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Nonlocal interferometry with high-intensity fields
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Two-photon interferometry can produce violations of Bell's inequality that demonstrate the nonlocal
nature of such eA'ects. It is shown here that high-intensity fields containing large numbers of photons
can violate Bell's inequality in a similar manner. The macroscopic nature of these fields is evident from
the fact that they can produce large bursts of energy in two distant absorbers with nonlocal correlations
between the two.

PACS number{s): 42.50.Wm, 03.65.Bz

There has been considerable interest [l] recently in
possible violations of Bell's inequality [2] for systems con-
taining N separated particles. One reason for the interest
in such systems is the hope that "macroscopic" effects
can be obtained in the limit of large N, which may be of
relevance to the correspondence principle, for example.
However, most [3] of the proposed experiments require
that quantum-mechanical measurements be made on the
individual particles, such as a measurement of the spin of
each of X electrons. Such a situation corresponds to a
more complicated quantum system rather than a Inacro-
scopic phenomenon approaching the domain of classical
physics.

This paper considers nonlocal interference effects that
can occur in high-intensity electromagnetic fields con-
taining large numbers of photons [4]. These fields can
produce large bursts of energy in two distant absorbers or
detectors that are correlated in such a way as to violate
Bell's inequality (given the usual assumption that the ob-
served events are a representative sample). No measure-
ments are required on the individual photons and the
effects can be viewed as truly macroscopic in nature as a
result.

Reid and Munro [5] have recently discussed nonlocal
effects based upon photon polarizations that are also
macroscopic in the sense that a large number of photons
are incident upon each detector. They considered a
single-frequency mode of the field, whereas here the
quantum state of interest is a coherent superposition of
many modes, which gives rise to nonlocal effects involv-
ing dynamic variables such as the time of emission of the
photons or their localization in space. As a result, the
effects considered here are observable using inter-
ferometry rather than polarization measurements. In ad-
dition, there are nonlocal correlations between the expec-
tation values of the fields themselves and not just their in-
tensities, so that the measurements could, in principle, be
made using a voltmeter.

Sanders has shown [6] that a superposition of two mac-
roscopic coherent states can produce nonlocal correla-
tions. However, the correlation coefficient decreases ex-
ponentially with increasing photon number and Bell's in-
equality can only be violated in the limit of weak fields
[7]. This is because the measurement process must pro-

ject the two orthogonal states that are superposed in the
initial wave function onto a common final state in order
to produce the interference responsible for the nonlocal
correlations, which is very difficult when the two states
are macroscopically different. This argument suggests
that "Schrodinger cats" in general are not likely candi-
dates for violations of Bell's inequality.

The quantum-mechanical state of interest here is some-
what similar to the entangled photon pairs produced by
parametric down-conversion and studied in a number of
recent experiments [8]. For sufficiently low intensities,
the two-photon field can be adequately described by

I@, ) =c'I0&, (l)

where IO) is the vacuum state and the operator c creates
a pair of entangled photons:

c = gfk~kbk,
k

Here, ak creates a photon of momentum Ak in beam 2,
bk k creates a photon of momentum fi(ko —k) in beam

0

8, and fk represents the eFects of a filter inserted into the
two beams. Phase-matching conditions require that the
sum of the momenta of the two down-converted photons
be equal to the momentum ko of the incident pump pho-
tons. For simplicity, it will be assumed that fz=f, a
constant, for kL (k ~ kU and zero otherwise; normaliza-
tion then gives f=1/Xk, where Xk is the number of
states between kL and kU. It will also be assumed that
the two beams are sufficiently well collimated that the
momenta of the photons in beam A can all be taken to be
in the same direction, and similarly for beam B.

The high-intensity field of interest is then given by

I+&=y& ', —10&=y " Io&, (3)n!

where a is a complex constant and y is required for nor-
malization. Unfortunately, this state cannot be produced
by parametric down-conversion using a high-intensity
pump field and the effects described below must be
viewed, at least for the time being, as a gedanken experi-
ment that illustrates the kind of nonlocal effects that can
occur at high field intensities. However, some (but not
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all) of the effects described below also occur for a state
g„) containing precisely n pairs of entangled photons,

as discussed in the Appendix, and such states can be pro-
duced, at least in principle, using a series of down-

conversion crystals to double repeatedly the number of
photons.

Equation (3) can be written in the more useful form

(4)

kA

1/2
27TACO g i(kAx —coA tA )

e
A

27TACOBx
' 1/2

i(kBx —coB tB )
e bk B

lP& =EA (x, tA )E~+(x, tt) ) qt)

The mean number of photon pairs is very high when
~a~ ))1. Nevertheless, it can still be assumed that the
product ~af ~

is much less than 1, which allows the use of
certain approximations in the power-series expansion of
the exponential in Eq. (4). This condition corresponds to
an intense field with negligible probability of more than
one photon per mode (nondegenerate case) which is well
satisfied at the surface of the sun, for example. In the
limit of large Xk and ~af ~

&&1, it is straightforward to
show from Eq. (4) that

—y2e cx cx

This gives @=exp( —a*a/2) and demonstrates the con-
vergence of Eqs. (3) and (4) for ~af

~

& 1. The mean num-
ber of photon pairs in the field can also be shown to be
a*a in the same limit.

Although the form of Eq. (3) is similar to that of the
usual single-photon coherent state [9], it does not possess
the same properties as a coherent state. In particular,

where Vis the volume of the system and co& and co& are
the frequencies corresponding to kz and k~. If the filter
bandwidth is sufficiently small, the slowly varying factors
of co„and co~ can be approximated by coo/2 and taken
outside the integrals, after which the use of Eq. (9) gives

E„+(x,tA )E~+(x, tB ) ~%')

t(kA cxoAtA ) t'(kBx —
coBtb)e e

kA kB

&«k„(t2f )tik, —k

where an irrelevant constant has been omitted. The com-
mutator [ak, ak k ] =5k k k allows this to be

rewritten as

E„+(x,t A )EB+(x,tB ) ~%')

i[(k0 —kB )x —(~0—~B )tA ] i(kBx —mBtB ) (

kB

[c,c ]Pl,
for which reason

c~e)Wa e &,

as would be the case for a coherent state. This state does,
however, possess the useful property that

i(kAx —
coA tA ) i(kBx ~BtB )

k k
0 B A

A B

The first term in Eq. (13) is just
'("0 O'A) ' B( B 'A)i )aJe e

kB

(13)

(2k I
+ & =ctfkbk,

~fk+k

(8) (14)

where p is the density of states and 6~ is a strongly
peaked function that approaches a 5 function for large
Nk. The use of Eq. (8) allows the second term in Eq. (13)
to be written as

The coincidence rate between two detectors in beams
2 and B is proportional to

(IA (x, t„)IB(x,tB ) )

i(kAx —
A@A tA ) i(kBx —coBtB )a e e

0 B A
kA kB

2 I(kAx —
A@A tA ) I(kBx —coBtB )

CX e e
kA kB

= ( EA (x ) t A )EB (x) ta )Ea+(x ) ttt )EA (x, t A ) ), (10)
&«k, k&k, k„ I

+ )

where the detectors have been assumed to be equidistant
from the source and E+—represents the positive and nega-
tive frequency components of the electric-field operators.
This expression is just the square of the norm of the state

~ P ) given by

In the limit of ~af ~
&&1, the second term is negligible

compared to the first due to the factor of (af ), as can be
verified by explicitly comparing [10] the contributions of
the two terms to ( P ~ P ). In that case the state of interest
is given by
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E+(x,t+~t )E,+(x, t+~t ) l~ )

= e E+(x, t )E+(x, t ) !%') . (17)

It was noted earlier [11] that Eqs. (16) and (17) are logi-
cally inconsistent for classical fields, which must satisfy
the following inequality:

( !E„*(t)Eg (t )E~(t+ 0 t )E„(t+b t ) l )
( ,'(EA(t)Eg (t—+bt)E~(t+At)EA(t))

+ ,'(EA(t+At)Eg -(t)E~(t)EA(t+At)) . (18)

This inequality is violated by these high-intensity fields.
McNeil and Gardiner have previously shown that high-
intensity squeezed states can violate the Cauchy-Schwarz
inequality [12].

It was also noted earlier [13] that fields satisfying Eqs.
(16) and (17) can violate Bell's inequality in experiments
[8] employing two distant, identical interferometers with

I

E+(x, t„)E,+(x, t, ) I+)

=2~pafe ' ' "
&A(tA —t'ai)lq') .

Fquaf ion (16) shows that the probability of detecting two
photons in a suKciently short time interval is dominated
by coincident events corresponding to correlated pairs of
photons, awhile the accidental events from unpaired pho-
tons are unlikely in comparison.

It is possible to derive an exact solution for EA EIi l%')+ +

that is valid for any value of laf l
( 1 by further use of

Eqs. (8) and (9) and the commutation relations. The re-
sults obtained in that case agree with those obtained here
in the limit of laf l

((1. Similar calculations can also be
done in a more straightforward manner without the use
of Eqs. (8) and (9) for the case of a field containing pre-
cisely n pairs of entangled photons, as discussed in the
Appendix.

It follows immediately from Eq (16) that

one optical path longer than the other, giving a diA'erence
At in propagation times. The coincidence rate R, is then
proportional to the square of the norm of the state vector

l

P' ) = [E~+(x,tji ) +e E~+ (x, t'ai +ht ) ]

x[E„+(x,t„)+e "EA (x, tA+bt)]!%), (19)

where pA and pe are phase shifts introduced into the
longer optical paths. The norm of this state vector can be
evaluated using Eqs. (16) and (17) in the same manner as
in Ref. [13],resulting in a coincidence rate R, given by

0A+4a+~o«
R~ ='Q cos (20)

The same approach that gave the factor of a
0 B

Eq. (12) now gives a factor of

where g is a constant related to the detection e%ciency.
This nonlocal dependence on the sum of the phases of the
two interferometers violates Bell's inequality even though
the field intensity may be quite high.

The coincidence rate of Eq. (20) corresponds to the
same correlations between pairs of photons that have al-
ready been observed [8] for the case of weak fields. In ad-
dition, Reid and Walls [14] have previously shown that
two-photon coincidence events can violate Bell s inequali-
ty in high-intensity light beams. The truly macroscopic
nature of the fields considered here becomes apparent
only when we consider events in which a large number of
photons are detected or absorbed at two distant locations.

First consider the probability P2 that two pairs of pho-
tons will be detected, which is proportional to the square
of the norm of the state !$2) given by

E,+(x, t A i)EA—(x, t A2)E~ (x, t~i)E~ (x, t») I+ & .

(21)

a a a~ a~ =6 5 . +6 6kA 1 kg2 kp —kB] kp —
kB2 kg i, kp —kB j kg2, kp —

kB2 kg l, kp kBp kg2, kp —kBI

+&k
, , k, —k, ak, —k,ak ,+&k ,, k, —k,ak, -k, ak , +&k„,, k, -k,ak, -k, ak ,

+~k, k —k ak —k ak + k —k ak —k ak k (22)

where the right-hand side of the equation was obtained
directly from the commutation relations. Equation (8)
can once again be used to show that the last five terms in
the above equation can be neglected for laf l

((1, while
the remaining two terms give

!

l{kpx rL)pl~ ) } l{kpx copt~2}
Pz) =(2irp) (af ) e e

X [5A(tA1 tB1)6A(tA2 t82)

4A +0a+~o«
P2=2q cos =2P (24)

where P, is the corresponding probability of detecting a
single pair of photons in the same time interval. This re-
sult can be generalized to

+~A(tA, t'ai~)~A(tA2 t'ai, )]l—+& . —(23) cos
2

=%!Pi (25)

The probability of detecting two pairs of photons in the
same output channels of two interferometers can then be

where P& is the probability of detecting exactly Xphoton
pair s.
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The factor of N! in Eq. (25) causes I'z to be much
larger than the product of the probabilities of X indepen-
dent events. The origin of the N! factor for the case of
N=2 is evident from the two 6 functions in Eq. (23),
which show that photon 3 1 can be coincident with pho-
ton B1 while A2 is coincident with 82, or 3 1 can be
coincident with B2 while A2 is coincident with 81.
Constructive interference between these amplitudes
causes each photon to be strongly correlated with all the
others, despite the fact that the state of Eq. (3) appears to
be a product of uncorrelated pairs. The origin of these
correlations is thus similar in some respects to the photon
bunching that occurs for stochastic (thermal) light.

The probability that N& pairs will be detected in output
channel 1 and %z in channel 2 of each interferometer can
be shown to be N(!N2!q ' ' for N=p(+$2+coob, t =0.
This virtually ensures that all photons will be detected in
the same output channel for large % and +=0, since
N, !N,!«(N(+N, )! unless N, or N2 is zero.

P& initially decreases for increasing values of X but
then increases rapidly for larger values of X, since the
factor of X! wi11 eventually become comparable to 1/P, .
This suggests that the most likely event to occur is one in
which a large number of photons are simultaneously
detected in the same channel of both interferometers. It
must be kept in mind, however, that the expressions for
the coincidence rates given by Eqs. (10) and (21), al-
though widely used [15],are valid only to lowest order in
perturbation theory and neglect the depletion of the ini-
tial state, which can produce probabilities greater than
unity if applied to sufficiently long time intervals [16].
Equation (25) diverges for the same reason in the limit of
large N. As a result, Eq. (25) is valid only for sufficiently
short time intervals and for values of X X, , with
%,„chosen in such a way that all of the included P& are
sufficiently small. A more general treatment of the corre-
lated photon-counting statistics may require the use of
generating functions [17] and is beyond the intended
scope of this paper.

Events corresponding to arbitrarily large values of X
can still be observed experimentally, at least in principle,
under conditions for which Eq. (25) remains valid. A
correspondingly short time interva1 must be chosen for
which all the relevant probabilities are sufficiently small,
after which the observation can be repeated until such an
event occurs. No single-photon detectors are required to
observe such events, which correspond to correlated
bursts of energy that can be deposited in any absorbing
material, such as a bolometer.

It may be worth noting that the direct use of perturba-
tion theory rather than Eqs. (10) and (21) would give an
additional factor of 1/N! associated with the power-series
expansion of

exp( i jH'(t')dt—'ih ) .

It is not difficult to show, however, that this 1/At is can-
celed by the X!different orders in which the operators

E (r(),E+(r2), . . . , E+(r)v)

can occur, leaving only the 1V. associated with the pairing

X [5A(tA1 tBl)5A( A r2EB2)

~A (rA( B2+A (rA2 rB()] (26)

where c is an irrelevant constant. On the other hand, the
expectation value of the fields in path A by themselves,
obtained by tracing over the field in path B, is zero:

of the photon momenta, as discussed above. It is for this
reason that I/N! does not appear in Eqs. (10) or (21) or
their higher-order generalizations [15]. It is also for this
reason that the factor-of-2 enhancement in ordinary pho-
ton bunching is not canceled out by the 1/2! in the corre-
sponding power-series expansion.

Equations (24) and (25) violate Bell's inequality [18]
provided that it is assumed that the observed events form
a representative sample. This assumption was required in
earlier experiments due to the limited detection
efficiencies of the available detectors, whereas here the
use of perturbation theory requires that the events of in-
terest occur with relatively small probabilities. In either
case, a Bell inequality can still be derived provided that
the subset of observed events is assumed to be character-
ized by a set of hidden variables that ensures that they
will be detected with a probability of unity regardless of
the settings of the adjustable experimental parameters.
To be more specific, it suffices here to assume that the to-
tal number of photons and their potential arrival times at
a set of perfect detectors are unaffected by the settings of
the phase shifters. These two conditions would automati-
cally be satisfied as a result of energy conservation and
the known speed of light, respectively, but are assump-
tions nevertheless within the context of hidden-variable
theories in general. It should also be noted that the
response time of the detectors has been taken to be negli-
gibly small and that noncoincident events are to be reject-
ed, as in the case of two-photon interferometry [11,13],
which is necessary to eliminate those events in which one
photon of a pair has taken the longer path through an in-
terferometer while the other has taken the shorter path.

The coincidence rates of Eqs. (24) and (25) correspond
to a nonlocal correlation between the intensities of the
two fields in paths 3 and 8. The same intensity correla-
tions can also be obtained from a state

~
1J'j„) containing a

definite number of pairs of entangled photons, as shown
in the Appendix. These intensity correlations are shown
in the Appendix to be due to a coherent superposition of
the probability amplitudes for the different momenta haik

in an expansion of the wave function of an entangled
pair, as in Eq. (2); there are a large number of initial
momentum states that can all contribute to the same final
state if both photons of a pair are annihilated at the same
time.

The state ~%') also gives rise to nonlocal correlations
between the fields themselves, as can be seen by taking
the inner product of Eq. (21) with the initial state and us-
ing Eq. (23), which gives

&+Isg(x, t„,)E„+(x,t„2)EB (x, tB()EB+(x,tB2) 0')
(kpx coptg 1

) t(kpx coptg2)
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This nonlocal correlation of the fields themselves is
dependent upon the coherence between the probability
amplitudes corresponding to different numbers of pairs in
the field and is a feature of the state ~%' & but not

~ g„&.
The correspondence principle is sometimes illustrated

by saying that we must approach the classical limit
"when the beam consists of many, many photons" {'19].
The effects derived above show that that is not the case
and that Bell's inequality can be violated by macroscopic
events that do not require the use of single-photon detec-
tors.

This work was supported by the Once of Naval
Research.

APPENMX

The properties of a coherentlike state ~'0& containing
an indefinite number of entangled pairs of photons were
derived in the text using Eqs. (8) and (9). It will be shown
here that some of the same properties can be obtained
from a state ~g„& containing a definite number n of pairs
of photons:

discussed in the text.
The probability I'& of detecting a single pair of coin-

cident photons is calculated in a manner very similar to
that for the familiar case of n = 1 and need not be con-
sidered in detail. The first nontrivial results are obtained
for the probability I'2 of detecting two coincident pairs of
photons. As in the text, I'2 is proportional to the norm of
the state vector

F-g —(x, &pi%~ (x, &„,.)Fs (x, t~, )Es (&, ts, )lg„& .

(A2)

Equation (A2) corresponds to the situation in which no
beam splitters are present, but the results can be readily
generalized to the case of an interferometer, as was done
in the text. All nonessential constants and the many fac-
tors of exp(ikx cot)—will be dropped in what follows in
order to make the notation more compact; the effects of
the exp(ikx cot) fa—ctors are essentially the same as in
the text and can be reinserted at the end of the calcula-
tion.

Inserting Eq. (2) into Eq. (Al) and multiplying out all
the terms gives

(A 1 )

where e is a normalization constant. These calculations
can be done without the use of Eqs. (8) and (9) and pro-
vide some additional insight into the origin of the effects

n

0.&=~XX X H(fk~kbk, k )lo&
kl k k„ I=i

The state
~ P & is then

(A3)

X ~p~p'~qbq' X II (fk, ~k, bk —k, ) O&

p, p', q, q' kl, k2, . . . , k i =1
(A4)

where the factor of 1/V comes from the electric-field operators. The photon momenta associated with the field opera-
tors in path 3 have been denoted by Ap and Ap', while the momenta in path 8 have been denoted by Aq and Aq'.

It will be useful to separate ~p & into three components depending on whether or not q
=ko —P, etc. :

gapbk, , &~, bk, , + &~,bk, -, &~, bk, ,+ g~, bk, , &&'~, b, + . . +y y' & g' ~,b, apb, .
p p p 9' p

x g g (f b, )lo&. . — .

k), k2, . . . , k„ i = i

= {1&2&+ lg, &+ lbo& I, g Q (fk ~k bko k)lo&—
k, , k, , . . . , k„-=i

(A5)

The summations with primes omit the terms with q =ko —p, etc. , which are explicitly contained in the first two terms.
The state ~&$2 &, consisting of the first two terms of Eq. (A5), corresponds to the situation in which two entangled pairs of
photons were completely annihilated. The state ~Po&, the fourth term of Eq. (A5), corresponds to a situation in which
no pairs were completely annihilated but four pairs had one of their photons annihilated. Finally, ~P, &, the third term
of Eq. (A5), corresponds to completely annihilating one pair of photons while annihilating only one photon from each
of two other pairs; there are three other terms of this type corresponding to other pairings of p and p' with q and q'
which are not written out in Eq. (A5) since they will all be found to be negligible.

These three states are orthogonal to each other and they contribute independently to the total coincidence rate as a
result. First, consider the contribution to P2 from (Po~Po&, which corresponds to the purely accidental or background
coincidence rate. The orthogonality of the various final states will be found to dominate the effects obtained and the
inner product must be written out explicitly:
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n

X g + (fkakbk k )I0& . (A6)
k, k, . . . , k i=1

The carets over the P, q, and k terms in the bra vector are
a convenient way to signify that their values may in gen-
eral be difFerent from p, q, and k; this is not meant to im-

ply that these quantities are operators.
The operator a will give zero unless p =k; for some

value of i; this can happen for n different values of i and
contributes a factor of n. The same argument applies for
p', q, and q', giving an overall factor of n in the limit of
large n and eliminating the sum over p, p', q, and q'.

Since no pair of photons was totally annihilated in the
state leap&, the inner product is zero unless k =k, for
some pairing of the i and j. There are n. different ways
in which the k; and k. can be matched with each other,
but this factor also appears in the normalization constant
e and cancels out. This leaves only the sum over each
k; and gives

n4
( 1 )

— f2nN Il

~4 k k

n4
& 4pl0p & =,ff," (A7)

(AS)
J

where fj, = I/Nk~ has been used.
The contribution from &$2lg2& corresponds to the

complete annihilation of two entangled pairs of photons
and is given by

k), k~, . . . , k

in the nondegenerate limit.
The factor of unity that appears in the above summa-

tions should contain a rapidly varying phase from the
exp(ikx co—t) terms that were not included in the equa-
tions. This will greatly reduce the right-hand side of Eq.
(A7) but still provides an upper bound of

4

&y, ly, &=2 ', &ol g Q (fk a„- bk „- ) g a&a&,bz J, bk

X g a a b„b„g Q(fk ak bk

(A9)

Here, a and a ~ can each act on n different creation
operators but b and b ~ must then act on the correspond-
ing terms, giving only a total of n possible combinations
rather than the n obtained from Eq. (A6). The factor of
2 comes from the fact that there are two terms in Eq.
(A5) in which q and q' are interchanged and this corre-
sponds to the factor of 2! in the text.

If k and k ~ represent the momenta of the two pairs
that were completely annihilated, Eq. (A9) can be written
as

&4'2l42& =2, f~" X
k, kl, k2„. . . , k„

P

p', (A 1 1)

since p=Nk/V. When the factors of exp(ikx cot) are-
included, it is found that they give rise to a series of 5~
functions in the measurement times, as in the text, and
that these phase factors all cancel out for coincident mea-
surement times, leaving only Eq. (Al 1) in that case.

The ratio of the accidental to coincident detection
events is

Nk compared to the accidental rate. Equation (A10) can
be rewritten as

2

n f2~N~+2
~4 k k (A10)

2

& $2l$2& 2 V 2 Nk

2

(A12)

Here, k need not equal k&, and kz need not equal k .,
since those pairs were annihilated and no longer appear
in the final state, and Eq. (A10) contains two more sum-
mations than does Eq. (A7). The physical meaning of
this is that there are a large number of difFerent initial
momentum states that can all lead to the same final state
and the coherent superposition of their probability ampli-
tudes increases the coincident counting rate by a factor of

In the nondegenerate limit n/Nk ((1 and Eq. (A12) ex-
plicitly shows that the accidental rate is negligible in that
case. This is equivalent to the approximation af ((I
used in the text, since a=&n &'~ for the coherentlike
state l% &. The remaining contribution from & P, lP, & can
be shown to be negligible in a similar way.

Thus it can be seen that the nonlocal correlations in
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the intensities are the result of a coherent superposition
of momentum components inherent in each pair of entan-
gled photons, all of which lead to the same final state, and
this is not dependent on coherence between terms with

different values of n. The latter is, however, responsible
for the correlations between the fields themselves as seen
in Eq. (26), which is satisfied by the state ~iII ) of Eq. (2)
but not ~lb„).
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