbitrary initial or "seed" wave function
C&(xl, x~) relaxes into the ground state after a sufficient
amount of imaginary time. The wave function has to be
renormalized after each integration step in order to di-
minish the contribution from the other eigenmodes which
are contained in the initial state. The higher-lying eigen-
states can be generated consecutively by the same method
after the contributions of lower lying states have been
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projected out of the iterated wave function at each time
step. This method is accurate and reliable but it is only
efficient for the determination of the lowest-lying states.

Another time-dependent method [24] that is useful in
finding bare atom properties uses real-time evolution to
obtain selected eigenvalues and eigenvectors, as follows.
The wave function is again integrated in time using the
split-operator technique and Fourier transformations of
the displaced-time overlap ("autocorrelation") function
(+(xi,x2)~ Uo(r)@(x„xz) ) which are performed as

TP(E)= J—dr exp(iE&)
0

X ( 4(x„x2) Uo(~)4(x„x2))h(r), (3.2)

where h (r) denotes the Hanning window function [24,26]

h(r) —= sin (err/T) . (3.3)

The peaks in the spectral function P(E) correspond (for a
small ht) to the desired eigenenergies of Ho. Due to the
finite integration time T each gross eigenenergy peak con-
sists of a multiplet of peaks closely spaced by 2~/T.
These additional peaks (basically sine-type satellites) are
obviously not different eigenenergies. The smooth turn
on and turn off of the window function diminishes these
satellite peaks. In return for that the window function
broadens each spectral peak. The spectral resolution is
determined by the total integration time T.

Naturally P(E ) can be calculated only for a finite num-
ber of discrete values in energy and one has to guess the
precise locations of the maxima. In order to improve the
accuracy of the peak positions we applied a line-shape
fitting method [24] which makes use of the fact that the
functional dependence of P (E) on E is known analytical-
ly (essentially a sequence of broadened sine functions) due
to the simple form of the Hanning window. This method
performs the interpolation exactly and improves the ac-
curacy of the desired peak position by at least one
significant digit.

The eigenvalues p, of the unitary operator Uo(b, t ) obvi-
ously depend on the time increment At. In the limit of
sufficiently small b t the imaginary part of —(in@, )/b, t be-
comes independent of At and approaches the bare energy
eigenvalues E of the Hamiltonian Ho. We have found
that a time step of At =0.2 a.u. leads to eigenvalues with
a precision of three significant figures, which is sufficient
for almost all practical purposes. By choosing the spatial
parity of the initial seed wave function @(x„x2)one can
selectively excite either the even- or odd-parity subspace
of eigenmodes. This can increase the resolution of two
neighboring eigenmodes even further.

A similar spectral method can be applied to generate
selected eigenvectors Nz(x„xz) with energy E. To do
this we propagate an arbitrary seed wave function
N(xi, x2) in time to get Uo(r)N(x&, x2) and Fourier
transform it as

T
cC&z(xi, x2) = dwexp(iEr)UO(r)C&(xi, x2)h(r), (3.4)

0

where the constant c is to be determined by normaliza-
tion. The transform can be performed after each time
step b, t. The time evolution of only a single initial wave

function is already sufficient to generate several eigenvec-
tors. With 24 megawords of computer memory we can
generate simultaneously up to 40 eigenvectors on a
512X512 dimensional grid. As a "quality" check of the
eigenvectors we have iterated the eigenvectors one time
step At and determined the variance of Uo for each one.
This variance can be related to the actual energy uncer-
tainty of that state and can be arbitrarily decreased by in-
creasing the integration time T.

So far we have put the focus on features of the bare
two-electron system. However, the wave function
%(xi,x2,'T) at the end of the laser pulse can be also re-
garded as a seed wave function, and exactly the same au-
tocorrelation method can be applied to it equally well.
This provides the energy distribution for the electrons
after their interaction, including photoelectron spectra,
bound-state population, etc. [27].

IV. EIGENENERGIES AND EIGENSTATES

A. The bare energy spectrum

The bare energy spectrum of our one-dimensional
two-electron system is interesting in itself. We are ulti-
mately concerned only with fully correlated two-electron
energies, but we proceed through a sequence of partially
correlated energies, beginning with the energies of the
Hamiltonian for two completely uncorrelated hydrogen
atoms. To do this we allow the coupling strength be-
tween both electrons to be a variable parameter G and
define the following Hamiltonian:

II = ,'p, + V(x, )+——,'p~+ V(x~) —GV(x, —x2) . (4.1)

For the scaling parameter G=1, this corresponds to Ho
for our negative ion as given in Eq. (2.1).

For the special case of zero electron-electron repulsion
(G =0) this Hamiltonian decouples into two commuting
one-dimensional soft-core hydro genic Hamiltonians
whose eigenspectrum E„has been tabulated [28]. The to-
tal energies E„ofH for G =0 are simply sums of the
two single-electron energies

E„=E„+E (4.2)

Some of the two-electron energies for the G=O states
with negative energy are displayed in Fig. 2(a). For
graphical clarity we present only the four lowest-lying
states below the first and second thresholds. The symbol
(+ ) indicates states with even spatial parity
[C&(xi,xz) =@(—x„—x2)] and ( X ) denotes the odd-
parity states [@(xi,x2 ) = —4( —x i, —x2 )]. Clearly,
(1,1) amounts to the G=0 ground state with energy
E i i

=2E i
= —1.3396 a.u. The states ( 1,n ) correspond to

the first Rydberg series which converges to the first
threshold at E= —0.669818 a.u. This threshold is
characterized by one electron in the hydrogenic ground
state and the other electron in the continuum.

The bound state (2,2) with energy E22 = —0.549 87 a.u.
is above the first threshold and is degenerate with the
continuum state

~
l, s ) where e is the continuum energy

v=0. 11994 a.u. of the unbound electron. This is similar
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XP„(x,)P (x2) ), (4.3)

where P„(x) denotes an uncorrelated (G =0) single-
electron state. For small G, the slope of E vs G is quite
well described by perturbation theory and the agreement
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to the situation in the corresponding three-dimensional
system where the (2,2) state energy (2X —0. 125 a.u. ) also
lies above the first threshold (which is at —0.5 a.u. ) for
zero electron-electron correlation.

We can calculate the spectrum for any value of G and
also monitor the behavior of the eigenstates. The repul-
sive potential GV(x, —xz) lifts all energies and couples
states to each other. In Fig. 2(b) we compare the
behavior of the energies (crosses) with the prediction of a
first-order perturbation theory (open circles). The G
dependence of the energies in a simplified first-order per-
turbation theory is given by

EG =E„' +G&y. (xi)y (x2)IV(xi —x2)

is better the farther the unperturbed states are energeti-
cally apart from each other. Note that even the (2,2)
state behavior is quite nicely predicted even though our
perturbation theory did not use the correct (Pano-type)
rediagonalization which would include the continuum
states

~
1,e ) . Clearly (2,2) turns into an autodetaching

state for GAO and approaches the second threshold as G
approaches 1.

All bound levels (I,n) move closer to the threshold
with increasing G. The threshold energies are unchanged
by G because the thresholds reAect the bound-state struc-
ture of the core system, which is clearly the same for all
G. With increasing G the positively charged nucleus is
screened more and more by one of the electrons. At
G=1 the net force on the outer electron turns into a
non-Coulombic short-range force. For G=1 the bound
states accumulate at the threshold and for G = 1 we find
only one two-electron state below the threshold.

We should mention here that the spectra in Fig. 2 were
calculated for each G separately. This is a very CPU
time-consuming task. Therefore, we chose a larger grid
and a smaller box size L than used in other calculations,
and as a result the total number of bound states was
small, and the thresholds might be slightly shifted
(+0.02 a. u. ) from their true position.

Let us summarize our findings so far as shown in Fig.
2. As the effect of electron-electron repulsion is increased
in the range 0 & G & 1 the neutral hydrogenic system with
its many bound Rydberg levels changes continuously into
a negative ion with only one bound state. This is a strong
confirmation, of course, that it makes sense to refer to
our 10 system as a negative ion. However, with our nu-
rnerical techniques we cannot completely exclude the
possibility of more bound states with energies very close
to the threshold [29]. The energy levels of our one-
dimensional negative ion are displayed in Fig. 3. The
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FIG. 2. (a) The total energy of the two-electron Hamiltonian
(4.1) as a function of the "electron-electron repulsion strength"
G. Note that the thresholds (horizontal lines) are constant and
do not depend on G. The state (1,4) was not resolved beyond
G =0.5. (b) Total energy of the two-electron Hamiltonian (4.1)
calculated via a simplified first-order perturbation theory [Eq.
(4.3)] and shown by the open circles.

FIG. 3. The energy-level diagram based on the total two-
electron energy. On the left-hand side of the vertical energy
scale we show a level scheme based on a single-particle interpre-
tation. On the right-hand side we display only the two-electron
ground state and the four lowest-lying (one-electron) thresholds
and the two-electron threshold, which are indicated by
crosshatching. Energies are given in a.u.
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two-electron threshold is at E=O. The system has a
Rydberg series of one-electron thresholds, indicated in
the rightmost column by the hatch marks, which are
defined by the bound states of the core electron alone.
The core ground state corresponds to the first threshold
for our negative ion and it is known [28] to be at energy
E& = —0.669 818 a.u. Correspondingly, our negative ion
has a detachment energy of ED = —0.730 635 8
+0.669818 a.u. = —0.0608 a.u. The second threshold,
i.e., the first inelastic threshold, is at energy
Eq = —0.274 936 a.u.

The level scheme in the left part of Fig. 3 presents an
alternative view of the two-electron energies in single-
particle terms. The left column contains the only discrete
state of the weakly bound outer electron and its thresh-
old. The right column contains the corresponding bound
levels of the more deeply bound inner (core) electron.

The ratio of the energies E&/E~ is some measure of
the strength of the electron-electron correlation. It is ap-
proximately 11 for our one-dimensional model, which
compares well with the known ratios for most of the
alkali-metal negative ions (Li, Na, K, Rb ) [21]
which are also close to 10. For hydrogen the ratio is 18,
which suggests that our model should compare more
closely to an alkali-metal negative ion than to H

B. One-dimensional isoelectronic partners of H

Let us return to the two-electron systems defined by
H for G between 0 and 1. This seemingly artificial man-
ifold can be associated with a series of different realistic
two-electron systems. It can be shown easily that G for-
mally plays the role of an effective inverse nuclear charge
Z when we allow at the same time for a rescaling of the
core-size parameter in the soft-core potential. To show
this, let us generalize our two-electron Hamiltonian (2.1)
to one with a variable core parameter a

H(Z, a ) = —,'p f + —,'p2-
Qa'+x' Qa'+x'

Qa +(x& —x2)
(4.4)

1 1/Z

+1+g +1+(g,—g, )'

(4.5)

Clearly, the quantity in the square brackets is exactly the
Hamiltonian whose eigenvalues and eigenfunctions we
have been discussing in Sec. IVA if we simply relabel

Apart from its one-dimensional character, H(Z, a ) is ob-
viously appropriate to describe a normal two-electron
system, i.e., it is a 10 analog of the Hamiltonian for H
or He or Li+, etc. , for Z = 1, 2, 3, etc. By factoring Z
from each term, and scaling the core size and both coor-
dinates x

&
and x z by Z according to the formulas

a =1/Z, x, g, /Z, and x2=gz/Z we easily find

1 0 1H(Z, 1/Z)=Z
(A/2 2 ()g~

1/Z —=G. To be precise, we have shown that
G H(1/G, G):H-

In other words, if we interpret G as the inverse nuclear
charge 1/Z all energy eigenvalues of our model Hamil-
tonian H correspond exactly to those of the more natu-
ral Hamiltonian H(Z, 1/Z ) multiplied by Z . That is, if
we associate the energy levels for G=1 with H, then
the energies for the values 6=p 3 4 5

that are also
contained in Fig. 2, can be associated with He, Li
Be +, etc. , with a Z-dependent cutoff parameter a. The
diagram in Fig. 2 is sometimes called a "Z-correlation di-
agram" and has previously been helpful in determining
quantum states by perturbative methods and also to asso-
ciate appropriate quantum numbers with fully correlated
states [30].

C. Exact vs approximate energy calculations

In the previous section we have shown how the various
G-correlated energies can be associated with an isoelect-
ronic sequence of two-electron systems for integer values
of 1/G. This sequence of two-electron systems provides a
framework within which to compare exact and approxi-
mate calculations of various atomic properties. %'e will
restrict our analysis here to the simplest static properties,
namely the ionization potentials and the ground-state en-
ergies. In order to remove Z-dependent core-size scaling
from consideration, we will investigate the first five
members of the isoelectronic class of Hamiltonians
H(Z, a = 1) as defined in Eq. (4.4).

Specifically, Table I compares exact energies with those
obtained from a Hartree-Fock analysis for equivalent
electrons. The exact ionization potentials were obtained
from a direct diagonalization of the single-electron Ham-
iltonian of the corresponding single-electron core system
with nuclear charge Z. The exact two-electron ground-
state energy was calculated via imaginary time integra-
tion as discussed in Sec. III. The details of the Hartree-
Fock approximation method developed for this system by
Haan are given in a separate paper devoted to a detailed
discussion of one-dimensional He [31].

Clearly the ground-state energy as well as the binding
energy is decreasing with increasing attractive nuclear
charge Z as expected. The simple scaling shown in the
previous section is not present due to the constant
Coulomb cutoff parameter adopted here. The direct
comparison with the predictions of the Hartree-Fock ap-
proximate scheme show that the ground-state energy of
H agrees up to 95%%uo with the exact value. For helium
the agreement is better (99.4%) and the agreement is al-
most perfect for Z =3, 4, and 5 ~ This tendency for better
agreement as Z increases is well known.

D. The ground-state wave function

The ground state is the only bound state of the
negative-ion system. We have applied imaginary time in-
tegration as well as the spectral method discussed above
to calculate the ground-state wave function for our two-
electron system.
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TABLE I. Cxround-state energies and ionization potentials as determined by Hamiltonian
H(Z a = 1) for the one-dimensional isoelectronic partners of our negative ion, labeled here as H

Ground-state energy (a.u. ) Ionization potential (a.u. )

Z Exact Hartree-Fock Hartree-Fock

1(H )

2 (He)
3 (Li+)
4 (Be2+ )

5 {B'+)

—0.730
—2.238
—3 ~ 896
—5.615
—7.371

—0.692
—2.224
—3.888
—5.610
—7.367

0.060
0.739
1.560
2.405
3.274

0.054
0.750
1.557
2.404
3.273

In Fig. 4(a) we display the spatial probability distribu-
tion of the ground-state wave function @g(x „xz ). It has
some similarity to the ground state of the uncorrelated
two-electron Hamiltonian H, the simple product of the
hydrogenic ground states P, (x, ) and P, (xz). Indeed the
overlap

~ (4s ~Pi/i ) ~
amounts to about 78%. The loga-

rithmic contour plot of the probability density in Fig. 4(b)
gives a very strong indication of electron-electron corre-
lation. The "butterfly" shape of the contours shows that
there is an "inner" and an "outer" electron, and the
sharper dents along the x, =xz line compared to the
x

&

= —x line show a strong e-e repulsion.2

E. The continuum states

In Fig. 5(a) we present ~@z(x„x2)~ for a typical odd-
parity continuum eigenstate. Its energy is E= —0.533
a.u. which is roughly one third of the way between the
first (E, = —0.670 a.u. ) and second (Ez =0.275 a.u. )

thresholds. The wave function is greatly extended close

to the x, =O and x2=0 axes which indicates that one
electron is still bound (close to the nucleus) while the oth-
er electron is free.

Figure 5(b) displays the corresponding efFective single-
electron probability density de6ned as

I./2 2pz(x)= I dxzi@E(x, x2)i—L/2
(4.6)

The period for pz(x) is very close to 6.03 a.u. (+0.02
a.u. ) in the whole spatial interval from —200 to +200
a.u. This means 4z(x „xz ) has a spatial period of
A, = 12.06 a.u. corresponding to a kinetic energy of
—'(2vr/A)=0. 1. 36 a.u. This agrees very well with the en-2

ergy difference AE =0.137 a.u. between the total energy
(E= —0.533 a.u. ) and the threshold energy
(E, = —0.670 a.u. ). The single-electron density pE(x ) is
normalized to 1. It is interesting to note that the partial
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x2 (a.u. )
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FIG. 4. The ground state
~ 4g (x „x2 )

~
of the one-

dimensional negative ion. (a) Spatial distribution. (b) Contour
plot. The 12 contours shown in the figure correspond to
~4glx, , x2)~ =10 ', where c=n/2 for n=5, 6, 7, . . . , 16.

10
-50 -30 -10 10

x (a.u. )
30 50

FIG. 5. Spatial distribution of a continuum state of the one-
dimensional negative ion with energy E= —0.533 a.u. (a)

~ &&six, ,xz ) ~2 as a function of the two spatial coordinates x, and
x&. The wave function has been calculated for a box length
I.=400 a.u. , but we show it only for —50 a.u. (x & 50 a.u. for
graphical clarity. (b) The one-electron density pE(x ) as defined
in Eq. (4.6).
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The average energy density of states is, therefore, not
constant. The scalar product is performed on the grid via
a Simpson rule which gives a satisfactory precision even
for relatively large grid spacings Ax.

We have calculated all odd "continuum" eigenstates
between the first and second threshold for a numerical
box of length L =400 a.u. We found 53 odd continuum
states (out of 136 odd-parity states with negative total en-

ergy) between the two lowest thresholds. The box has a
grid spacing Ax =0.782 a.u. corresponding to a 512 X 512
grid. This size is small enough that we can resolve the
eigenenergies with a reasonable amount of computing
time but large enough for the quasicontinuum to be prac-
tically indistinguishable from a true continuum from a
dynamical point of view. Even though a larger box size
and a smaller grid spacing is computationally accessible,
these choices for L and Ax are sufticient to obtain accu-
rate bound-free dipole matrix elements.

F. Bound-free dipole moment matrix element

In the weak-field limit the negative ion's detachment
rate is proportional to the square of the dipole moment
matrix element d E between the ground state @ and the
energy-conserving final continuum state NE,

L/2 L/2
dgE = dx, dx24'g(x„x2)(x, +x2)—L/2 —L/2

X@E(x„x2). (4.8)

The dipole moment d E is presented as a function of E in
Fig. 6 where the circles are located at the energies of the
box quasicontinuum states. The dipole moment takes its

0.3

dgE

0.2—

0.1

-0.7 -0.6 -0.5 -0.4
energy (a.u.)

-0.3

FICx. 6. The bound-free dipole-moment matrix element

&@g(x»x2)l(x&+x2)l@s(x&,x2) & as a function of the continu-
um energy E. The circles correspond exactly to the energies of
the quasicontinuum energies (I.=400 a.u. , X=512).

area in Fig. 5(b) under the large peak at the origin (be-
tween —8 and +8 a.u. ) is about 51% which nicely sug-
gests that we can interpret @E as a state in which one
electron is bound in the core ground state and the other
electron is free.

We should mention here that all energy eigenstates
fulfill the "box" normalization

L/2 L/2
( @E~@E' ~ dx1 dx2@E(x 1 ~x2 )@E'(x1~x2 )—L/2 —L/2

(4.7)

maximum value at the energy E= —0.63 a.u. which lies
above the threshold by roughly half the photodetachment
energy. The absolute value of these matrix elements de-
pends on the (artificial) size of our box due to the normal-
ization of the eigenstates in Eq. (4.7). Only when taken
together with the corresponding density of states can
these matrix elements be used to compute physically
measurable detachment rates which are independent of
the box length.

According to the dift'erent density of states in 1D and
3D negative ions, the Wigner threshold law predicts for
one-photon detachment close to the threshold only a
linear increase of the rate with increasing momentum for
a 10 system. A detailed exploration of this regime is,
however, very CPU time consuming because extremely
long integration times are required to resolve the rather
densely spaced states close above the threshold.

V. TIME-DEPENDENT ONE-PHOTON PROCESSES

The link between the static dipole moment matrix ele-
ment and the rate of one-photon photodetachment due to
a weak laser field is provided by Fermi's golden rule
(FOR). For a sufficiently weak field 6' we would expect
an exponential decay of the ground-state probability

Ps (t) =exp( —R, t ), (5.1)

= 8'o
1

(5.2)

Here, p(E ) denotes the average density of states, the in-
verse energy spacing of two neighboring continuum states
of odd parity, and o. , is the one-photon detachment cross
section.

To evaluate the "atomic" constant o.
&

we can use the
data in Fig. 6. To be more specific, a photon energy of
co=0.2 a.u. would excite the state with continuum energy
E= —0.730+0.20 = —0.530 a.u. , which corresponds
closely to the energy of the continuum eigenstate dis-
cussed in Sec. IV E. The dipole-moment matrix element
for E= —0.53 a.u. has the value d E=0.297 a.u. The
spacing between two neighboring eigenstates at that ener-

gy is 0.0083 a.u. With these data we can predict the
value o.

&
= 16.65 a.u. The corresponding cross section for

the real three-dimensional hydrogen negative ion lies be-
tween 12.5 and 0.5 a.u. for photon energies between 0.086
and 0.375 a.u. This is remarkably similar to the range of
cross sections for the one-dimensional analog despite the
diQ'erent state densities and dimensionalities.

Of course, the FGR rate is not reliable in strong fields.
It may fail to give an accurate estimate for many related
reasons: thresholds shifts, high-order processes, distorted
bare wave functions, etc. , are all manifestations of
strong-field excitation. This is the case of main interest
to us, and the only suitable approach is through the exact
time-dependent wave function for the two electrons. This
wave function, denoted ( Il„xxt2), is the solution to

where the FGR single-photon detachment rate 8, , is
given by

R, =@,'~d EP(E)
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Schrodinger s equation with the Hamiltonian that was al-
ready given in Eq. (2.5),

B+(x„x~;t)
i = [Ho+(x, +x2)6(t)sin(cot )]

1 ~ 0 -i - -
t

-
,

'.v.:y ~

10

Oo()

XV(x„x2;r) . (5.3)

In most of our calculations of photoinduced processes
8(t ) is modeled by a trapezoidal pulse which is turned on
and off' linearly over two optical cycles and in between
has a plateau of constant amplitude [32]. This pulse
shape minimizes ionization due to the turn-on alone. For
the intensity range of interest here the laser magnetic
field can be neglected and the dipole approximation is
well justified. The time evolution is performed with the
more advantageous velocity gauge, from which the wave
function can be transformed back into the length gauge
to calculate the required projections.

In order to investigate the intensity dependence of the
detachment we have numerically calculated %'(x„xz,t)
for laser pulses of several intensities. In order to avoid
strong temporal oscillations due to counter-rotating
terms we have calculated the ground-state probability

P (t)=
~ &4, ( „xx)~O( „x,x;t)) ( (5.4)

with the time-dependent wave function in the velocity
gauge [33]. In the constant-intensity region between the
second and fourth cycle we have monitored the time
dependence of the ground-state probability and deter-
mined the detachment rate as well as the deviation from a
purely exponential decay by linear regression. In case of
stronger fields it is also helpful to monitor the survival
probability of the ground state after the pulse has been
switched off (also over two optical cycles).

A more efficient computation can be achieved by using
a smooth mask function which allows a reduction of the
box size L and a smaller number of spatial grid points
[34]. In our calculations the mask function was multi-
plied with the wave function at every tenth integration
time step to eliminate that portion of the wave function
which evolved beyond a certain distance D away from the
nucleus. For large enough D, this portion can be clearly
associated with the detachment; it does not influence the
population in the ground state. More specifically, we
have again chosen a Banning-type mask function
M(xl x2) ni(xi )m(x2) where

10
0

()

O00

000

0.001 0.01 0. 10 (a.u. )

FIG. 7. The ground-state decay rate (open circles) and the
final ground-state probability (diamonds) after the pulse as a
function of the field strength 4 for nominally one-photon ion-
ization (co=0.2 a.u. , two optical cycles turn on and off, six cy-
cles total pulse duration).

VI. MULTIPHOTON DETACHMENT RATES

straight line that corresponds to the prediction by
Fermi's golden rule (5.2). Up to 6 =0.04 a.u. , the agree-
ment with (5.2) is practically perfect given the value
0

&

= 16.65 a.u. already calculated. Only a very small ex-
tra intensity dependence is present. To be more specific,
we have divided all rates for field strengths smaller than
0.01 a.u. by the corresponding intensity 6 and found the
cross section to decrease monotonically from 16.82 (at
6'=0.001 a.u. ) to 16.39 (at 6'=0.01 a.u. ). This means
that the discrepancy between the prediction by FGR and
the actual rate is less than 2% for the whole range of two
orders of magnitude in intensity. This may be the first
demonstration of the range of applicability of the FGR in
describing time-dependent decay in a multielectron sys-
tem for which the e-e interaction is fully taken into ac-
count.

Beginning at roughly 8=0.04 a.u. the discrepancy be-
tween the rate predicted by FGR and the measured rate
increases appreciably. The perturbative estimate via the
FGR clearly neglects all higher-order processes, and
these become important for high field strengths, and the
ground-state decay becomes oscillatory with twice the
laser frequency. The ground state is almost completely
depleted after fewer than six optical cycles. Similar simu-
lations with single-electron model systems found approxi-
mately a similar intensity range at which the FGR breaks
down.

m (x) = 1+ I cos[vr( lx I
D) l(2D ) ]—1]e( lx I

—D ) (5.5)

and the "cutoff" distance D was chosen to correspond to
a quarter of the total box size L. We should note here
that this smoothed cutoff' procedure cannot be applied in
simulations for which the double-ionization rate or ener-
gy spectra are of interest. The mask function reduces the
norm of the wave function, which could be misinterpret-
ed as double ionization.

In Fig. 7 we show detachment rates (open circles) as
well as the final ground-state population after the pulse
(diamonds) as a function of the field strength 6 for
co=0.2 a.u. For low intensities the rates are on the

In this section we will study the photodetachment rates
[35] for a smaller laser frequency (co=0.04 a.u. ). In this
case the outer electron can detach in the weak-field limit
only with the absorption of at least two photons. In the
next section we will discuss the corresponding photoelec-
tron spectra for this same case. Single-active-electron
theory [36—39] predicts characteristic minima in the
photodetachment cross section to occur at specific laser
intensities, where decay channels become closed due to
field-induced level shifts. This is shown in Fig. 8(a). The
question we try to address here is whether these minima
can occur at all when the core electron is allowed to par-
ticipate in the dynamics.
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In Fig. 8(b) we present our results for the rate as well
as for the final ground-state probability as a function of
the laser field strength 8. In the weak-field limit
(6 (0.008 a.u. ) the linear behavior in the double loga-
rithmic plot indicates a clear power-law dependence of
the rate on the field strength. The measured slope is 3.73
which is close to the expected dependence R2 —6 for a
perturbative nonresonant two-photon decay [40]. At
slightly higher-field strengths, close to e =0.01 a.u. , the
rate drops appreciably and deviates drastically from a
simple power law. This obviously corresponds to the
maximum found in the final ground-state population at
the same field strength.

At much higher field strengths the concept of a detach-
ment rate becomes meaningless and we give a rate curve
only up to 8=0.013 a.u. Beyond this value we plot only
Pg at the end of the pulse. It has been suggested previ-
ously [36—39] and also partly confirmed experimentally
[41] that the extrema shown for high fields in Fig. 8(b)
can be associated with photodetachment channel clos-
ings. These occur, if we assume that we can neglect any
shifts due to polarization effects or effects due to a (possi-
bly) active inner electron, because the threshold energy

increases by the free-electron jitter energy (the so-called
the ponderomotive energy). Channel closings should be
thus expected at critical field strengths D„at which the
n-photon decay channel becomes closed,

g2
nco=lED +

46)
(6.1)

where
l En l

denotes the positive photodetachment poten-
tial. In order to check this simplified estimate we have
marked the field strengths 6'„ in Fig. 8(b) with arrows.
The agreement between the maxima in the final ground-
state population and the predicted field strengths 6 „ is
qualitative but systematic. The agreement is not expect-
ed to be better because on average the ground state ex-
periences a smaller field than @„due to the turn on and
turn off of the pulse, whereas Eq. (6.1) assumes a constant
intensity throughout the pulse. In any case, there is a
clear one-to-one correspondence between the arrows and
the maxima through the first six channel closings. It sug-
gests that the inner electron is quite inactive in this pa-
rameter regime. To investigate the inhuence of the core
electron on threshold shifts more detailed studies are re-
quired.

l
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VII. PHOTOELECTRON SPECTRA
AND ABOVE-THRESHOLD DETACHMENT (ATD)

The two-electron wave function 'P(xi, x2', T) contains
all of the information available after the system has in-
teracted with the laser pulse, including the photoelectron
energy spectrum. The total (two-electron) energy spec-
trum P' '(E) is unambiguously defined as the squared
overlap of the wave function %(x „x2,T) with the energy
eigenstate @~(xi,x2),

P"'(E)= l(~, l+(T)) l' (7.1)
10

-2-
10

10

-6j
10

0.001 0.01 8 (a.u. )
0. 1

FIG. 8. (a) This is the original Fig. 8(b) from Ref. 38 [used
with permission of the authors]. Ionization rate vs intensity for
%co=0.17 eV. The circles are approximate reproductions of the
results of Ref. [37], which were computed from a finite-range
potential in one dimension. The vertical dashed lines mark the
predicted intensities for channel closings. (b) The ground-state
decay rate (open circles) and the final ground-state probability
(diamonds) after the pulse as a function of the field strength N.

The arrows correspond to the field strengths 8„defined in Eq.
(6.1). The straight line has a slope of about 3.7 (co=0.04 a.u. ,
two optical cycles turn on and off, six cycles total pulse dura-
tion).

X4(xi,x2,'T), (7.2)

where k& and k2 denote the momenta. An e6'ective
single-electron energy density P"i(E) can be dined as
the integral of ly(ki, kz', T)l over one of the momenta,
say k2, and a subsequent transformation to energy via
E —= —,'k',

It can be determined accurately by the methods already
discussed in Sec. III. When multiplied by the average
density of states, P' '(E) yields true energy distributions
of the two-electron system, but is not obvious how to
design simple laboratory detection of two photoelectrons
with total energy E. It is more interesting to investigate
how the total energy is distributed between the electrons.

A "single-electron" energy distribution is experimen-
tally more easily accessible, but is more difficult to define
from a theoretical point of view. In order to calculate the
(single) electron energies following the pulse, the ground-
state contribution was removed from the final wave func-
tion and the remainder %(x„x2,T) was Fourier decom-
posed into its momentum amplitudes y(k„kz, T),

y(k„k„T):JJd dx, xp[ex(k, i —+xk'„x, )]
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P"'(E)= (2E )
' f dk 2~y(k „k~;T )

~
(7.3)

This definition mimics the distribution of kinetic energies
of electrons which arrive at detectors far away from each
other and from the nucleus. But a word of caution
should be applied. In case of single-electron detachment
close to zero energy the distribution P'"(E ) also contains
the Fourier components of the bound inner electron,
which prohibits a clear interpretation at small energies.
However, the single-electron energy distribution between
the first and second threshold can also be calculated from
the total-energy distribution P' '(E) even in the near
threshold region.

We have previously presented [17,20] two-electron and
one-electron photospectra. An investigation of one-
electron peak intensities as a function of the laser pulse
duration revealed the presence of previously unsuspected
differential growth rates among the photoelectron peaks.
The spectra shown here in Fig. 9 correspond to excitation
with a high-frequency photon and a strong short pulse
(co= 1 a.u. , pulse duration 50 optical cycles and field
strength 6=0.5 a.u. ). The total (two-electron) energy
spectrum of Fig. 9(a) shows equidistant peaks spaced by
the photon energy co, which indicates that the negative
ion has absorbed an integer number of photons. It is not
clear from P' '(E ) alone how the energy is distributed be-
tween the two electrons. The single-photon spectrum of
Fig. 9(b) shows a repeating ATD sequence labeled s =0,
s =1, etc. The details of the four-peak structure within
each ATD peak have been presented in higher resolution

p(2)(E)

-1 0 1 2 3 4

energy (a.u. )

P( )(E) =

s=o (b)—

2 3

energy (a.u.)

FICs. 9. (a) The distribution of the total energy P' '(E) after
the pulse. (b) The one-electron photospectrum P"'(E) taken
from the same wave function as in (a) (6 =0.5 a.u. , u= 1.0 a.u. ,
two optical cycles turn on and o6; total pulse duration 50 opti-
cal cycles, L =800 a.u. , N= 1024).

elsewhere, and have been correlated with direct and
sequential one-electron and two-electron removal pro-
cesses [17].

Now we turn our attention to the way one-photon
ATD spectra are affected by the channel closings dis-
cussed in Sec. VI. For our example we have again chosen
pulses which are linearly turned on and off over two opti-
cal cycles and have a constant-intensity plateau of 6 cy-
cles in between, with the same low frequency co=0.04
a.u. [42].

We have already mentioned that the single-electron en-
ergy distribution between the first and second threshold
can be calculated from the total-energy distribution
P' '(E) even in the near threshold region. In Fig. 10(a)
we present P' '(E ) and we have shifted the energy E such
that the new zero coincides with the first threshold. The
energies can be interpreted as kinetic energies of the de-
tached electron. The first three ATD spectra for
6=0.005, 0.008, and 0.010 a.u. show a sequence of pho-
toelectron peaks which are spaced by the photon energy
co=0.04 a.u. as expected, due to the absorption of addi-
tional photons. In the perturbative weak-field limit the
position of the first peak should occur at continuum ener-
gy E +2' (about 0.02 a.u. above the threshold) which
agrees with the position found for the lowest laser intensi-
ty. With increasing field strength our calculations indi-
cate a redshift of the peaks toward the threshold, as ex-
pected.

However, Fig. 10(a) also shows that as we approach the
channel closing intensity at 6=0.011 a.u. the spectra be-
come very sensitive to the field strength as was already
noted in single-active-electron calculations [37]. The first
ATD peak is drastically diminished and the second and
third peak are dominant. This sensitivity is also obvious
from the qualitative change of the spectra from 6=0.011
to 6=0.012 a.u. We can compare these ATD spectra
directly with corresponding plots of the time-dependent
decay of the ground state, which is the same thing as the
detachment probability since there is only one bound
state.

In Fig. 10(b) we present the detachment probabilities
for the same six laser field strengths. Recall that Fig. 8(b)
shows that in this range the amount of detachment first
increases (for 6"s up to 8=0.009 a.u. ), then decreases
(for 8's up to 8=0.013 a.u. ), and then increases again for
higher-field strengths, until the next channel-closing in-
tensity (close to 6 =0.020 a.u. ) is reached. This behavior
is apparent at t = 10 cycles in the curves in Fig. 10(b) too,
of course. [The strong oscillations apparent in the six
graphs in Fig. 10(b) occur with twice the laser frequency
and can be associated with counter-rotating effects. At-
tention can be focused on the locus of minima, which
goes smoothly into the final value at the end of the pulse. ]
The sensitivity of the detachment process to field strength
near the channel closing is again evident. For both
@=0.011 and 0.012 a.u. , the decay curve (growth of pho-
todetachment probability) suggests that at least two
different times scales are determining the decay for laser
fields close to the channel closing. Note that the ground
state decays very weakly between the 2-—,

' and 4-—,
' cycle

points but more rapidly in the remaining part of the con-
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stant intensity plateau, particularly for 6 =0.012 a.u.
We complete this section with a comparison with the

time-dependent decay curves obtained previously [18,19]
for the higher-frequency ~=0.08 a.u. In this case, for
laser intensity close to 8=0.02 a.u. , a window was
identified in which the inner electron is passive and al-
lows dynamical stabilization of the outer electron. The
corresponding time-dependent probabilities reported for

the stabilization window resemble those shown here in
Fig. 10(b) for the intensity between 8=0.010 and 0.012
a.u. It is important that the channel-closing scenario and
the increased ground-state population after the pulse (ac-
companying a greater pulse intensity as the channel
closes) should not be confused with dynamic stabilization
of [18,19]. The channel-closing scenario is found for a re-
gime for which the ATD peaks are red shifted and it has
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FIG. 10. (a) Photoelectron spectra obtained from the same pulses as in (b). (b) Detachment probabilities as a function of time for
six laser field strengths @ (in a.u.). (co=0.04 a.u. two optical cycles turn on and off, total pulse duration ten optical cycles, L =800
a.u. , X= 1024.)
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been predicted previously that stabilization should be ac-
companied by a blue shift [43].

In the higher-frequency (co=0.08 a.u. ) case the inner
electron destroys stabilization for the outer electron with
increasing field strengths. For the lower-frequency case
(a~=0.04 a.u. ) we find that even for the highest-field
strength (6 =0.014 a.u. ) the probability for double ion-
ization after the pulse is always far below 1%. Clearly,
the increase of the detachment probability from
8=0.012 to 0.014 a.u. is not due to the dynamical
inAuence of the inner electron.

VIII. SINGLE AND DOUBLE IONIZATION,
TIME DEPENDENCE OF VARIOUS STATES

The one-electron ionization probability, which we
denote by P'"(t), can be unambiguously calculated from
the projection of the time-dependent wave function
%(x, , xz, t) on the (two-electron) ground state Ns(x„xz)

P' "(t)=1—
I& e, (x i, x& ) l

+(x i, x&, t ) & I' . (8.1)

2
P„(t)=2f dx~ f dx, P„(x, )'P(x, , xq,iti)'

2
dx, f dx ~P„(x, )P„(x~ )qi(x, ,x ~; t )

=
& qi(x, , x~, t ) lP„+(x„x~;t ) ), (8.2)

where the projection operator P„of the second line is
defined as

P„=(ln &&nl), 811,

+11,(ln &&nl), —(ln) &nl)ig(ln) &n ), (8.3)

In the context of our negative ion, P"'(t) could also be
called the detachment probability.

Let us now define another helpful projection on a
single-electron state. P„(t) is defined as the probability to
find (at least) one electron in the hydrogenic bound state
P„(x). It can be calculated from the corresponding pro-
jection of the two-electron wave function q(xi„zx, t ) on
P„(x),

and II; denotes the unit operator acting on the ith coordi-
nate of the wave function.

We should add here four remarks about peculiarities
encountered interpreting the probabilities P„(t ).

(1) The probability P„(t) is not necessarily constant
even in the absence of a laser field. To give an example
let us assume that the system is initially prepared in the
lowest autodetaching state: ~li(x„x,;0)=P,(x, )P~(x, ).
Clearly, the probability of finding at least one electron in
the core ground state P, (x) is initially zero. However,
after one electron has autodetached and the other elec-
tron has "dropped" into the core ground state Pi(x),
P, (t) takes a nonzero value [31].

(2) The value of Pi in the FI ground state is only 97%
for our model, and P3 is already 17%. This shows that
the ground state cannot be interpreted very strictly as a
weakly bound outer electron and a core electron in the
exact hydrogenic state P, (x ).

(3) The expectation value of the sum of all projectors
g„&P„) can exceed 1 because the probabilities P„(t) are
not mutually exclusive, and the product of two difterent
projectors P„P is always nonzero.

(4) In the special case of two noninteracting electrons
[take 6 =0 in Eq. (4.1)] the expectation value P„(t) does
not reduce to the simple probability l &P„lg(t)) l, where
P(t) denotes the wave function of the corresponding
single-electron problem. It should be more appropriately
interpreted as the probability that at least one electron is
in state P„(x) under the assumption that we have two
hydrogen atoms at our disposal: P„(t) =2l&g„lg(t))l—

l & y„lq(t) & l'.
Another quantity of physical interest is the double-

electron ionization probability P' '(t). The definition of
double-electron ionization is not straightforward from a
conceptual point of view. Even within the classical con-
text it is not clear how one can uniquely define a double-
ionization probability for a three-body system. In
quantum-mechanical language, an electron state of posi-
tive total energy is not necessarily equivalent to two un-
bound electrons. We will define P' '(t) as the probability
that neither of the two electrons is in a bound state of the
corresponding hydrogenic core (see the Appendix). The
latter is obviously the complement of the probability that
at least one electron is in a hydrogenic bound state P„(x),

P' '(t):—1 —. 2g f dxz fdx, P„( x, )4( x„xz., )t

7l n, m

2f fdx, dx, y„(x, )P (xz)%(xi,xz, t)

=1— QP„(t) g f f—dx, dx~p„(x, )p (x~)qi(x, ,x~;t)
n, m

num

2.
(8.4)

The terms in the first sum describe the probabilities P„(t)
that the electron with coordinate x, is in bound state P„
independent of the other electron. The factor 2 reAects
the symmetry of the wave function under exchange of the
electrons's coordinates. In order to avoid double count-
ing we have to subtract in the double sum the probability
that both electrons are bound.

We have calculated examples of the probabilities
defined in the previous section for our negative-ion mod-
el. We have chosen the laser frequency m=1.0 a.u. ,
which is large enough to doubly ionize the atom under
the absorption of only one photon. The laser Geld
strength was 0.5 a.u. and the corresponding photoelec-
tron spectra have already been presented in Fig. 9.
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We show in Fig. 11 the single-ionization probability
P"'(t) and the double-ionization probability P' '(t) as a
function of time. These probabilities actually oscillate
strongly with twice the laser frequency, corresponding to
the jitter motion of the electrons. The size as well as the
phase of these oscillations during the pulse depend on the
gauge of the wave function [33]. To avoid any confusion
and to improve graphical clarity we have shown only the
minima in the figure. The locus of these minima behaves
smoothly even during the turn off (from the 48th optical
cycle to the 50th) and goes continuously over into the
probabilities after the pulse. It is apparent from Fig. 11
and also in agreement with previous findings [17] that the
"first" electron escapes on a much shorter time scale than
the "second" electron. After the first 6 optical cycles of
the laser pulse the two-electron ground state has already
decayed by almost half whereas the double-ionization
probability needs roughly 30 cycles to decay by half.
Note that in contrast to the single ionization, the tem-
poral behavior of the double ionization P~ ~(t) cannot be
described by a simple exponential. The question whether
the rapid ground-state decay is due to the inner or outer
electron has been investigated in previous work [17].
These two ionization probabilities themselves do not al-
low any elaborate interpretation of the various mecha-
nisms involved in the decay.

More information can be obtained from Fig. 12 where
we display the "core state" probabilities P„(t) as defined
in Eq. (8.2). Again we present only the probability mini-
ma of the curves. P, (t), the probability to find at least
one electron in the core ground level, is 97% at t =0 as
mentioned in Sec. VIII and decays on a time scale inter-
mediate between the ones for P"'(t) and P' '(t).

P2(t) vanishes before the laser pulse, but during the
two cycle turn on of the laser the n =2 core level be-
comes appreciably populated and reaches almost 50%.
This probability then decays to 20% after 12 cycles.
During the remaining 38 cycles of the pulse P2(t)
remains almost constant and the population seems to be
trapped in that core state. This is interesting because the
odd-parity core-electron state Pz(x) is not directly dipole

0.8—

0.6—

0.4—

().2-~
~ P3 (t)

0 10
time

20 30 40
(in optical cycles)

50

FIG. 12. The time dependence of the "core-state" probabili-
ties P„(t) as defined in Eq. (8.2) for the same laser pulse as in
Fig. 9. We show only the maxima of the curves. The initial
probability for P2(t =0) is negligible, whereas P3(t =0) is 17%
in the two-electron ground state (8=0.5 a.u. , co=1.0 a.u. , two
optical cycles turn on and turn ofF, total pulse duration 50 opti-
cal cycles).

coupled to the core ground level. It is not clear if that
trapped portion should be associated with strong-field
stabilization. The population in the n =3 core level
shows a similar behavior. It gains most of its population
during the turn on, loses roughly half of it during the
next 10 cycles and then ceases to decay during the
remainder of the pulse.

It is not unexpected that the core shake up, producing
transitions to the first two excited core states n =2 and 3,
occurs during the pulse turn on. Furthermore, P, (t) and
P2(t) decay on two different time scales. The most rapid
time scale corresponds to the time on which the two-
electron ground state decays. This suggests that due to
electron-electron collisions the core-electron can be
"knocked out" by the outer electron. When the outer
electron has become detached the core electron state de-
cays on a very slow time scale. These findings suggest
that our photoelectron spectra, which obviously depend
strongly on the core state populations, are much more
sensitive to turn-on efFects than the corresponding spec-
tra for single-electron systems.

IX. THE SPECTRUM OF SCATTERED LIGHT

0.8—

0.6—

0.4—

0.2—

0-:
0 10 20 30 40

time (in optical cycles)
50

In this section we discuss briefly the spectrum of the
scattered light generated by the interaction of our
negative-ion model with a strong laser field. A more
thorough analysis will be presented elsewhere [44]. The
photon spectrum depends on the time-dependent dipole
moment (x, +x2), or more directly on the expectation
value of the acceleration (x i +x z ):

FIG. 11. The ionization probability for single-ionization
P'"(t) and for double-ionization P' '(t) as a function of time.
Wide oscillations occur every half-cycle, but we have shown
only the minima for graphical clarity. The laser pulse is the
same as used in Figs. 9 ( 6 =0.5 a.u. , co= 1.0 a.u. , two optical cy-
cles turn on and turn ofF).

V(x„x,)) .
Bx2

(9.1)

Due to the symmetry of the two-electron wave function it
is sufhcient to compute the acceleration of only one elec-
tron. In practice we have calculated the spectrum from
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the Fourier transform of the time-dependent expectation
value of the single-electron force ( —(BIBxi ) V(x i ) ).
Even though both electrons are strongly correlated the
contribution of the repulsive two-electron force to the ac-
celeration of the expectation value is zero.

There is one further advantage in using the expectation
value of the force. As opposed to the dipole operator,
which takes its maximum value at the (unphysical) boun-
daries of the numerical box, the force is centered around
the origin and falls o6' rapidly towards the boundaries.
This leads to photon spectra which are less influenced by
an interaction of the wave function with the boundary.
We have found that interaction with the boundaries can
lead to artificial even and odd harmonics of the laser field
of very high order. Comparative simulations, for which
the mask function discussed in Sec. V was used, allow
identification of "unphysical*' contributions in the spec-
tra.

We will present light spectra generated by a low-
frequency (co=0.08 a.u. ) laser pulse and a range of field
strengths between 6' =0.01 to 0.08 a.u. We have found in
previous work with the same frequency photons that this
range of field strengths is particularly interesting in the
sense that the negative ion undergoes a transition from
dominantly single to dominantly double ionization
around 6=0.04 a.u. The corresponding time-dependent
probabilities for this case have been discussed elsewhere
[19,20].

Figure 13 shows four photon spectra, corresponding to
laser fields of increasing strength. Figure 13(a) shows the
harmonic spectrum obtained for the lowest field strength
(8=0.01 a.u. ) and a pulse of 18 optical cycles. This field
is strong enough to detach the outer electron rapidly.
The ground state probability drops by half during the
first two cycles of the turn on and goes to zero after only
8 cycles. The light spectrum contains clear evidence of
only the third and fifth harmonics in addition to the main
peak at the laser frequency.

The intermediate intensity range around 8=0.02 a.u.
is more interesting. We have shown [18,19] that the field
is strong enough to stabilize the outer electron but not
strong enough to ionize the core electron. The double-
ionization probability is still negligible after such a pulse.
Figure 13(b) shows the harmonic spectrum in this single-
electron-stabilization regime. The highest harmonic
clearly identifiable in the light spectrum is the fifteenth.
We should note that the harmonics fall ofF'monotonically
with increasing order and that there is no plateau evident
in the figure.

The third intensity regime around 8=0.08 a.u. is
characterized by very rapid detachment and an apprecia-
ble amount of double ionization. We have found that
after the laser pulse the negative ion has decayed to the
neutral hydrogen core in its ground level (30%) and to a
nucleus with two free electrons (70%). The light spec-
trum in Fig. 13(c) shows the presence of odd harmonics
with maximum order around 27. This time one can
recognize an extended harmonic plateau up to the 19th
or 21st harmonic and a rapid cutoft after that. The am-
plitudes in the plateau region show some weak oscillatory
structure. It was not clear at the two lower intensities

5
A IHI(5.ILil4IIAklitHIAIVl ~llU~ 0, '

9 13 17 21 25 29
harmonic order

I I 1 I I I

(b) =

1 5 9 13 17 21 25 29
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(d):=
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5 9 13 17 21 25 29
harmonic order

FIG. 13. The coherently scattered light spectrum as a func-
tion of the harmonic order for three different laser intensities.
(a) 4=0.01 a.u. (rapid single electron detachment, no double
ionization). (b) 8=0.02 a.u. {stabilized outer electron, no dou-
ble ionization). (c) @=0.08 a.u. (quickly ejected outer electron,
mainly double ionization). (d) 8=0.08 a.u. , the spectrum from
two uncorrelated hydrogen atoms. (In all cases co=0.08 a.u. ,
two optical cycles turn on and turn oA; total pulse duration 18
optical cycles. )
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[Figs. 13(a) and 13(b)j whether the features in the light
spectrum could be associated with the outer or inner elec-
tron. For this higher laser intensity it is clear that essen-
tially all spectral features come directly from the deeply
bound inner electron while it gets ionized.

To make evident the effects of electron correlation at
the highest field here we have repeated the last simulation
with the electron-electron correlation "switched off."
This corresponds to a system described by the Hamiltoni-
an H defined in Eq. (4.1) with G =0. We find that there
is a nearly complete one-to-one correspondence between
the higher harmonics in the spectrum for the negative ion
and the spectrum for two uncorrelated hydrogen atoms.
This makes it quite clear that in this domain of field
strengths all of the principal spectral features in the scat-
tered light of the negative ion are due to excitation of the
core electron. The higher harmonics are more distinct
from the background in the case of the two uncorrelated
hydrogen atoms. This might be expected on the grounds
that in the latter case we have two equally active elec-
trons producing the harmonics, compared to only one ac-
tive electron during the later stages of double ionization
of the negative ion. A wider investigation of the genera-
tion of higher harmonics for our two-electron system is in
progress.

X. SUMMARY

We have presented a description of various aspects of a
one-dimensional model two-electron quantum system
characterized by the same soft-core Coulombic potential
that has been used in strong-field studies of one-electron
systems. We have solved Schrodinger's equation for the
fully correlated two-electron wave function for the bare
atom and for the atom in the presence of a short intense
laser pulse. We have calculated many low-lying bound
and free eigenenergies, and the associated wave functions.
A finding of particular interest is the existence of only
one bound state, in common with real negative ions. On
the basis of this as well as other evidence presented it ap-
pears satisfactory to interpret the model as the one-
dimensional analog of a negative ion. Bare energies are
similar to alkali-metal negative ions in particular. The
model appears suitable as a test ground for approximate
two-electron theories as well as a convenient tool to in-
vestigate the effects of a strong electron correlation on
strong-field phenomena, and vice versa. In addition to
bare system properties we have presented single and mul-
tiphoton detachment rates, photoelectron spectra includ-
ing many ATD peaks, a brief examination of sensitive
response near to channel closings, the time dependence of
various core state probabilities, and scattered light spec-
tra.
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APPENDIX

Expression (8.4) can be also conveniently derived using
a convenient projector formalism. The "exact" two-
electron ionization probability ' 'P(t) has to be defined
via the energy integral over those subspace of continuum
eigenstates ~@z(1,2)) for which "both electrons are
free, "

"'P(r)= fdE((e, (x„x,)~e(x„x,;r)) ('. (A 1)

This is, of course, just an equivalent way of saying that
' 'P(t) is the expectation value of the projector

' 'P=—fdE~4&~(1, 2) )(4&~(1,2)
~

(A2)

where the integration interval covers all relevant energy
states. Again, the principle problem is that this corre-
sponding submanifold ~C&z(1, 2) ) within all positive ener-

gy eigenstates is not uniquely determined. We propose
here to replace the undetermined subspace projector ' 'P
by the corresponding one for two decoupled hydrogenic
states (independent particle picture)

+g fdE IE(1) n 1(2) ) (E(1),n 1(2)1
n

+g g~n(1), n'(2))(n(1), n'(2)~ . .
n n'

(A4)

Here II; denotes the unit operator acting on the ith coor-
dinate of the wave vector. Combining the sums and in-
tegral and making use of the completeness relation of the
eigenfunctions we can simplify the above expression and
find

—:f dE fdE'IE(1) E'(2))(E(1),E'(2)l, (A3)

where the state ~E(1),E'(2)) is defined as the direct
product ~E ) ~E' ). In this notation ~E ) denotes the posi-
tive energy eigenstate of the (one-electron) hydrogen
problem which can be easily computed by a straightfor-
ward diagonalization of the bare hydrogen Hamiltonian.
This task is very (CPU) time consuming due to the high
number of (quasi) continuous eigenfunctions. However,
the complement projector to P' ' is characterized by only
those direct product states, in which at least one of the
two states is bound. We denote the bound hydrogen
states by ~

n ) where n = 1,2, 3, . . . , is the principal quan-
tum number. The projector P' ' can then be expressed as
a sum (integral) of symmetric bound-free and bound-
bound components

P ' '=II, II& —,g fdE~n(1), E(2))(n(1),E(2)~



4680 R. GROBE AND J. H. EBERLY

1'"=II,a II,— y~n(I) ) (n(I) ~tg II,
n

+&IIt ln(2) & & n (2)
l

This

—& & ln( I ), n'(2) ) ( n(1), n'(2)
~

n n'

(A5)

expression contains only sums over discrete states

~n ) and the expectation value of this projector can be
easily computed. In principal, the sums extend to all
bound states but for our parameter choice it is numerical-
ly sufficient to restrict the sum to only the 35 lowest-lying
states. The evaluation of the projector can be further
simplified if we take into account the symmetry of the
wave function under an exchange of the electrons's coor-

~(2)dinate. The expectation value of the projector P can be
easily calculated in the spatial representation and we find
the desired expression for the two-electron ionization
probability (8.4).
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