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Generation of pure states in a two-photon micromaser: Effects of finite detuning and cavity losses
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In this paper, we study the generation of pure states in a two-photon micromaser with finite detuning
of the intermediate atomic level. This study was done via the temporal evolution of the discrete master
equation. We show that it is possible to generate the ideal squeezed vacuum for a broad range of detun-

ings in a lossless cavity and away from the trapping condition. We also consider the effect of cavity
losses.

PACS number(s): 42.52.+x

I. INTRODUCTION II. TRAPPING STATES FOR ARBITRARY DETUNING

Recently, pure states have been found for various mi-
cromaser systems, such as the one-photon [1,2] and two-
photon [3,4] micromaser as well as in the A, system [5],
under idealized conditions such as having a lossless cavi-
ty, infinite atomic lifetimes, and a large detuning of the
intermediate atomic level, in the case of the two-photon
micromaser [3]. Some of these pure states present a
strong quadrature noise reduction [2,6]. Nonideal effects
have also been studied in the past in a one-photon micro-
maser [7,8]. Examples of the above-mentioned states are
the tangent and cotangent states for the one-photon mi-
cromaser and the even and odd states for the two-photon
micromaser. The even and odd states [3] for the two-
photon micromaser were derived under the condition of
high detuning of the intermediate atomic level (three-
level system) with respect to the midpoint between the
upper and lower levels and for special values of the in-
teraction time (trapping condition). In addition, the ini-
tial state of the field, say for an even state, has to be a
coherent superposition of even number states within the
given trap. Alternatively, it could also be an incoherent
field with nonzero density matrix elements corresponding
only to even indices, again within the trap. These initial
conditions are, in general, dificult to realize experimen-
tally, with the exception of the vacuum state, which we
use here. In this work, we will study how the even states
are modified by the fact that the detuning is finite and
also by the efFect of cavity losses. We further find in this
work that pure states can be generated in the two-photon
micromaser without satisfying the trapping conditions.
These states turn out to be the perfectly squeezed vacuum
[9].

This paper is organized as follows: In Sec. II we obtain
the pure states for the field, for an arbitrary finite detun-
ing, in a lossless cavity. In Sec. III we derive the discrete
master equation for the reduced field density matrix.
This equation enables us tu verify dynamically the ex-
istence of those pure states. In Sec. IV we include the
cavity losses in the temporal evolution and compare them
with the previous results. Finally, Sec. V is a summary
and conclusion.
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with e=h/2g and P=gr, b, being the detuning (Fig. 1), g
the coupling constant, and ~ the interaction time between
the atoms and the cavity mode.

Here we assume that all the atoms enter the cavity in
the same coherent superposition:

ie&=aia&+yic& .

The evolution of a pure state of the atom-field system is

Ic&

FIG. 1. Energy levels relevant to the two-photon micro-
maser.

We consider the three-level atom, shown in Fig. 1, in-
teracting with a single mode of the electromagnetic field
in a lossless microwave cavity. The well-known temporal
evolution operator for this system [10] is given by
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given by
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From Eq. (6) we see that the upward trapping condi-
tions are
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where r is an integer, which remove the transition from
the

l n„& state to the
l
n„+2 & and

l
n„+ 1 & states.

The following additional condition is necessary in or-
der to remove the two-photon transition from ln„—1 & to
ln„+1&:

fl+y 1 — R(n —1) .S„.
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(10c)

a'=a, P'=0, y'=y .

For these equations to be consistent it is necessary that

P+2n„+1+e =2qn, (8c)

where q is an integer. Conditions (Sa) and (8c) are incon-
sistent because there is no P such that will satisfy both
conditions.

For n„))1 or e)) 1 the conditions (8a) and (8c) are ap-
proximately the same. When e)&1 all the one-photon
transitions are removed, and we recover the two-photon
case [3]. There is a third case with no trapping condition
that will be considered next. Let us assume that the field
reached a pure steady state. If one additional atom
crosses the cavity, it only modifies the state of the system
by a global phase factor and in general yields a different
atomic state, that is,

g S„ln &(ala &+ylc &)
n=0

~ g S„ln &(a'la &+p'lb &+y'lc &) . (9)

Comparing the right-hand side of Eqs. (6) and (9), we
obtain

With the conditions given above, Eqs. (10) become a
single equation

a n+1
"+2

y n +2

1/2

S„. (12)

This is the we11-known recursion relation for the even and
odd states found in the two-photon micromaser model
l:3].

It is interesting to set n =0 in Eqs. (10). Equations
(10a) and (10c) are consistent with Eq. (11); however,
from Eq. (10b) we get S, =0. Therefore, in the case of
finite detuning the steady state of the field contains only a
superposition of even photon-number states since all the
odd components vanish. Hence, when we have no trap-
ping condition, the solution for the recursion relation (12)
gives us the squeezed vacuum state (see the Appendix).
Comparing the recursion relation (12) with Eq. (A3) we
find that the squeezing parameter is given by
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states? This question is answered in the following sec-
tion.

III. GENERATION OF PURE STATES
VIA THE TEMPORAL EVOLUTION

)') =—.1
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(14)

where 0„ is the relative atomic phase between n and y.
For 6I„=~ we get noise reduction in the a2 quadrature
[9]. The Auctuations of a2 are given by (A4b),

In this section we consider the dynamic behavior of the
reduced density matrix of the field including arbitrary de-
tuning. We have a special interest in the steady state
reached by the cavity field. We calculate the reduced
field density matrix by using the time evolution operator
given by Eq. (1), after the (k +1)th atom has crossed the
cavity, that is,

p"+'=Tr„[U(r)p, tp" U (r)),

From this last equation we see that in the neighborhood
of ~a/y~ =1, slightly to the left, the quantum noise can
be made nearly zero.

A valid question is, how can we generate one of these

where p„ is the initial atomic density matrix and p is the
reduced density matrix of the field after interacting with
the kth atom. Using the photon-number basis, after a
straightforward calculation, we obtain the following
discrete master equation:
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The last four terms account for the one-photon transi-
tions and they depend on a factor 1/(2n +1+e ) (1.
These terms are very small in the regime

~
e~ ))1.

In the following, we present and discuss some numeri-
cal calculations of the temporal evolution of this discrete
master equation.

Figure 2(a) shows the quadrature fluctuations

I

((Aaz) ) for three times, as a function of e, the detuning
parameter, in logarithmic scale. The initial condition is
the vacuum state, a/y = —+0.7 and the reduced interac-
tion time is P =4vre /23, which corresponds to n„= 10 for
high detuning [3]. We observe that for e) 10 the value
of ((b,a2) ) is in agreement with the value corresponding
to the trapped even states. In the region e(10 the Auc-
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tuations are constant and smaller than in the previous re-
gion. The value ((b,az) ) =0.022 is in agreement with
the corresponding number obtained from Eq. (14) for
la/yl =&0.7. In Fig. 2(b) we show the corresponding
entropy for the same cases as in Fig. 2(a). Here we ob-
serve that the entropy vanishes in the two e regions dis-
cussed above. Hence, in those regions we have pure
states. Figure 2(c) shows the ratio (versus detuning)

n =1,3, 5,

n =0,2, 4,

Pn, n

Pn, n

r =
2

n =11,12, 13, . . .

n =0, 1,2, . . . , 10

Pn, n

Pn, n

which gives us information about the probability leakage
from the even trap corresponding to n„=10. Here we
see that n„= 10 is upward trapping state for e) 10 . On

which gives us an idea about the behavior of the one-
photon transitions and how these are removed in time.
We see that in the e parameter ranges specified above
only the even photon-number components survive.
Hence, in the steady state, the one-photon transitions
have been totally suppressed. Figure 2(d) shows the ratio
(versus detuning)

the other hand, for e ( 10, this ratio is a constant different
from zero. This number agrees with the r2 value as ob-
tained from the ideal squeezed vacuum [9].

Figure 3(a) shows the quadrature fluctuations as func-
tion of I, which is number of atoms crossing the cavity.
Here the interaction time is $=4rr/23, la/pl=&0. 7,
e = 1, and the initial condition corresponds to a coherent
state with (n ) = 16. We observe that in steady state, the
quadrature fiuctuations reduce to the same value as ob-
tained with the squeezed vacuum. Figure 3(b) shows the
entropy for the previous case. It goes to zero when ap-
proaching steady state. Figure 3(c) shows the temporal
evolution of the ratio r1, which also vanishes in steady
state; thus only the coherent superposition of even
photon-number states survive. The same is true with any
other initial condition, therefore, we have numerical evi-
dence to state that the two-photon micromaser with arbi-
trary detuning generates a perfectly squeezed vacuum,
with the complex squeezing parameter given by Eq. (13).

IV. THE EFFECT OF CAVITY LOSSES

In this section we study the effects of the cavity losses
on the pure states, through the dynamic behavior of the
discrete master equation for the field. Here we consider
atoms being injected at a constant rate R & ~ '. We also
assume that the cavity damping time t„, is much larger
than t„=R ' and ~. With these assumptions, the field
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FIG. 2. (a) ((Aa2) ), (b) entropy S, (c) r, , and (d) rz as a function of log, o(c) for various numbers of atoms crossing the cavity.
3000 atoms (dotted line), 5000 atoms (dashed line), and 10000 atoms (solid line). Here a/y = —&0.7, /=4m@/23, and the initial con-
dition of the field is l0).
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density matrix after the (k + 1)th atom has gone through
the cavity is given by I 8]

P
k+1 R L~ k

where I. is the well-known cavity loss operator and M the
one-atom gain operator, that is, it represents the gain for
the field due to the e6'ect of one-atom crossing the cavity.
Consistent with the assumptions stated above, we neglect
the losses while the atom interacts with the field. We
define the parameter X,„=t„,/t„which represents the
number of atoms crossing the cavity during the time t„,.

In the following numerical calculations we will neglect
the thermal photons (low-temperature regime). In Fig.
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4(a) we show the steady state of the quadrature fluctua-
tions as a function of X,„ in logarithmic scale for @=104
and 1. Here a/y = —V 0.7, P =4ne/. 23, and we took the
initial condition to be IO). We observe that, for N,„~10
and E= 10, ((baz) ) settles at about the same value as
the one obtained with the trapped even state; however,
for N,„+10 and e= 1, this fluctuation stabilizes around
the value for the squeezed vacuum. Figure 4(b) shows the
entropy as a function of X„with the same parameters as
in Fig. 4(a). We obtain quasipure states in the same N,„
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I))=4m. /23, @=1, and the initial condition is a coherent state
with (n ) =16.

FIG. 4. (a) ((ba2) ) versus logIo(N, „) for E= 1 (dashed line,
right scale) and @=10 (solid line, left scale). (b) Entropy (S)
versus log]p(N ) for @=1 (dashed line) and @=10 (solid line).
(c) r& versus log&p(N„) for a=1 (dotted line), @=10 (solid line),
and r2 versus log»(N, „) (dashed line) for @=10 . Here the ini-
tial condition for the field is

I
0 ), P =4m'/23, and

cx/y = —&0.7.
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range as in the previous cases. Figure 4(c) shows the
steady state of the r, and r2 ratios as a function of N„
for a=10 and the r, ratio for m=1. We see that for
e = 10 and N,„)10 the trap in

i
10 ) does not leak, and

only even number states are important. Also for e= 1

and X, ) 10 only even number states are important.

V. CONCLUSION

In this paper we have studied the generation of pure
states in a cascade three-level system with Qnite detuning
by means of the temporal behavior. We also considered
the cavity losses taking realistic values [11—15] of the
physical parameters e and X„.

As a first conclusion, we can say that for u/y fixed and
a reduced interaction time P corresponding to an upward
trapping condition for the high detuning [3], the steady
state for the field will have a greater quadrature noise
reduction for smaller e values. Furthermore, this steady
state is insensitive to initial conditions. The experimental
range for this parameter e is between —10 and 10 for
actual micromasers with Rydberg atoms [11—15]. There-
fore, one could, in principle, generate an ideal squeezed
vacuum state, for an arbitrary initial condition, provided
that the detuning is small enough so as to have both two-
and one-photon transitions. Finally, in the case of lossy
cavities we have concluded that within an experimentally
reachable range of X„values and realistics values of e we

get quasipure states for the electromagnetic field, with
properties not very di8'erent from the even or ideal
squeezed vacuum states. We emphasize that the large-
detuning case is much more sensitive to the cavity losses
than the finite-detuning case. This can be seen, for exam-
ple, from Fig. 4(b), where the entropy vanishes for a N,„
value at least two orders of magnitude smaller for the
small detuning case (@=1, ideal squeezing) as compared
to the large detuning case (@=10,even states). This is
another advantage for the ideal squeezed vacuum state
over the even states.
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APPENDIX

In this appendix we calculate the recursion relation for
the expansion coefficients in terms of number states.

A squeezed state [9] can be written as
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where H„ is the Hermite polynomial of nth degree,
g=se', 8/2 is a geometrical phase, and a is the displace-
ment of the error ellipse with respect to the origin [9].
Now, if we set tz =0 in Eq. (Al), then the probability am-

plitude for the n-photon number state is given by
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From Ref. [9], for an ideal squeezed vacuum state, the
quadrature uncertainties are given by
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It is simple to verify that the S„satisfy the recursion rela-
tion
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