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Realistic optical homodyne measurements and quasiprobability distributions
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The deteriorating efFect of low-efficiency detectors in difFerent schemes suitable for a direct rneasure-

ment of the Q function and in optical homodyne tomography is studied in some detail. It turns out that
this efFect amounts to smoothing the respective quasiprobability distribution that would be measured
with unit-efFiciency detectors. Our main result is that those smoothed distributions can be identified
with certain s-parametrized quasiprobability distributions. Thus the latter gain direct experimental
significance as distributions measurable under realistic experimental conditions.

PACS number(s): 42.50.Wm, 03.65.Bz

I. INTRODUCTION

Quasiprobability distributions such as Glauber's P
function, the Wigner function, and the Q function origi-
nally introduced into quantum optics as valuable
mathematical tools [1], have now actually become acces-
sible to measurements. First of all, this applies to the Q
function which can be measured directly in various ways
[2—5]. A tomographic scheme for an indirect determina-
tion of quasiprobability functions has been suggested by
Vogel and Risken [6], and along these lines a pioneering
experimental work was just recently performed by
Smithey et al. [7].

It is well known that low-efIiciency detectors
deteriorate the results of such measurements. In the
present paper, the role of the detector efIiciency will be
studied in some detail. Specifically, it will be shown that
the distributions actually measured or tomographically
reconstructed are smoothed quasiprob ability distribu-
tions that can be identified with certain s-parametrized
quasiprobability distributions [1].

The paper is organized as follows. In Sec. II a con-
venient equivalent model for the description of balanced
homodyne detection using nonideal detectors is estab-
lished. This is used in Sec. III to evaluate the measured
distributions in case of beam splitting and amplification
followed by, or combined with, beam splitting, and in
Sec. IV to specify the quasiprobability distribution that is
reconstructed, in realistic experiments, with the tech-
nique of optical homodyne tomography. Finally, the re-
sults are discussed in Sec. V.

II. BALANCED HOMODYNK DKTKCTION

Since the measurements we are dealing with are usually
based on balanced homodyne detection, we will first de-
scribe this technique, thereby allowing for nonunit detec-
tion efficiencies r) [8]. Balanced homodyne detection us-
ing a strong coherent field as a local oscillator was shown
to provide a practical means of directly measuring the
quadrature component of the field with respect to the lo-
cal oscillator, provided unit-efIiciency detectors are em-
ployed. Choosing the phase of the local oscillator as 0 or

b, =2 ' (a+aLo),

b, =2-'"( —a+a
(2)

The subsequent damping processes give rise to the trans-
formations [9]

b', =cose b, +sine c

b2 =cose b2+sine c2

Here c i and c2 are the photon annihilation operators for
the vacuum fields entering the respective beam splitter
via the "unused" port, and the angle 8 is related to the
detector efficiency r) (assumed equal for both detectors)
by

cos B=g . (4)

Formally, it is very convenient to introduce operators
representing the photocurrents produced by unit-

~/2, one thus can measure, in particular, the variables x
and P (analogous to position and momentum), respective-
ly, that appear as arguments in the quasiprobability dis-
tributions. (Strictly speaking, x and P are the quadrature
components of the electric field strength, defined as

2
—1/2(g+gt) P t2

—1/2(a~ gt)

where & ~ and & are the familiar creation and annihilation
operators. ) As is well known [9], a realistic detector can
be modeled by an ideal one (r) = 1) with a partly transmit-
ting mirror (a special form of an attenuator) in front of it.
Hence, in the homodyne detection scheme such a ficti-
tious beam splitter has to be placed before each of the
two detectors [see Fig. 1(a)]. We will first show that this
setup can actually be simplified: One beam splitter at-
tenuating the signal before it is mixed with the local oscil-
lator has the same effect [see Fig. 1(b)].

Let us start from the model with two independent at-
tenuators. We denote the photon annihilation operators
for the incident signal, the local oscillator, and the two
mixed fields leaving the 50:50 beam splitter by Q, Q„o, b„
and b2, respectively. Then the action of the mixer can be
described as follows:
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efficiency broad-band detectors [10]

bi'b, I =b 'b
1 & 2 2 2 (5)

What is measured in balanced homodyne detection is the
difference of the two photocurrents:

=bi' b&
—b2' b2 .

Making the usual assumption that the local oscillator is a
very intense coherent field being in a Glauber state
~a„o), we may replace, to a good approximation, the an-
nihilation operator Q„Q by the complex amplitude e„Q.
With the help of Eqs. (2) and (3) we thus obtain from Eq.
(6), retaining only the relevant terms which are linear in

a„Q and aLQ, the relation

b I=az ocosB [cosB0 +2 ' ~ sinB(c, —c2 )]+H. c.,

(7)

from which one learns that the difference of the photo-
currents in a homodyne detection scheme with unit-
efficiency detectors (6=0) is, in fact, a direct measure of
the quadrature component of the field with respect to the
local oscillator, as has been mentioned above. On the
other hand, if just one attenuator is inserted into the in-
cident signal beam [see Fig. 1(b)], the photon annihilation
operator for the damped signal &' is connected with the
photon annihilation operators for the incident field and
the vacuum field entering the "unused" port of the beam
splitter, 8 and d, according to Eqs. (3), through the rela-
tion

&' =cosO & +sinO d,
and Eqs. (2) with d replaced by a', describe the subse-
quent optical mixing with the local oscillator. For the
difference of the two photocurrents we find now the ex-
pression

b,I=aLo( cosB a +sinB d ) +H. c. , (9)

signal

detector (

vacuum

C2

b2

local
oscillator
(~.o)

detector

where again only the terms linear in aLQ and nLQ have
been retained. Apart from the factor cosO in front of the
square bracket in Eq. (7) which is of no physical
relevance, the two results (7) and (9) differ only in the
fluctuation operators. However, since the latter act only
on the vacuum state, and the combination 2 ' (ct —cz)
corresponds to a unitary transformation, they in fact
coincide in all their formal properties. Hence the two
models for the description of homodyne measurements
with the help of nonideal detectors are completely
equivalent. This enables us to adopt the following pro-
cedure [see Fig. 1(b)]: In order to take properly into ac-
count detection efficiencies g&1, we formally attenuate
the signal (by means of a fictitious beam splitter) before
performing a conventional balanced homodyne measure-
ment with unit-efficiency detectors [11].

III. MEASUREMENT OF THE Q FUNCTION

A. Beam splitting

detector i

vacuum b2

signal

bl

detector

local
oscillator
(o.o)

FIG. 1. (a) Balanced homodyne detection scheme with
nonideal detectors modeled as unit-efficiency detectors with
beam splitters placed in front of them; (b) equivalent model. In-
dicated are the photon annihilation operators associated with
the difT'erent light modes involved.

It has been shown theoretically [3,5] that the Q func-
tion can be measured directly via beam splitting (provid-
ed the detectors have unit detection efficiency): A 50:50
beam splitter divides the signal into two coherent parts,
and with the help of the balanced homodyne detection
technique the two quadrature components of the
electric-field strength, x

&
and p 2, are measured separately

on the two beams [12]. The joint probability for those
simultaneous measurements w(xi, pz) turns out [3,5] to
be just given by the Q function for the initial field. For-
mally, one can arrive at this result by first calculating the
Wigner function for the whole field consisting of the split
beam P(x '„x2;p', ,pz) and afterwards evaluating the mar-
ginal distribution with respect to x i and pz by averaging
P(x'„x2,p', ,p2) over the remaining variables x2 and p', .
We wish to extend this scheme to allow for nonunit
detection efficiencies.

Let us represent the state of the incident signal field by
a Wigner function P&(xi,pt). The vacuum field entering
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where x1,P1 and xz,p2 are the quadrature components
for the two outgoing beams. For the special case of a
50:50 beam splitter (6 =m. /4), Eqs. (11) reduce to
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According to the equivalent model described in Sec. II,
the nonunit efticiency of the detectors is taken properly
into account by appropriately damping the fields before
they enter the respective device for balanced homodyne
detection (see Fig. 2). Hence the Wigner function of the
total system (before detection) is given by

Pout Pl(xi ~pl )P~~c(x2~p2)

110in 0d vi 1('.

(1(-.t(-.cti()n ()f x",

FICr. 2. Beam splitting followed by balanced homodyne
detection with nonideal detectors in the equivalent model of
Fig. 1(b). Indicated are the variables in the phase spaces associ-
ated with the different light modes involved.

XP„„(g,II', )P„„($2,11~)

(for notation, see Fig. 2.). Here, the variables x, , p, , x2,
and p2 are first to be substituted according to Eqs. (12),
and afterwards the substitutions

cos6 sin6 xk

the "unused" port of the beam splitter is characterized by
the Wigner function

—sine cos6
I/

cos6 sin6 Pk

sln6 cos6 (k =1,2)

(14)

P„„(x2,p2) =fr 'exp[ —(x2+p2 )] . (i0)

r

X1

X2

P1

cos6
—sin6

cos6

sin6
cos6

sin6

I
X1

I 7

Xp

P1

P2
—sin6 cos6 P2

The action of a beam splitter with transmittivity cos 6 is
described by the following transformations [13]:

have to be performed [see Eq. (11)]. Assuming that x",
and P2' are measured, we have to integrate over the
remaining variables xz', g', gz', p i', IIi', and Iiz' in order
to get the probability distribution w(x", ,pz') for this
simultaneous measurement.

(i) Integration over x2', gz', p", , and II", : We may inter-
pret the appropriate equations in (14) as substitutions,
and since the latter describe rotations, we may integrate
over x z, gz, p'i, and IIi instead. Hence we may write

w(x", ,p2 )=sr JP, (x„p, )

Xexp[ —( x2+p 2+( 'i+IIi' +$2' +II2' )]dx2dg2dp', dii', dg", d112' . (15)

(ii) Integration over g', II2', gz, and II i. From Eqs. (12) and (14) we find the relations

x, =x+2 '"x' x, = —x+2 '"x'

P1=P+2 '
P1 7 P2=P 2 P

where the abbreviations

x =2 '/ (cos6 x", +sin6 g'),
p =2 ' (cos6p" +sin6 II")

(16)

(17)

have been introduced. We integrate over x and p instead of g' and Iiz'. Before doing so, we still have to express the
variables g and II~ occurring in Eq. (15) through x and p. Utilizing the appropriate equations in (14), we obtain

g =2' cot6(x —2 '/ x i' /cos6),
Ii&=2' cot6(p —2 '/ p2'/cos6) .
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Noticing that the variables gz and II', enter Eq. (15) only through the Gaussian exp[ —(gz' +II, '
)], we can readily per-

form the corresponding integrations, and, by virtue of Eqs. (16)—(18), Eq. (15) reduces to

w(x", ,pz')=2~ /sin Of P, (x+2 ' xz,P+2 '~ p', )exp[ —(x —2 ' xz) —(P —2 ' p', ) ]

XexpI —2cot 6[(x —2 ' x", /cosO)

+ (P —2 ' ~ p z' /cosO ) ] ]dx zdp ',dx dp . (19)

Substituting here

x =x+2 ' x2, p=p+2 ' pi (20)

gives us

w(xI', pz')=2m /sin Of P, (x,p)exp[ —(x —2'~ xz) —(p —2'~ p', ) ]

Xexp[ —2cot 6(x —2 '~ xz —2 '~ x", /cosO) ]

Xexp[ —2cot 6(p —2 '~ p', —2 ' pz'/cosO) ]dxzdp', dx dp . (21)

(iii) Integration over x z and p', : Since only Gaussians are involved, those integrations can easily be done, and after a lit-
tle algebra we arrive at the final result

w(x", ,pz )=2~ '(2 —rj) ' fP, (x,p)exp — [(x —2' z)
' x'&') +(p —2' zl

' pz') ] dx dp, .
'9

(22)

where Eq. (4) has been observed. While for zl= 1 the right-hand side of Eq. (22) is, apart from a factor of 2, just the Q
function for the initial field Q, (2' x", , 2' pz') in accordance with Refs [3,5]., the Wigner function for the initial field

P, (x,p) becomes more strongly smoothed for rI(1, which is just what one expects. It is interesting to note that in-
tegrals of type (22)—the convolution of the Wigner function with a Gaussian —are special cases of the so-called s-
parametrized quasiprobability distributions W(x,p;s) introduced by Cahill and Glauber [1]. Quite generally, those dis-
tributions are connected through the following relation [14]:

W(x', p';s)=~ '(t —s) 'f W(x, pt)e xtp(t —s) '[(—x' —x) +(p' —p) ]Jdx dp . (23)

Specializing to t =0, from Eq. (23) we obtain

W(x', p', s)= vr 's —' fP(x,p)exp[[(x' —x) +(p' —p) ]Is Jdx dp,

where P(x,p ) = W(x,p;0) is the Wigner function. Hence our result (22) can be rewritten in the compact form

w(x", ,p" )=2z) 'W, (2'~ z)
' x", , 2' z)

'~ p"; —(2 —z))/z)),

(24)

(25)

where W, (x,p;s) denotes the s-parametrized quasiproba-
bility distribution for the initial field.

B. Amplification

x2

pi

—S C

C S

txi
I

x2
(26)

In the context of an operational definition of phase, it
has been shown [4] that strong amplification with the
help of either a laser amplifier with all atoms initially ex-
cited or an optical parametric amplifier [15] also enables
one to measure directly the Q function of the initial field.
Also in this case we will study the effect of nonunit-
efficiency detectors on the measurements.

Let us first calculate the Wigner function for the
amplified field. Let the initial field be injected into a
parametric amplifier as a signal field, and the idler field be
initially in the vacuum state. Hence, just as in the case of
beam splitting, the total Wigner function before
amplification is the product of the Wigner function for
the signal P, (x&,pi) and the Wigner function (10). To de-
scribe amplification, the former relation (12) has to be re-
placed by [16]

pi S C p2

Here, the following abbreviations have been introduced:

S=sinh~T, C =cosh~T, (27)

where ~ denotes the effective coupling constant and T the
interaction time. Hence the Wigner function for the
amplified signal field is given by

P, , (x', ,p', )

= vr
' fP, (x „p, )exp [ —(x z +p z ) ]dx zdp z . (28)

xz=(x', —Cx, )/S, pz=( —p', +Cp, )/S, (29)

It is advantageous to integrate over x, and pi instead of
xz and pz. From Eqs. (26) we find
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and hence Eq. (28) can be written as

P, , (x', ,p', )=sr 'S fP, (x, ,p, )exp[ —C S [(x, —x', /C) +(p, —p', /C) ]]dx,dp,

or, according to Eq. (24),

P, i(xi,pi )=C W'i(xi /C, pi/C; —C /S ) .

(3O)

(31)

The amplified signal field will be taken as the input for the detection scheme studied in Sec. III A (see Fig. 2). Then we
need only make use of the former result (22) in order to obtain the measured distribution function w(x", ,pz'). Insertion
of result (31) into Eq. (22), and substituting x i /C =x,p i /C =p, gives us

w(x", ,pz')=2~ '(2 —i)) ' f 8', (x,p; —C /S )

2

Xexp — [(x —2'i r)
'i x", /C) +(p —2' i) ' p", /C) ]

.dx dp .
2 —

7l

Utilizing the general formula (23), we arrive at the final result

w(x", ,p2 ) =2i) 'C 8', (2' g
' x"

, /C, 2' q
' p", /C; —[1+2(1—i))i) 'C ]), (33)

which clearly exhibits the deteriorating effect of nonunit-efficiency detectors. It becomes evident, however, from Eq.
(33) that one can tolerate low detector efficiencies when there is strong enough amplification (C ))1).

Whereas the foregoing analysis applies to both laser (with completely inverted atoms) and parametric amplifiers, the
latter device allows for a simplification of the measuring scheme: The two outputs (signal and idler) can be taken as
well as the two inputs for the homodyne measurements as the split (amplified) signal beam so that beam splitting be-
comes, in fact, superAuous. Operated in this way, the parametric amplifier combines amplification and beam splitting.
The theoretical treatment of this scheme follows closely the lines indicated in Sec. III A, with the difference, however,
that Eqs. (12) characteristic of beam splitting have to be replaced by Eqs. (26) describing the action of a parametric
amplifier. In this way, one finds the measured distribution function to be given by

w(x", ,p2 )=sr '[1+(C —2)g] '~ [I+(C~—1)r)]

X fP, (x,p)exp. — (x —rI
' x'i'/C) .exp — (p+7) '~ pz'/S) dx dp .

1+(C —2)rI
' 1+(C —1)r)

Obviously, the smoothing process is not symmetric with respect to x &' and pz'. This is not surprising, since the intensity
of the amplified idler is, in fact, lower than that of the amplified signal, since the former starts from the vacuum state.
However, the aforementioned asymmetry virtually vanishes in case of strong amplification, C))1. Then Eq. (34)
reduces to the simpler form

2

w(x", ,pz')=~ '(1+C i)) ' f P( xp) xep. — [(x —iI
' x", IC) +(p+rI ' p2'/C) ] dx dp1+C q

=&-'C-'W, (~-'"x", IC, q'"p," /C; —[I+~-'C-']) . — (35)

As expected, this formula is similar to result (33). In par-
ticular, one learns from Eq. (35) that the deteriorating
effect of low-efficiency detectors can be compensated for
by strong amplification.

IV. EXPERIMENTAL DETERMINATION
OF THE WIGNKR FUNCTION

In a recent theoretical study [6], Vogel and Risken pro-
posed a feasible tomographic scheme that allows one to
reconstruct quasiprobability distributions from sets of
data obtained by homodyne measurements. What one
has to do is to carry out homodyne measurements on the
field under investigation utilizing a strong reference field
whose phase 0 is gradually varied from 0 to ~. From the
measured probability distributions w(xe, B) the corre-

sponding quasiprobability function W'(x, p;s) can be
determined through numerical inversion. In the physi-
cally relevant case of the Wigner function corresponding
to s =0 the reconstruction is accomplished by the inverse
Radon transformation, and very recently the Wigner
functions for the vacuum state and a squeezed vacuum
state were indeed determined experimentally [7] along the
lines indicated by Vogel and Risken [6]. In the following,
we will clarify the role low detection efficiency plays in
this measuring scheme which has been termed optical
homodyne tomography [7].

As was shown in Sec. II, nonunit detection efficiencies
can properly be taken into account by attenuating the
signal with the help of a fictitious beam splitter placed be-
fore the setup for homodyne detection [see Fig. 1(b)].
Hence, what is reconstructed in optical homodyne to-
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P,„,(x ],x 2;p', ,p2 ) =P] (x],p] )P„,(x2,p2), (36)

where P, (x, ,p]) and P„,(x2,p2) [given by Eq. (10)] are
the Wigner functions of the incident beam and the vacu-
um field entering the "unused" port of the beam splitter,
respectively. Here, the arguments on the right-hand side
have to be substituted according to Eqs. (11). When the

I

mography is the Wigner function of the attenuated field.
Its connection with the Wigner function of the initial
field is readily established. Applying the general scheme
for the description of beam splitting presented in Sec.
III A, we obtain the total Wigner function of the field em-
erging from the beam splitter in the form

measurement is performed on the transmitted beam, we
have to integrate over x2 and p2 in order to get the
Wigner function P,„,(x],p]) relevant for the experiment
in question.

Considering the equations for x] and p] in Eqs. (11) as
substitutions, we integrate over x

&
and p &

rather than x 2

and p2. The variables x2 and p2 are then easily expressed
through x, and p&..

x2=cot6(x] —x', /cosB), p2 =cotB(p] —p', /cos6) .

(37)

Hence P,„,(x'],p']) is given by

out(x ] iP ] ) J Pout(x ] ~x 2 ~p ] ~p 2 )dx 2dP 2

=sr '(1 —g) ' jP, (x„p, )exp — [(x, —
2)

'~ x', ) +(p, —
21

'~ p', ) ] .dx, dp, ,

where Eq. (4) has been observed. The general formula
(24) enables us to rewrite the result (38) in the simple
form

principle, but in practice this will be extremely difficult to
achieve. Let us now discuss our results in some detail.

P,„,(x,',p', )

'8'] (r) ' x],2)
' p', ;

—[1—r)]/r) },
from which the deteriorating effect of low-efficiency
detectors becomes obvious.

V. DISCUSSION

In the foregoing sections it has been shown that the use
of nonunit-efficiency detectors results in an additional
smoothing of the quasiprobability distributions measured
or reconstructed from measurements. While this is cer-
tainly what one expects, the interesting point is that our
analysis revealed that the smoothing process in question
can properly be described in terms of the well-known s-
parametrized quasiprobability functions: With their ar-
guments appropriately scaled, those quasiprobabilities
represent directly the respective measured distributions,
whereby the actual value of the parameter s is determined
by the detection efficiency g. The g dependence of s
characterizes completely the deterioration of the mea-
surement due to the employment of nonunit-efficiency
detectors. Actually, the smoothing process has been
shown to be a convolution with a Gaussian which is
known when the detector efficiency is known. Hence, all
the information contained in the true quasiprobability
distribution is, in principle, preserved in the smoothed
one. However, the deconvolution needed for reconstruc-
tion of the true distribution, since it involves the
amplification (exponential increase) of noise in the
smoothed distribution according to Eq. (23), can be per-
formed satisfactorily only when the smoothed distribu-
tion is known in the whole (x,p) plane with virtually un-
limited accuracy which is unattainable in actual measure-
ments. So the effects of losses can be overcome only in

A. Beam splitting

According to the result (25), the parameter s is given
by

S = —(2 —2))/2) . (40)

It is only for g=1 that it equals —1, i.e., that one mea-
sures the Q function. For rI (1 a smoothed Q function
(s ( —1) will be measured.

B. AmplifjIcation followed by beam splitting

Equation (33) gives us

s = —[1+2(1—g)r) 'C ] .

First, one learns from Eq. (41) that for 2)=1 s takes the
value —1, irrespective of whether the signal is amplified
or not. This result is, in fact, not surprising since it is
well known in the limiting cases of no amplification,
C = 1 [see Refs. [3,5] and Eq. (40)] and very strong
amplification, C))1 (see Ref. [4]). (Note that in the
latter case the field is amplified to a macroscopic level,
where the noise introduced through beam splitting be-
comes negligible. ) The physically relevant implication of
Eq. (41), however, is that one can actually measure the Q
function of the original field with low-efficiency detectors
when strongly amplifying the field before detection. To
be more quantitative, strong amplification means, accord-
ing to Eq. (41), that the gain (with respect to intensity) C
should obey the inequality

2(1 —rj)/q «C2,
which for g=0. 5, e.g. , requires in fact a moderate gain,
C ))5, to be fulfilled.
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C. Parametric amplification

This scheme is of practical interest mainly in the case
of strong amplification, C&)1. Then, according to Eq.
(35), the parameter s takes the value

s= —(1+ri 'C ) . (43)

' &(C', (44)

which coincides with (42) for iJ=0.5 and is weaker, by a
factor of approximately 2, for g (& 1.

Thus, from the experimental point of view, the
amplification schemes prove to be superior compared to
beam splitting of the original field which requires unit-
efficiency detectors for measuring the Q function.

D. Reconstruction of the Wagner function

One learns from result (39) that optical homodyne to-
mography carried out with nonideal detectors does not
allow in principle, reconstruction of the original Wigner

As in the amplifiCation scheme considered above, the Q
function can be measured directly with the help of
nonideal detectors provided that the gain is strong
enough. The former inequality (42) now has to be re-
placed by

function. What is actually reconstructed is the Wigner
function of the attenuated field, i.e., a smoothed Wigner
function corresponding to the s parameter

s= —(1—il)/il . (45)

Putting ri=0. 5, e.g., in Eq. (45), one recognizes that in
this case one actually retrieves the Q function.

In this context it should be noticed that in general the
inverse Radon transformation in the form of the standard
filtered back-projection algorithm for parallel beam sam-
pling geometry [17] yields not the true Wigner function
even for g = 1, since the filtering removes high-frequency
components. From the practical viewpoint, filtering sets
the resolution with which the Wigner function can be
determined from the experimental data.

In summary, we have shown that the recently dis-
cussed and partly already realized schemes for measuring
the Q function and reconstructing the Wigner function
for a given single-mode field allow to determine, in realis-
tic experiments, only smoothed distributions, as a conse-
quence of the use of nonunit-efficiency detectors. Those
smoothed distributions could be identified with certain s-
parametrized quasiprobability distributions, so that the
deteriorating efFect of low-efficiency detectors is fully
characterized by the respective dependence of s on the
detector efficiency [8].
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