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Transverse patterns in nascent optical bistability
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We study the Swift-Hohenberg equation describing a passive optical cavity driven by an external
coherent field, valid close to the onset of optical bistability. A linear analysis shows that the system can
sustain nontrivial stationary structures for small positive detunings. A weakly nonlinear analysis in the
vicinity of the instability points reveals the existence of stable hexagonal structures which eventually give
way to rolls. Numerical simulations support such a bifurcation scenario.

PACS number(s): 42.65.Pc, 42.60.Mi

I. INTRODUCTION

The emergence of patterns in passive optical systems
due to transverse effects has been the subject of recent in-
vestigations [1]. More specifically, analytical studies on
models of optical bistability have demonstrated that stat-
ic and dynamic structures may be sustained by these sys-
tems whether we impose or relax the mean-field approxi-
mation [2—4]. Such analyses, though, have been confined
to a single transverse dimension. Two-dimensional pat-
terns associated with the interplay between the longitudi-
nal and transverse dimensions have been reported [5], al-
beit restricted to numerical results.

Recently, the mean-field model of optical bistability in
the dispersive limit derived by Lefever and Lugiato in [2]
has been shown to sustain spatial dissipative structures in
two dimensions [6]. The numerical simulations reveal the
existence of hexagons and exhibit reasonable agreement
with the nonlinear analysis in the vicinity of the instabili-
ty points. This model, though, fails to describe accurate-
ly possible stationary patterns close to the transistor
characteristic and the onset of optical bistability. The
study of such a regime requires a two-time analysis that
introduces an additional slow time scale which is of
geometrical and not of physical origin, as was pointed out
in [7]. Moreover, it was shown there that a global
description of the field in terms of a generalized
Ginzburg-Landau equation is possible unless the detun-
ing is finite and positive. In this paper, we concentrate on
this latter model and we undertake an analytical and nu-
merical study of possible dissipative structures in two
transverse dimensions.

aX =4(1+i')y+X(C —(X( )
at

—4a~iX —4a XiÃiX, (2.1)

BX =4y+X(C —X ) —4a~iX ——', a XiXiX2 4 2 (2.2)

with X real. This is a real Swift-Hohenberg type equa-
tion, in contrast to the complex Ginzburg-Landau equa-
tion that has already been studied in the context of opti-
cal bistability [2]. As will become evident in the next sec-
tion, retaining the Laplacian term is crucial for the emer-
gence of nontrivial spatial patterns. It is this last equa-
tion (2.2) that we concentrate on in this paper.

where C is the deviation of the cooperativity parameter C
from C„;„=4(1+6,), and y = Y —(&3/2)C, with Y the
deviation of the amplitude of the injected field from
Y„;,=3&3( 1+b, ). C„;, and Y„;, correspond to the
values of C and Y, respectively, at the onset of bistability.
4=(co, —co, )/yi, where co, and ~, are the atomic and
the external frequencies respectively, y~ is the decay rate
of the atomic polarization, X1 is the transverse Lapla-
cian, and a is proportional to the spacing between two
adjacent transverse modes. We have redefined time in
terms of a constant that involves the decay rates of the
electric field, the polarization, and the population inver-
sion, respectively. Equation (2.1) is valid in the domain—0 ( 1/e )

~
b, (

~
0 ( e ), where e denotes the distance

from the onset of bistability. In the weakly dispersive
limit b, ( 0 (e), it may be reduced to

II. DESCRIPTION OF THE MODEL

We consider a ring cavity filled with two-level atoms
without population inversion, driven by a coherent
plane-wave steady beam. Starting from the Maxwell-
Bloch equations, the deviation X of the electric field from
its value at the onset of bistability is shown to obey the
equation [7]

III. LINEAR AND WEAKLY NONLINEAR ANALYSIS

4y, =X,(X, —C ), (3.1)

where the subscript s is used to denote the stationary
values of the real functions X and y, respectively. The

The homogeneous steady states of Eq. (2.2), satisfy the
cubic equation,
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steady-state curve X„as a function of y, is single valued
for C &0 and multivalued for C )0. Its linear stability is
determined by linearizing Eq. (2.2) around it and seeking
solutions for the deviation in the form exp(A, t +ik r),
where r refers to the transverse coordinates. Assuming
the relation (Xi+@ ) exp(ik r)=0, this analysis yields
the equation

X =X, +u (r, t)

with

(3.4)

derive analytically amplitude equations for possible
emanating transverse structures and assess their stability.
To this end, we introduce in Eq. (2.2) the new variable
u (r, t), defined by

C 3X—+4bak 'a —k (3.2) u =g(uo+gu, +gu2+ . ), (3.5)

for the characteristic real root A, . The condition A, =O
leads to a k-dependent neutral stability curve which
determines that inhomogeneous spatial patterns may
arise spontaneously only if 6)0, and at the critical value
of X,

X =b, +C/3 (3.3)

Thus the neutral stability curve has a minimum at
X =X, , The most unstable modes at the onset of the in-
stability fall on a circle of magnitudes Ik, I

=36,/2a. In
Fig. 1 we have shown the instability domains for a
monostable ( b, =0. 1,C = —0.025 ), and a bistable
(b, =0.1,C =0.025) case, respectively. Since Eq. (3.3) is
valid for symmetric positive and negative values of X and
y, respectively, we conclude that there is always a pair of
instability points.

We now treat the nonlinear evolution of the system in
the vicinity of the critical points by employing standard
bifurcation techniques I8]. Such an analysis allows us to

where the small parameter q measures the distance from
the bifurcation point. We also expand the bifurcation pa-
rameter y and X, around their critical values ao=X, „
and yo =y, „respectively,

Xg =Q O +Y/Q ) + 'g Q 2 +

y =yO+gy&+q y2+

(3.6)

(3.7)

and introduce the slow time ~=g t.
The solution to the leading-order homogeneous prob-

lem can be approximated as a linear superposition of the
critical modes k;:

u(r, t)= g (We ' +c.c. ), Ik;I=k, , (3.8)

where c.c. denotes the complex conjugate. One-
dimensional stripes occur for I = 1; two-dimensional
structures may arise for m =2 (rhombic structures) orI = 3 with k, +k2+ k3 =0 (hexagonal structures).
Proceeding on to the higher-order inhomogeneous prob-
lems, we derive the amplitude equations for the critical
modes by formulating the appropriate solvability condi-
tions.

For hexagons we have
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(3.11)

Similar equations for W2 and W3 are obtained from (3.9)
by permuting the indices. By setting 8'2= 8'3 =0 in Eq.
(3.9), we get the amplitude equation for the striped pat-
terns:

FICx. 1. The homogeneous steady-state curve X, as a function
ofy„ for (a) 6=0.1,C= —0.025 and (b) 5=0.1,C =0.025. For rhomboids we have
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with

aw,
at

=i~w, +r, w, w, l'+r, w, wz ' (3.12)

r)=h),
(3.13)

4 +1
r2(C, b. ) = 3b, +2C+4(3b, + C )

Q2 4cos a —1

where a is the angle that k& and k2 form on the transverse
plane. This last equation holds as long as we stay away
from the vicinity of a&2~/3, in which case the superpo-
sition of the two original vectors also lies on the critical
circle lk, l

=k, . The dynamics then of the three interact-
ing modes leads to Eq. (3.9) and the formation of hexa-
gons.

IV. STABILITY OF THE PATTERNS

A discussion of the steady states of the amplitude equa-
tions is greatly facilitated if we introduce the polar

ip(decompositions W, = A, e ' (i =1,2, 3). Moreover, we
start our analysis with the simplest of the patterns, name-
ly, the stripes.

The equation for the real amplitude 3
&

reads as

=vdj+h)A) .
at

(4.1)

For now we restrict our analysis in the vicinity of the
lower bifurcation point of Fig. 1(a) and thus ao (0.
Equation (4.1) admits two stationary solutions, the trivial
one Ai =0, and Ai, =+v/( —hi). A linear stability
analysis shows that if h, &0, the trivial solution remains
stable for y &yo, while the nontrivial one bifurcates su-
percritically and is stable for y )yo. On the other hand,
if h, )0, the bifurcation is subcritical and thus the em-
erging solution is unstable. Another bifurcation analysis
is then required in order to capture the fifth order sa-
turating nonlinearity. Note, that our bifurcation analysis
gives information on stable steady states exclusively in
the monostable regime, since the condition h, & 0 togeth-
er with (3.3) restricts the range of values of C to—3b. &8& —875, /38. The bifurcation structures re-
ferred to in the rest of the paper, correspond to 6=0. 1

and C = —0.025.
In search for patterns with hexagonal symmetry, we

empty a similar approach, and in addition we introduce
a variable g which is the sum of the phases

g =P, +Pz+ P3 and satisfies the equation

g 2g 2+ g 2g 2+ g 2g 2

(4.2)

The equation for the real amplitudes then becomes

aw,
3 2 2—Kali+hi 2 i+hpAi(Ay+ 33 }+gcos(lt)AQA3at

(4.3)

(4 4)

The H~ (g, =sr) hexagons bifurcate supercritically, but
remain unstable in the whole domain of their existence
due to the phase instability of Eq. (4.2). On the other
hand, the HO (g, =0) hexagons bifurcate subcritically,
this branch corresponds to Eq. (4.4) with the plus sign in
front of the square root. A linear stability analysis of the
other branch, shows that it is stable with respect to inter-
nal amplitude perturbations as long as the following two
conditions are simultaneously satisfied:

~+3h, ~,2 —g~, &0,
ii+(3h, +6hz)A, +2gA, (0. (4.5)

The stable branch of HO hexagons meets the unstable one
at the value of y for which g —4i~(h, +2hz)=0. Below
this value both solutions cease to exist.

Finally, rhombic structures can be identified from Eq.
(3.12) which in terms of the real amplitudes reduces to

aw,
=~A)+r) 3 )+r2A) A2 .

at

The only possible nontrivial symmetric solution is

g, = 22=+ ~/(r, +r2),

(4.6)

(4.7)

which exists if r, +r2 &0, and is stable if r, —r2 &0. It
turns out that these two conditions are mutually ex-
clusive for the range parameters that the bifurcation
analysis remains valid, and thus rhomboids are not ob-
served in this model.

We point out that an identical bifurcation analysis of
similar structures around the upper critical point in Fig.
1(a) (ao & 0) shows that the same bifurcation scenarios ex-
ist as long as we reverse the respective domains of the bi-
furcation parameter y.

V. PATTERN SELECTION

So far we have tested the stability of the difI'erent pat-
terns against internal perturbations of their respective
steady-state solutions. The pattern, though, that the sys-
tem gets attracted to, when more than one solutions are
intrinsically stable and we start from random initial con-
ditions, can be established only via a relative stability
analysis. In other words, we have to study the stability of
one pattern to perturbations favoring another one.

Therefore, we study the stripe-hexagon competition, by

The steady states itj, =0 and g, =~ of Eq. (4.2) give rise
to two kinds of hexagonal structures. From now on we
refer to them as HO and H~ hexagons, respectively. The
domains of their stability are mutually exclusive; the HO's
are stable for g ~ 0 and the Hm's for g ~0. As far as the
amplitude of the patterns is concerned, we have restricted
our search for nontrivial solutions, to symmetric hexago-
nal structures and found that such a steady state exists
and satisfies

—g cosset, +Qg —4~(h, +2h 2 )
1 2 3 2(h, +2h~)
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point, the growth rate of the unstable mode becomes ex-
tremely small and therefore long integration times may
be required to ensure that the system reaches its asymp-
totic state. For larger values of the bifurcation parame-
ter, hexagons give way to rolls, the orientation of which
depends on the initial conditions. Figure 4 shows rolls
for (y —yo)/~yo ~

=0.7. In order to capture the hexagons
that exist in the subcritical region, we need to impose a
large enough perturbation on the system to make sure
that it does not return back to the homogeneous state
which is also stable below the threshold. The results
shown in Fig. 5 for (y —yo)/~yo = —0.03, were obtained
by starting the simulation above the linear threshold and
after reaching the stationary hexagonal pattern moving
down the stable hexagonal branch.

VII. CONCLUSION

FIG. 5. Hexagonal pattern in the subcritical region,
b, =0.1, C = —0.025, and (y —yo1/~yo~ -=—0.03.

gradient method. Our simulations are concentrated on
the parameter range where the system exhibits monosta-
bility to make explicit comparisons with our analytical
results. The stationary patterns shown here have been
obtained for b, =0. 1 and C= —0.025. For these values
of the parameters the linear thresholds are
po =+2.7X10; we discuss only the lower one. We
start our simulations by adding a small amplitude ran-
dom noise on the homogeneous steady-state solution. As
the bifurcation parameter is increased past the threshold,
hexagonal structures are observed, the ones shown in Fig.
3 are for (y —yo)/~ye~=0. 3. These hexagons persist up
to the value of the bifurcation parameter for which
Eq. (5.3) changes sign [here it occurs for
(y —yo)/~yo~=—0.45]. In the vicinity of the transition

Our bifurcation analysis on a model of optical bistabili-
ty reveals the existence of patterns in two transverse di-
mensions. Unlike the model put forth in [2] by Lugiato
and Lefever, the current one allows us to show the transi-
tion from hexagonal structures that exist close to the
linear threshold, to rolls that persist far away from the
threshold. This is unlikely due to the existence of the
nonlinear diffusion which is required to balance the
growth of the negative linear diffusion term. Our analysis
is supported by numerical results, the two methods exhib-
iting very good agreement.
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