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Detection of quantum noise
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Noise that can be attributed to vacuum fluctuations, usually referred to as quantum noise, is exam-

ined. It is shown that vacuum fluctuations of a single uncoupled mode do not constitute noise, in the
sense of a random process, but the superposition of the fluctuations of a large number of modes does
constitute, formally, noise. The effect of vacuum fluctuations of the free-space radiation field on a har-

monic oscillator, a nondegenerate parametric amplifier, and a degenerate parametric amplifier, all driven

by a prescribed sinusoidal field, is compared with the effect of classical noise. It is found that the coordi-
nates of all systems respond in a formally similar manner to both vacuum fluctuations and classical
noise. However, the resonance fluorescence spectrum —the evidence of "detection" —is completely
different for the two kinds of noise. The spectrum of the harmonic oscillator does not exhibit noise in

response to vacuum fluctuations, but does so in response to classical noise. The spectra of the two types
of parametric amplifiers do exhibit noise in response to vacuum fluctuations, but this noise differs from

that in the classica1 case. An explanation for the difference is offered, based on the fact that the quantum

fluctuations cannot do work, but can noise-modulate power from an outside source, which, for the para-

metric amplifiers, is the pump. In the analysis of noise from the degenerate parametric amplifier, it is

shown that squeezed noise, viewed as an oscillation of the dispersion with a sufficiently low minimum, is

generated in the same manner in the case of classical noise as in the case of quantum noise, and is due to
phase conjugation.

PACS number(s): 42.50.Lc

I. INTRODUCTION

The term quantum noise" has been used widely in re-
cent years to characterize noise due to quantum-
mechanical —in the sense of nonclassical —phenomena.
In many instances, this term is used interchangeably with
quantum fluctuations. An illustration of this use, which
can also serve as motivation for the questions to be dis-
cussed in the present paper, is the following quotation
from a review article on squeezed light by Loudon and
Knight [1]: "Optical fields obey the laws of quantum
mechanics and have an inherent quantum indeterminacy
which cannot be removed no matter how carefully the
light source is controlled. A measure of this optical noise
for a single-mode field of frequency co is given by the
quantity Co=(ktol2eoVj'~, where V is the volume over
which the field is excited. This noise has the same magni-
tude for any strength of excitation. Indeed, the same size
of field fluctuation is present even in the absence of any
field excitation. For this reason, eo is often associated
with the vacuum Auctuations of the electromagnetic
field. "

Now, the generally accepted meaning of the word
"noise" is a random Auctuation in time of some physical
variable, or, in mathematical terms, a random process. If
a mode of the electromagnetic field is lossless, the time
variation of the field, as will be seen shortly, is sinusoidal,
and thus should not be regarded as noise. Quantum fiuc-
tuations of a single lossless mode refer to the "indeter-
minacy" mentioned in the above quotation. This is an in-
determinacy in one or both of the dynamical variables of
the field when the mode is in a given quantum state. The

Auctuation is that in the magnitude of the field variables
among members of an ensemble of identically prepared
modes at a single time. As will be shown later, a certain
randomness in the time variation does exist if the mode is
coupled to a loss mechanism, even if the latter is at abso-
lute zero temperature. At this temperature, the random
time variation may legitimately be called quantum noise,
since classically, no noise is present. There exists, howev-
er, a significant difference between this noise and classical
noise. As will become apparent, the quantum noise in
this case will not be "detected, " that is, detected on a
measurement instrument that is activated by energy from
the mode, even if the mode is excited.

If, instead of a single 1ossless mode, we consider the
field of a large —or infinite —number of modes, such as
the free-space radiation field, the situation is different.
Here, there does exist a random fluctuation in time. In
order to distinguish clearly between classical noise and
quantum noise, we will consider the radiation field to be
at absolute zero temperature. Then, classically, the radi-
ation field displays no noise. Quantum mechanically, the
field consists of the superposition of the zero-point oscil-
lations of all the modes. This superposition is usually re-
ferred to as vacuum Auctuations and is, according to the
mathematical definition, noise —quantum noise. In con-
trast to real, or classical noise, vacuum fluctuations can-
not be detected directly, since zero-point oscillations can
do no work and thus cannot activate a detection mecha-
nism. However, vacuum fluctuations can induce other
noise effects, some of which can be detected. These
effects may also be regarded as quantum noise. It is the
purpose of the present article to compare quantum noise
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to classical noise and to investigate their similarities and
differences. The kind of classical noise to which compar-
ison should be made will become apparent in the follow-
ing analysis.

II. SINGI.E MODE

The electric and magnetic fields of a single standing-
wave mode of frequency co can be described by

with a spread determined by Aq and Ap. Physically, this
Ineans that the experiment that measures the value of ei-
ther q or p is performed many times in succession, the os-
cillator being prepared anew in the same state each time.
Only when the results of this succession of measurements
is considered to be a single measurement will the oscilla-
tor coordinates display noise. A squeezed state will then
display less noise in one quadrature, properly chosen,
than in the other.

H(r, t)= 4mc A
V X u(r)q (t),

E(r, t) = (4—mfico)' u(r)p(t),
1/2 (2.1) III. HARMONIC-OSCILLATOR

COUPLED TO RADIATION FIELD

where u(r) describes the spatial dependence of the field
and is normalized over a volume V, and q and p are di-
mensionless quantities. The Hamiltonian for the field in
Vis given by

H =
—,'A'co(q +p ), (2.2)

with [q,p] =i. The dynamical variables q and p can be re-
garded as the dimensionless coordinate and momentum,
respectively, of a harmonic oscillator —the radiation os-
cillator. The annihilation and creation operators are
given, respectively, by

a =2 '~ (q+ip), a =2 '
(q ip),—

with [a,a ]=1. The equation of motion in the Heisen-
berg picture for any variable X, ifiX = [X,H], leads to the
solution

We consider now the effect of the electromagnetic field
on a harmonic oscillator, that is, the problem of a har-
monic oscillator radiating into free space. The radiation
field is represented by a denumerably infinite set of
modes, closely spaced in frequency and covering the en-
tire spectrum. The oscillator is coupled to the field
through an electric dipole moment proportional to q and
suKciently small so that the relaxation time is much
longer than a period. The oscillator will be considered to
be driven by a prescribed sinusoidal field near resonance.
Here we have, essentially, the description of a harmonic
oscillator with dissipation, which has been studied a
number of times in the literature (the radiation field being
a favorite model for a loss mechanism) [3—10]. We re-
view this problem briefly.

The Hamiltonian for the combined system, which will
be referred to as the driven damped oscillator (DDO), is
given by

OI

q (t) =q (0)cosset +p (0)singlet,

p (t)= —
q (0)singlet +p (0)coscot,

(2.4)
H =Hi +H2+Hi2+Hi3

with

H, =A'co(a a+ —,'),

(3.1)

a(t)=a(0)e ' ', a (t)=a (0)e'"'.

It is clear that there does not exist any randomness in the
time variation of q and p. There does exist a quantum-
mechanical randomness in the values of q(0) and p(0)
which depends on the state ~f) of the radiation oscilla-
tor. This state describes a conceptual ensemble of oscilla-
tors with a spread in the values of q(0) and p(0) deter-
mined by the probability densities

~
( q (0)

~ lt ) ~
and

~(p(0)~f) ~, respectively, but each member of the en-
semble oscillates purely sinusoidally. The spread, or un-
certainty, in the values of q(0) and p(0) among members of
the ensemble, for any state, as is well known, obeys the
Heisenberg uncertainty principle Aq Ap ~

—,', where
(bq) —= (q ) —(q ), with a similar definition for bp. If,
for a given state, either [bq(t)] & —,

' or [bp(t)] & —,
' for

any t during a cycle of oscillation, the state has been
called squeezed. Squeezed states have received much dis-
cussion in connection with quantum noise [1,2].

The question now arises, how does noise enter into the
behavior of a single mode? The only way noise can be in-
troduced in the time development of the coordinates of a
lossless oscillator is by introducing jumps, at successive
times, from one member of the ensemble to another. The
jumps produce a change of random magnitude in q and p

H2= & &~k«kak+ ,')—
k

H, 2= —
—,'itic yz(ak —ak)(a +a ),

k

H, 3= iA(Ae —' —Q*e ' )(a+a ) .

(3.2)

The Heisenberg equations of motion for the oscillator
then become

iA'3 (t) = [ A, H, 2+H, 3 ],
and the corresponding H.c. equation. With
tion of certain approximations, discussed in
where [10], the equations of motion can be
those in which only the oscillator variables

(3.3)

the utiliza-
detail else-
reduced to

are the un-

Here H2 describes the modes of the radiation field, cok is
the frequency of the kth mode, H&2 describes the cou-
pling between the oscillator and the radiation field, and
H i 3 describes the effect of the driving field on the oscilla-
tor, where the driving-field frequency is ~o and the ampli-
tude is proportional to the constant Q. We introduce, for
convenience, the reduced variables 3 and Ak, defined by
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knowns:

A = —Qe ' ' F——PA+i(gz+P3)A,
and the corresponding H.c. equation, with

F=—,'gy A' 'e
k

/3= 4'harp(co)y (co),

Pi= —,'P f dco'p(co')y (co')-
0 CO CO

(3.4)
A (t) = A, (t)+ AF(t), (3.8)

where A, (t), which can be regarded as the signal term, is

given by

A, (t) =
& A (t) ) =—

and A~(t), the quantum noise term, is given by

AF(t) = —f dt, F(t, )e

fluctuations. The steady state solution, obtained by tak-
ing the initial time at —Oo, is expressed by

I3,= —,
' f dco'p(co')y (co')

0 CO +CO

where Ak
' refers to the unperturbed (zero order) radia-

tion field, y (co') is the value of yi, averaged over modes
in a small frequency range about co', p(co') is the density
of modes at ~', and P indicates the principal value of the
integral. The last term in Eq. (3.4) indicates a radiative
frequency shift, which we absorb into co [replacing co by
co=co —(Pz+P3) and dropping the tilde], and obtain

It is interesting to compare the zero-point motion of the
free oscillator to that of the damped oscillator. One ob-
tains for the symmetrized correlation function of q (t),

—,'&O~q (t, )q (t2)+q (t2)q (t, ) ~0) = ,'cos[co—(t t, )]—(3.9a)

in the case of the free oscillator and

—,
'

& q (ti )q (t2)+'q (t2)'q (tl ) ~n=o

pI~)=
—,'e ' ' cos[co(t& —t2)] (3.9b)

A= —Qe ' ' —PA F. — (3.5)

F(t) I ) =
& IFt(t) =0,

&F(ti)F (t, ))

=2f35(t, —t, )

+iP, lim [5(t, —t, —t) —5(t, t, +e)], —
a—+0+

(3.6)

where the limit @~0+ is to be taken after the time in-
tegration of the 6 function is carried out. It is obvious
that the second term plays a role only if one of the limits
of integration with respect to t, is t2, and vice versa. In
the following analysis, the limits of integration will be
such that the second term vanishes.

The solution of Eq. (3.5) is given by

This is an equation of the Langevin type; the 0 term ex-
hibits the action of the driving field, the P term provides
the damping, and F is the fluctuation term. Since the ra-
diation field is at zero temperature, Ak ' describes the
zero-point oscillation of the kth mode and F(t) describes
the effect of the vacuum fluctuations on the oscillator.
Formally, F(t) has the appearance of noise, and any
noise properties of A formally due to F(t) constitute
quantum noise. The properties of F(t) are the following
[10,11]:

in the case of the damped oscillator, using Eqs. (3.6).
Thus the zero-point oscillation of the free oscillator is re-
placed by quantum noise, that is, by vacuum-Auctuation-
driven motion, in the damped oscillator. Since the corre-
lation functions for p (t) are the same as those for q (t), it
is clear that the expectation value of the zero-point ener-

gy of the DDO is the same as that of the free oscillator.
In other words, the energy due to quantum noise in the
DDO is the same as that due to zero-point oscillation in
the free oscillator. It is also easily seen that
( b q ) = ( bp )

=
—,
' for the steady-state DDO, so that it os-

cillates as a minimal wave packet. The total steady-state
energy E of the DDO is given by

in'
E = 'fico(q +p )=Aco-

P+6,
+—

The Hamiltonian and the equations of motion for the
DDO can also be read classically (with the omission of
the zero-point energy in the oscillators, an omission that
does not affect the equations of motion). Classically, Ak '

and F vanish, of course. However, in order to investigate
the difference between classical and quantum noise, we
replace the operator F by the c number F„which obeys
the relationships

i At pi— —
A (t) = A (0)e —iA

&F, )=0,
(3.10)

—f dt, F(t, )e (3.7)

It can be shown that A (t) obeys the correct commuta-
tion rule [ A, A ] = 1. While the initial commutator
[ A (0), A (0)] is damped by the factor e ~', the quan-
tum noise term yields the commutator (1—e ~'). After
the transient period, therefore, the quantum-mechanical
properties of the oscillator are due entirely to the vacuum

&F,(t, )F,*(t,)) =&F,*(t, )F,(t, )) =a5(t, t, ) . —

This is the classical description of Gaussian white noise
[12], where a indicates its magnitude. The classical solu-
tion looks, formally, exactly like the quantum-mechanical
solution [Eqs. (3.7) and (3.8)], except that F is replaced by
F, . It should be noted that quantum-mechanical proper-
ties of the oscillator cannot be maintained if the vacuum
fluctuations are replaced by classical noise and the radia-
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tion field is considered to be classical (acting only as a
loss mechanism). This is obvious from Eq. (3.7), which
shows that initial quantum-mechanical properties of the
oscillator, if any, would be damped, and is an illustration
of the general principle that in the interaction of two sys-
tems, both must be treated either classically or quantum
mechanically in order to avoid unphysical results [13].
One can always, of course, subject a quantum-mechanical
system to a prescribed c-number perturbation.

We calculate now certain properties of the harmonic
oscillator coupled to the classical radiation field and sub-
ject to classical noise described by I', . Using the sub-
script c to designate classical variables, we obtain for the
correlation functions of q and p in the absence of a driv-
ing field,

&q. (t»q, (t2) &n=o= &p ( ) )p, (t2) &n=o

Pl t l=——e ' ' cos[co(t i
—t2 ) ] .

the notation & &,„ indicates both an ensemble and time
average. Considering the classical case first, we obtain,
by use of Eq. (3.10),

~ 2 ikey.

& A, (t)A, (t —r)&=, , +
p2+2) 2

which yields

(3.16)

The spectrum consists of a 5 function at the driving-field
frequency and a Lorentzian distribution about the reso-
nant frequency, which indicates a sinusoidal oscillation at
co0 and noise in the neighborhood of co. Since the total
power radiated is 2pE„we can divide the oscillator ener-

gy E, into two parts:

P, (co') =2Pkco, , 5(co' —coo)+
)rico ap

p'+ tI),
2 ir p + (co' —co)'

(3.17)

2%co& qq +p &ti o= (3.12)

(3.11)

The zero-point energy, that is, the energy in the absence
of a driving field, is given by

—E(&)+E(n)
C C c

with the signal energy E,"given by

(,)
)rico

i
Q

i

(p +b. )

and the noise energy E,'"', given by

(3.18)

Generally, in the steady state, we have, for the total ener-
gyE,

E(n)
C

E, =
—,'))ico& q, +p, &

= fico

1 cx
(&q, )'=(&p, )'= ——

~n2 1 a
p+b 2p (3.13)

(3.14)

both of which produce, independently, radiation. Con-
sider now the quantum-mechanical case. From Eq. (3.8),
we have

& At(t)A(t —r)&

=
& [ A,t(t)+ A~(t)][ A, (t —r)+ A~~(t —r)] &,

It is seen that if the magnitude of the classical noise is
chosen such that a =p, this noise produces exactly the
same results for the zero-point energy and spread of the
"wave packet" in the classical case as the vacuum fluc-
tuations do in the quantum-mechanical case.

Let us assume that the noise exhibited by the coordi-
nates of the oscillator in the steady state is to be detected
by an examination of its resonance fluorescence spec-
trum. This is a reasonable assumption, since spectral
analysis of radiation from the oscillator is a simple
method of distinguishing between signal energy and noise
energy available for detection and, incidentally, corre-
sponds most closely to the process of hearing in the
acoustic range, from which the word noise was borrowed
[14]. An expression for the resonance fluorescence spec-
trum that is valid both classically and quantum mechani-
cally has been derived previously [15] and is given, for
the range

~

co' —co
~

((co and for co ))p, by

P(co')= —Aco f dr& A (t)A (t —r) &„e ' ' '+c.c. ,
7T 0

(3.15)

where P(co') is the expectation value of the power per
unit frequency range about co' radiated into the field and

(3.19)

and, from Eq. (3.6), we have

& ~A,'=A,
~

&=0,

so that

[n'
& At(t)A(t —r)&= e'~

p+6 (3.20)

The resonance fluorescence spectrum corresponding to
this correlation function is given by

P (co') = 2P)rico 5(co' —coo) .
p2+ Q2

(3.21)

Thus only a pure signal is radiated. It is seen that even
though the coordinates of the DDO exhibit noise, this
noise is not radiated in the quantum-mechanical case.
The reason lies in the fact that zero-point noise, which is
due to vacuum fluctuations, can do no work, just like the
zero-point oscillations of the undamped oscillator can do
no work. In the classical case, power is supplied by the
noise source to the oscillator which, in turn, radiates this
power. In the quantum-mechanical case, the vacuum
fluctuations supply no power. In other words, quantum
noise of the DDO cannot be "heard. "



48 DETECTION OF QUANTUM NOISE 4633

IV. NONDEGKNERATE PARAMETRIC AMPLIFIER

We consider next a parametric amplifier, which, in idealized form, consists of two coupled oscillators, a signal oscilla-
tor and an idler oscillator, driven by a pump at their sum frequency. The precise description of the system is given by

lcopt f f ~ 163pf lcolf t ~ leo)tH =A'pJ(a &a(+fipJ2a2a2+ g fipJkakak —iA(npe a(a2 —npe a(a2) —ih'(n(e a (
—n& e a()

k

(1) f f i ~ (2),i—hy—yk'(a/, a( —aka() —,iR—yy/, (a/, a2 —
a/, a2) .

k k
(4.1)

Here a& and a2 are the annihilation operators of the sig-
nal and idler oscillators, respectively; co0, co&, and co2 are
the respective pump, signal, and idler frequencies; A0 and
0& describe the respective pump and signal inputs; and
y'k" and y&

' indicate the coupling of the signal and idler
oscillators, respectively, to the radiation field. The signal
input is taken to be at resonance with the signal oscilla-
tor, and the pump frequency is given by

600 —QP~+Q)2 .

For simplicity, the couplings are all taken to be of the
rotating-wave type. In this section, we consider the case
p/, &p/2, with the yk"s and the y'k 's uncorrelated.

Using the reduced variables A, defined by

(4.5b)

The solution is given by

& A, (t)) =X(,"e "+'+I(.("e
p,p, —In. l' '

(4.6a)

& A,'(t) &=a"'e "'+I(..("e —+
pp, n I' —'

I

first the equations for the expectation values ( A ( ) and
( A2 ), which are the same as the classical equations for
the parametric amplifier. These are

&A, &= —n, &A,'& —n, —P, &A, &, (4.5a)

(A ,') = —n,*(A, ) —p, (A,') .

a (t)= A (.t)e ', j =1,2,
we obtain, for the equations of motion,

(4.2) (4.6b)

A, = —npA t~—n, —
—,
' g yk" Ake " ', (4.3a)

k

= —Q2 0 1 2~7k
k

(4.3b)
with

p= ,'(p, +p, ), n—=—,'[(p, —p, ) +4ln I']'J',
With approximations for the last term in both equations
similar to those used in obtaining the equations of motion
for the DDO, and neglecting radiative frequency shifts,
we obtain

and the K's are determined by the initial conditions. In
order that a steady state be reached, we must have)0, which implies

A, = —npA2t —n, F, —pA, , —

A 2= —np A, F2 —P~A2t, —
(4.4a)

(4.4b)

p,p, —In. l'& o .

The steady-state solution can be written as

(4.7)

where F and P, j=1,2, are defined similarly to F and p
for the DDO,

p —( ~p(~ )y(J)2(~ )

F —1 ~ ~(g)g(0) ' k jj T~~k k
k

0,
(A, )„=—

1

where the amplification factor A. is given by

P(pp

p(P2 —Inpl'

(4.8)

In order to determine the parameter range appropriate
for an amplifier rather than for an oscillator, we examine

I

The steady-state (operator) solution of Eqs. (4.4) is found
to be

ppn( ( —t/(/ (,)— 00
2

— dt(e ' F, (t() cosh[Q(t —t&)]—— sinh[Q(t —t, )] — F2(t()sinh[n(t —t, )]

(4.9a)

Q0Q)
, —J' dt e

p2 Q2

—p(.t -t, ) 1 P2
—P(. Q0

F2t(t, ) cosh[n(t —t, )]—— sinh[n(t t, )] — F,—(t, )sinh[Q(t t&)]—
(4.9b)
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The definition of F [Eqs. (4.4)] shows that F( describes
the action of the vacuum fIuctuations on the signal oscil-
lator (oscillator 1) and Fz describes the action of these
fiuctuations on the idler oscillator (oscillator 2).

%'e consider first the efFect of the vacuum fluctuations
on the dispersion of the coordinates of both oscillators.
In the calculation of (q, ) and (p; ) the expectation
value (F, (t)F (t2 ) ), i Wj, given by

(F (t )Ft(t )) —) g ~( ()~(J) e ~J i 1 2

k

is encountered. Since the y~ "s and y~& 's are uncorrelat-
ed, this expectation value will be considered negligible. A
calculation then yields

(q &
—(q;)'=(p &

—(p;)'

IP;[2P P+k,,A

[For ~Qo~ =0, 0 is to be interpreted as —,'(/3; —P ). ] This
expression becomes more transparent if we take p(=pz
while retaining the separate identity of the two oscillators
both with respect to frequency and to coupling to the ra-
diation field. We then have k,, =0, 0=

~ Ilo~, and

2 1
(q ) —(q;&'=&p &

—&p;&'= — . (4.11)
2 p~ —/Qo/2

As a check, one can note that for ~GO~ =0, in which case
the two oscillators become uncoupled, both Eqs. (4.10)
and (more immediately) Eq. (4.11) indicate that the
dispersion in the coordinates reduces to the correct value

1

2

As in the case of the harmonic oscillator, we compare
this result with that obtained when a classical noise
source, instead of the vacuum Auctuations, acts on the
parametric amplifier. We replace F, and F2 in Eq. (4.4)
by the c numbers I' &' and I' z', respectively, defined by

where

+(k; —1)Q ]

+P, I fool'I, (4 10)

(F(c) ) ()

(F"(t,)F"*(t,) ) = (F '*(t, )F"(t, ) )

=5,,a, 5(t) t, ), —

(4.12)

i,j=1,2, and obtain, in a calculation parallel to that of
the quantum-mechanical case,

( (c)2) ( (c) )2 ( (c)2) ( (c) )2

[a, [2p(p+k, ,fI)+(k,', —1)II']+a, lIIol'], i&j,
4p(p —fl )

(4.13)

where the superscript c indicates classical variables. It is
seen that if we set a; =p;, the classical noise source pro-
duces the same dispersion in the coordinates of each os-
cillator as that produced by the vacuum fIuctuations.
Thus, as far as the coordinates are concerned, both noise
sources have similar efFects. It is also clear that the
dispersion (whether quantum mechanical or classical) of
the coordinates of each oscillator is due to the Auctua-
tions, or noise, acting on both oscillators.

We examine next the radiation spectrum of the para-
metric amplifier. Most of the power radiated can be ex-
pected to lie in the neighborhoods of the resonant fre-
quencies of the two oscillators. We can therefore use the
resonance fiuorescence expression of Eq. (3.15) for each
oscillator:

+c.c., i =1,2 .

For oscillator 1, we obtain

and for oscillator 2, we obtain

where

(4.14)

(4.15a)

(4.15b)

2

dt& dt2 E& t~ F& t2 e ' ' sinh Q t —t, sinh Q t —7

n, /' [(p+n)e-(t'-"' —(p —n)e-(t'+"'], teq .
4 np(p' —n')

(4.15c)

The power spectrum of the radiation is given by

p (~') =p((co')+F&(~'), (4.16a)
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where

p', ln, l'
Pi(co') =2/3iirtco, 2, 5(co' —co, )+P',"'(co'),

(p —n~)~

(4.16b)

matter can be gained by examining the expression for
((d jdt)(A, A, )), the power (in units of hco, ) absorbed
by oscillator l. (A similar consideration applies to oscil-
lator 2.) From Eq. (4.4a), we have

(AtiA, )= —no A2A, —n*, A, F,—A,

ln, n, I'
P2(co') =2/3~%co~ 5(co' co2)—+P2"'(co'),

(p2 n2 )2

—P, A, A, +H. c. (4.17)

(4.16c)

with

(„), PiP2lno I'

2~Pn (P—n) +(co' —co; )

1

(p+n) +(co' —co, )

(4.16cl)

The first terms in Eqs. (4.16b) and (4.16c) are obviously
due to the signal input. The first term in I'& represents
the amplified signal, the power amplification factor being
P,P2(P, /32

—Inol ) . The first term in P2 is the result of
the mixing of signal and pump. P&"' and P2"' describe
noise with a spectrum centered about the respective fre-
quencies of the two oscillators. In contrast to the case of
the DDO, the vacuum fluctuations in this case do gen-
erate noise power. However, this is accomplished in an
indirect manner. Equation (4.15c) shows that the noise
output of oscillator 1 is due to the vacuum Auctuations
acting on oscillator 2 only, and vice versa. This should
be contrasted with the dispersion in the coordinates,
where the vacuum fluctuations acting on both oscillators
contribute to the dispersion of the coordinates of each.

In order for an oscillator to radiate noise power it must
be supplied with noise power. The question therefore
arises, how do vacuum fluctuations, which cannot do any
work, account for noise power being supplied to each os-
cillator in the parametric amplifier? An insight into this

The formal interpretation of the operators on the right-
hand side is as follows: the first term corresponds to
power supplied by the pump through mixing with oscilla-
tor 2; the second term corresponds to power supplied by
the signal input; the third term corresponds to power
supplied by the vacuum fluctuations; the fourth term cor-
responds to power lost by radiation. When the expecta-
tion value of both sides is taken, the third term drops out,
which is consistent with the fact that vacuum fluctuations
do no work. The second term supplies only mono-
chromatic power. The presence of A2 in the first term
indicates that the pump power contains modulation by
the coordinates of oscillator 2, which, as was shown pre-
viously, exhibit quantum noise. The noise power sup-
plied to oscillator 1, therefore, comes from the pump. It
is easily checked that for 0& =0, we have

A'coi( —2nD A2 A i ) = dco'P'i"'(co') = PA nol'&~i

p(p' —n')
(4.18)

that is, the noise power supplied by the pump is equal to
the noise power radiated. Thus, the vacuum fluctuations,
by modulation, produce noise power in oscillator 1

through the quantum noise of the coordinates of oscilla-
tor 2 without doing any work.

We consider now the effect of a classical noise
source —in place of the vacuum fluctuations —on the ra-
diation spectrum of the parametric amplifier. Use of Eqs.
(4.12) and (4.14) yields the same monochromatic part of
the spectrum as that in the quantum-mechanical case, but
the noise spectrum is now given by

P ""'(co')= '
iiico, .a,

4vrp

(2p —n, +k; n)(1+@, ) (2/3+n+k; n)(1 —k; )

(p —n) +(co' —co;) (p+n)+(co' —co, )

Inol'

(p —n) +(co' —co;)

1
iWj .

(p+n) +(co' —co, )
(4.19)

One can see here both the direct and indirect effect of
the classical noise source. The a; term indicates the
direct effect, due to work done by the classical noise
source, and the a. term indicates the indirect effec, due
to noise modulation of the pump output that requires no
work on the part of the noise source. For a =2p,
n;=0, the spectrum is the same as that in the quantum-
mechanical case.

V. DEGENERATE PARAMETRIC AMPLIFIER

A degenerate parametric amplifier (DPA) is one in
which the same oscillator serves as both the signal and
idler oscillator. This system, which may be considered a
subharmonic amplifier —since the signal frequency is half
the pump frequency —has been of wide interest in recent
years as a source of squeezed light. Its Hamiltonian, in
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notation similar to that of the nondegenerate parametric
amplifier, is given by

H=Acoa a+ QA'o)kakak —iA(Qoe 'a —Qoe 'a )
k

For classical noise acting on the DPA, we use, as previ-
ously, the quantum-mechanical solution of the equations
of motion with I'" replaced by F, . The monochromatic
part of the spectrum (the signal power) is unchanged,
while the noise spectrum becomes

i—fi(Q e ' 'a —Q*, e' 'a)

—
—,'iA'g y„(a„at —akta),

k

(5.1)
p(n)(c)( i

)
a13 g
2~

1

(P—2Q) +(co' —a))

with cop=2co The equations of motion for the reduced
variables are

A = —2Q()A —Q, F —PA—,

A t= —2Q() A —Q*, Ft —13A t —.
(5.2)

4Q'&P2, (5.3)

For notational simplicity, we set Qo1=Q. The condition
for a stable steady-state solution is then given by

+
(f3+ 2Q ) + ( to' —a) )

This expression can be rewritten as

P'""'( ')=P ( ')+P ( ')

where

lX —2QP (a)')= %co
(P—2Q ) + (a)' —a) )

(5.6)

(5.7)

with the solution being

PQ, +2QoQ

P —4Q

—f dt, F(t, )e ' cosh[2Q(t t, )]—
+ f dt Ft(t )e

Xsinh[2Q(t —t) )], (5.4)

and

Pn(co') = Aa)
aQ

/3+ 2Q

(P+2Q) +(a)' —a))

1

(P—2Q) +(a)' —a))

2

(P+2Q) +(a)' —co)

together with the Hermitian conjugate. Comparison of
the solution with that for the nondegenerate parametric
amplifier shows that it can be obtained from the latter by
setting p, =p2=p, F, =F2= ,'F, making t—he transforma-
tion Qp —+200, and letting 3 =A, +32. It should be
noted, for later discussion of squeezing, that the response
of the DPA (to the signal and vacuum fluctuations) con-
sists of a superposition of two sets of components, one
with the phases of Q& and F, and the other with corre-
sponding conjugate phases, that is, with those of 0& and

In the present instance, we examine the radiation spec-
trum first and the coordinates later, since behavior of the
coordinates will be related to the discussion of squeezing.
The spectrum of the radiation into free space by the DPA
is given by

Pn(co') becomes identical to the noise power in the quan-
tum mechanical case for a=P. Now, the total power
contained in P (a)') is given by

f den'P (to')=at&co .
0

From the equation

(5.8)

we see that the power input from the classical noise
source is given by

A'a)( F, A )+H.c. —

=Ao2a f dt) (F,(t)F, (t) ))

dt
( A A ) = —2Q' A —Q ' A FA —P A t A—+H. c. ,0 1 c

(5.9)

12QoQ) PQ) I

P (co') =2''to 5(co' —a) )
(P2 4Q2 )2

X cosh[2Q(t t, ) ]+H—.c. ,

(5.10)
1

(P—2Q) +((o' —a))

(5.5)
(P+2Q) +(co' —(o)2

It is seen that the noise spectrum consists of the
difference of two Lorentzians centered about the resonant
frequency and is qualitatively similar to the noise spec-
trum of either one of the oscillators in the nondegenerate
param. etric amplifier.

where Eq. (3.10) has been utilized. Thus P (a)') can be
viewed as the reradiation of all the power coming from
the noise source. Since Pn(co ) is additional noise power,
it follows that Pn (co') is due to modulation of the pump
input by the noise source without any absorption of
power from the noise source. This is just the "effortless"
effect that the vacuum fluctuations have in the produc-
tion of noise power radiated by the DPA.

We consider next the dispersion of q and p. Equation
(5.4) yields
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q (t)= (q (t)) —2 '~ I dt, I [F(t& )e '"'+F (t& )e'"']cosh[20(t —t, )]

—[F (t, )e ' '+ '+F(t, )e'I '+ ']sinh[20(t —t, )]I, (5.11)

(q (t)& —(q(t)& =— 1 — cos(2~t+O)2 2 1 p 2Q
2 p' —4n' P

(5.13)

(p (t)) —(p(t)) =—
2 z

1+ cos(2~t+0)1 P 2II
2 p' 4n' — p

(5.14)

It is easily seen that the dispersions of q and p reach mini-
ma of —,'(I+2Q/P) ' with a frequency of 2'. The DPA
is therefore in a squeezed state.

It should be noted that the oscillation of dispersion is
not a quantum-mechanical phenomenon, but one that ap-
plies to all dispersion, classical as well as quantum
mechanical [16]. Thus, if we consider the noise to come
from F, rather than F, use of Eq. (5.4) with F replaced by
F, yields

(q, (t) ) —(q, (t) ) = — 1 — cos(2cot +8)1 aP 2Q
2 p' —4n' p

(p,'(t) ) —(p, (t) )'
(5.15)

1+ cos(2cot +9)1 aP 20
2 p' 4n' —p

(5.16)

It is seen that all noise processed by the DPA, whether
classical or quantum mechanical, produces a dispersion
which oscillates in magnitude with a frequency of 2' and
phase determined by that of the pump. The reason is the
fact that the response of the DPA to incoming noise con-
tains the superposition of a component with the phase of
the noise and a component with the conjugate phase [17].

VI. SUMMARY AND CONCLUSIONS

As mentioned in the Introduction, vacuum Auctua-
tions, as well as their effects, are usually referred to in
quantum optics as quantum noise. It was seen that, for a
single mode, vacuum Auctuations are not noise in the
sense of a random process, but for the superposition of

where 0 is defined by Do=Be ' and (q(t)) is given by

2 ' (200' i
—pQi )

(q(t)) = e ' '+c.c. (5.12)
p —40

In calculating (q (t) ) we encounter terms which vary as
e +—'"'. The reason double-frequency terms do not occur
in the nondegenerate case is that the coefficients of such
terms contain the vanishing factor (F, (t, ) FJ(t2)), i',
while, in the present case, the coefficients of the
double-frequency terms contain the nonvanishing factor
(F(t, ) F (t2) ). A calculation yields

the field of a large number of modes and, in particular,
for the free-space field, vacuum Auctuations can indeed

by regarded as noise. Can this noise be observed, or
detected, as is classical noise? In order to answer this
question, the effect of vacuum Auctuations on three types
of systems, a harmonic oscillator, a nondegenerate para-
metric amplifier, and a degenerate parametric amplifier,
was examined and compared with the effect of classical
noise. It was shown that the response of the coordinates
to vacuum fiuctuation is formally similar to their
response to classical noise. In other words, the quantum
noise of the coordinates is formally similar to their classi-
cal noise. It turns out, however, that the noise part of the
radiation from the systems into free space, that is, the
noise part of their resonance Auorescence spectrum
(which, in the present article, is considered to be the evi-

dence of detecting the noise), is completely different for
the quantum noise than for the classical noise. In the
case of the harmonic oscillator, the quantum noise
present in the coordinates is absent in the radiation spec-
trum. When driven by a sinusoidal signal, and under the
inAuence of vacuum Auctuations, the spectrum of the ra-
diation is monochromatic. On the other hand, when the
vacuum Auetuations are replaced by classical white noise,
the radiation spectrum exhibits both the monochromatic
part due to the signal and a Lorentzian distribution due
to the noise. In the case of the nondegenerate parametric
amplifier, the two types of spectra are likewise different.
Here there does exist spectral noise due to vacuum Auc-

tuations. Derivation of the result shows that noise radi-
ated by oscillator 1 is due to vacuum Auctuations acting
on oscillator 2, and vice versa. The vacuum Auctuations
act only indirectly, noise-modulating the pump power in
each of the oscillators through the coordinates of the oth-
er. With a classical noise source, the noise radiated by
each oscillator consists not only of noise similar to that
produced indirectly by the vacuum Auctuations but also
of additional noise produced by a direct effect on each os-
cillator. In the case of a degenerate parametric amplifier,
the spectra are qualitatively similar to those of either one
of the oscillators in the nondegenerate parametric
amplifier. The similarity disappears, however, when the
dispersion in coordinates is examined. The difference
here is not between quantum noise and classical noise but
between the degenerate and nondegenerate parametric
amplifiers. In the degenerate system, the dispersion of
the coordinates, whether classical or quantum mechani-
cal oscillates at the pump frequency. For quantum noise,
the minimum is sufficiently low to produce squeezing.
For classical noise, the minimum can be made arbitrarily
low by a proper choice of parameters. In other words,
the degenerate system is described by a squeezed state,
quantum mechanically, and by a squeezed probability
density, classically. The squeezing is due to the fact that
the response of the coordinates contains the superposi-
tion of a term with the phase of the incoming noise and a
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term with the conjugate phase.
It is natural to ask why noise in the coordinates pro-

duced by vacuum fluctuations is not radiated in the same
manner as formally similar noise produced by classical
sources. The answer lies in the fact that zero-point oscil-
lations can do no work. Vacuum Auctuations, which are
zero-point oscillations of the vacuum, induce zero-point
oscillation in systems coupled to the vacuum. While an
uncoupled harmonic oscillator exhibits sinusoidal zero-
point oscillation, it is damped out by the vacuum acting
as a loss mechanism and replaced by noisy zero-point os-
cillation induced by the vacuum fluctuations. Thus, al-

though the coordinates of the driven damped harmonic
oscillator exhibit noise, this is zero-point noise, and can-
not be radiated. The same can be said about the other
systems considered. generally, one can say that the com-
ponent of the quantum noise in the coordinates that is
not radiated is zero-point noise. The component that is
radiated is due to modulation by the vacuum fluctuations
of power from an outside source, modulation which does
not require work. This modulating efFect is displayed in
the two types of parametric amplifiers, where the outside
source is the pump.
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