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Analytical approach to the photon statistics in the thermal Jaynes-Cummings model
with an initially unexcited atom
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Simple analytical expressions for the time evolution of the mean photon number and its normally or-
dered variance for the case of an initially therma. cavity field coupled to an initially unexcited two-level
atom are proposed. The possibility of appearance of sub-Poissonian field statistics is discussed.
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I. INTRODUCTION II. PHOTON-NUMBER STATISTICAL MOMENTS

Despite its simplicity, the standard Jaynes-Cummings
model (JCM) [1) of a two-level atom coupled to a single-
mode coherent quantized cavity field via one-photon
transitions is able to produce a variety of unique phenom-
ena such as collapses and revivals [2], sub-Poissonian
photon statistics [3], squeezing [4], and higher-order
squeezing [5,6], in the sense of both Hong and Mandel's
[7] and Hillery's [8] definitions. The multiphoton JCM
[9] is capable of producing not only higher-order squeez-
ing but also higher-order intrinsic squeezing [7] for the
photon multiplicity of the atomic transition 4 [5].

Knight and Radmore [10] have shown a collapse of the
oscillations in the standard JCM at chaotic classical and
chaotic quantum pumping. Only in the latter case does a
collapsed atom revive which means that solely revivals
are immediately related with the graininess of light.

Hillery [11] has determined the bounds on sub-
Poissonian field statistics in the standard JCM for the
case of an initially excited atom interacting with the
thermal photons of a not totally cooled cavity. In a total-
ly cooled cavity this system produces sub-Poissonian pho-
ton number statistics for all times because of the one-
photon transition at every atomic jump. If the spontane-
ous emission takes place in a cavity in the presence of
thermal photons, depending on their mean number they
suppress sub-Poissonian photon statistics of the emitted
field or cancel it altogether. For the one- and two-photon
JCM's with an unexcited atom at t =0 interacting with
an initially chaotic (thermal) field the bounds on sub-
Poissonian statistics of the evolving field have been re-
cently found numerically [12] and, as it could be expect-
ed, they are more restrictive than for an initially excited
atom. In this case, at the onset of the interaction the
atom absorbs a photon of the super-Poissonian field.

The rotating-wave-approximation Hamiltonian for the
model in question in the case of exact resonance reads as

~free +~int

Hf„, =AcoS +Acoa~a,

H;„,=go[a S +aS ],
where a (a) is the photon creation (annihilation) opera-
tor and S,S+, and S are pseudospin lowering, raising,
and inversion operators of the atom, respectively; cu

denotes the frequency of the field mode while g is the
atom-field coupling.

If the atom starts initially in its lower state and the
field

l

—) is in a photon number state n ), the resulting
interaction-picture wave function of the system is as fol-
lows:

lq'(t) &
=

I
—,n &C'"'(t)+ l+, n —1&C'"'(t), (2)

C'"'(t) =cosQ„t,
C'+ '

( t) = —i sinO„ t, (3)

where Q, is the Rabi frequency of the oscillations of the
system:

Q„=gin (4)

Due to conservation of the excitation number, the
mean photon number (, n(t)) carries the same informa-
tion as atomic inversion. The expectation value of the
photon number takes the form

where l+ ) denotes the upper state of the atom and the
probability amplitudes C'"'(t) and C'+'(t) read as
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(n(t))„=(V(t)~a a ~%'(t))„=n —~C'+'(t)~, (5) III. ANALYTICAL SOLUTION

where the subscript n denotes that the field is initially in a
Fock state.

In turn, the second-order statistical moment reads as

(n(t) )„=n +(1 2—n)~ C+I'(t)~

In order to obtain the photon-number statistical mo-
ments for an initially chaotic field one has to sum Eqs. (5)
and (6) over the geometrical photon-number distributions
Pn

—n

P„=
(
—+ 1 )n+1

where n is the initial mean photon number.
On summation of the constant terms of Eqs. (5) and (6)

we get

To calculate the functions (11) and (12) we use a linear
approximation in n for the Rabi frequency:

2Q„= Ao+(n —1)A, (13)

201= A0, 2Qq= A0+ A1.

From the definition (4) we find that

AO=2g, A, = Ao(&2 —1) .

The function So( t) then takes the following form:

(14)

(15)

1—
So(t)= q g q"[exp[i(AO+kA, )t]+c.c. ]

IG =0

and postulate that the above equation is exact in the first
two points n = 1 and n =2:

( n (t) ) =n —
—,
' [q —So(t) ],

(n(t) ) =2n +n —,'[n(1—+q)+So(t)—2Si(t)j, (9)

where

1 q
2

+c.c.
1 —qe'

cos[ T+P(~)]
&D(r)

(16)

n

n+1

So(t)=(1—q) g q "c so20„t,
n=1

(10)
where

D(~) = 1+q
—2 cosr,

cosP(r) = 1 —
q cos~

&D(r)

S,(t)=(1—q) g q"n cos2Q„t,
n=1

(12) sing(r)=
&D(r) ' (17)

and we used for the thermal field the relation
n =2n +n.

The above sums are simply calculated by means of a
computer. On the other hand, it is always tempting to
obtain an analytical solution to the problem. A number
of successful efforts has been made in this direction for
the JCM [2,10,13—18] for various types of the initial pho-
ton statistics. The most adequate analytical expressions
have been given for an initially coherent field [2] (see also
Yoo and Eberly [16]). The usual way of solving the
coherent JCM consists in the replacement of the summa-
tion over n by integration and in the use of a saddle-point
technique which is equivalent to expansion of the Rabi
frequency Q„(4) in a Taylor series about n, i.e., about the
point at which Poissonian distribution is peaked, within
an accuracy of (n —n ) . In the case of a thermal field the
geometrical distribution function has its maximum at
n =0 which is the point of the singularity of all the
derivatives of the Rabi frequency. In particular, if the
atom interacts with a classical chaotic field, then the re-
sult for the time evolution of the system may be written
in terms of the so-called Dawson integral [10]. Here, we
propose another solution which describes extremely well
the time evolution of the system under consideration for
small numbers of initially thermal photons n (1, i.e.,
when the semiclassical approach fails completely. The
interval of small n is especially intriguing because of the
possibility of a reduction of the quantum Auctuations of
the photon number below Poissonian.

T= A0t,

w= A)t.
Hence

( (nt) ) =n ——
q 1 —(1 —q)

1 cos[T+ (r)]
2 VD(r)

(18)

e vn(n( )r) =n ——
q 1+(1—q)

1 1

2 v'D (~)
(19)

In turn

(1—q)qS,(t)= q g q Iexp[i(AO+kA, )t j2 Bq

+c.c. ]

a=(1—q)q
Bq

q cos[T+P(r)]
&D(r)

(20)

Making use of the relations

T determines "fast oscillations" while ~ describes a "slow
envelope. " Obviously, the difference between these two
scales is not so significant. Nevertheless, T and ~ inter-
vene differently in the formula (18) and, in fact, I/&D
determines the envelope of the oscillations while P(r)
determines their phase:
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BD
2(q —cosr»

8 cos~ sing sinr
aq a

8 sing cosP sinr
Bq B

we get

~ ( ) (1 )
cos[T+2$(r)]

D(r)

(21)

(22)
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V=n —
q (1—cosr).

Sub-Poissonian photon statistics occurs if

n +2n+cos~(0.

(25)

(26)

Putting cos~= —1 we maximize the value of n at which
sub-Poissonian photon statistics can still be observed.
Then one obtains the following bound: n &0.41 in good
agreement with the numerically found limit n (0.32 [12].
Strictly speaking, for n =0.32 sub-Poissonian photon
statistics can still be noticed numerically, albeit in times
unrealistic from the experimental point of view, namely,
for gt )400.

Recently, Rempe, Schmidt-Kaler, and Walther [19]
have experimentally revealed the sub-Poissonian photon
statistics of the micromaser field. The results presented
in this paper correspond to a beam of atoms excited to
their lower micromaser level and injected into the not to-
tally cooled cavity.

The JCM is often referred to in the literature as "lying
at the heart of quantum optics" or as "being the core or
the heart of quantum optics. " From our present con-

siderations it results that this model, even with an initial-
ly unexcited atom, is also able to turn chaotic light into
sub-Poissonian light which only confirms, to some extent,
that these poetic terms are actually relevant.

Similar simple analytical calculations could be done for
the multiphoton Jaynes-Cummings models described by
the effective Hamiltonian [9]. Obviously, in the results
based on this Hamiltonian the dynamic Stark shifts of the
lower and upper atomic levels due to the transitions to
the intermediate levels would be ignored. This problem
for the two-photon model has been widely discussed in
papers [20,21].
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