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The calculation of the S matrix for a system acted upon by an external electromagnetic field, when the
fully interacting system can be represented by normalized Floquet states, is reformulated to include adia-
batic switching and wave-function renormalization. This procedure yields, in general, nonvanishing ma-
trix elements between states whose energies differ by an integral multiple of the photon energy. The in-
duced level shifts do not disturb this condition; however, a relative level shift between the initial (in) and
final (out) states is essential for a transition to occur. A numerical scheme to facilitate use of this formal-
ism in practice has been devised and applied to a model calculation. The present nonperturbative results
agree with lowest-order perturbation theory for weak fields, but deviate towards lower values at higher
field strengths. Representative data for the simultaneous excitation of more than one level are presented
to show that transition amplitudes are well defined in the presence of intermediate resonances. Gauge
dependence of the level shifts and transition amplitudes is also studied, both theoretically and numerical-
ly.

PACS number(s): 32.90.+a, 32.80.—t, 31.20.—d

I. INTRODUCTION

In the calculation of transition probabilities due to the
interaction of an intense external electromagnetic field
with a quantum system, the fact that it is a very good ap-
proximation to treat the field classically ( "laser approxi-
mation" [l]) has rendered nonperturbative approaches a
viable proposition. For studying steady-state phenomena
like change in the atomic or molecular spectra due to the
induced level shifts, the use of Floquet's theorem to
search for quasiperiodic states of the interacting system
has been known [2] to be particularly advantageous. This
approach has also been extended to encompass transi-
tions to a continuum, by letting the induced level shift be
complex, and interpreting transitions as decay in a steady
field [3]. However, from the point of view of time-
dependent perturbation theory, if the wave functions are
properly normalized, the imaginary part of the level shift
would be absorbed by the normalization factor, leaving
only a real part, as argued by Langhoff, Epstein, and
Karplus [4]. In particular, Sambe [5] has shown this to
be the case when there is no continuum. In this cir-
cumstance, it would then appear that no transitions are
possible at all. Such a null result was in fact obtained re-
cently [6], using an S-matrix approach. In this work we
show how this result gets modified when two factors
known to be of considerable importance in formal
scattering theory [7] and quantum electrodynamics [8],
viz. , adiabatic switching of the interaction and wave-
function renormalization, are taken into account. First
of all, it is no longer true that the existence of quasi-
periodic states forbids transitions; however, if the level
shifts of the initial (in) and final (out) states happen to be
equal, the corresponding transition does not occur. The

example of the harmonic oscillator considered in Ref. [6]
belongs to the special case where all level shifts are equal,
and therefore the null result applies there. Second, only
those transitions are permitted which correspond to the
absorption of an integral number of photons present in
the external field, regardless of the field strength; the level
shifts, which are intensity dependent, do not lead to any
violation of this requirement, because of their transient
nature. Finally, the wave-function renormalization fac-
tor is essential to ensure agreement with lowest-order
perturbation theory (LOPT) in the weak-field limit.

This paper is organized as follows: In Sec. II the basic
formula, which expresses the transition matrix element
governing the absorption of a given number of photons,
in terms of the level shifts of the initial and finals states
and certain Floquet coefficients, is derived, and its first-
order approximation shown to be the familiar golden-rule
matrix element. Gauge dependence is discussed in Sec.
III, where the need to use the "preferred gauge" [9], in
which an expansion of the total wave function in terms of
the eigenfunctions of the unperturbed Hamiltonian has
direct physical significance, is brought out. Section IV
presents a model numerical calculation using both the
"length" and "velocity" forms of the interaction, which
demonstrates that (a) the relative level shifts are gauge in-
dependent at any intensity or frequency; (b) the transition
amplitudes have this property only in the LOPT regime
(in accordance with the analysis of Sec. III); (c) at intensi-
ties beyond this regime, the amplitudes increase at a rate
lower than the power law characteristic of LOPT, until
ultimately they start to decrease; and (d) amplitudes for
the simultaneous excitation of more than one level, which
involves intermediate resonance, can be calculated
without any difficulty.
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II. LEVEL SHIFTS
AND TRANSITION AMPLITUDES

BP,
i =HQ„H=H0+ V,

Bt
(5)

E(r, t)=E zcos co t ——y
Q

C

B(r t)=E xcos co t ——
Q c

Using atomic units in which c=137, the vector and
scalar potentials in the "preferential gauge" [9] are

CEQ yz sin co t ——
CO c

—sin(cot) .

We shall develop the formalism, as far as possible,
parallel to the earlier treatment [6] in which adiabatic
switching of the interaction was not imposed. Consider a
one-electron system specified by a Hamiltonian
Ho=p /2+&(r), with HOP, =E,P, . Since we are in-
terested in transitions between the energy eigenstates P,
due to an external electromagnetic interaction, we shall
choose at the outset a gauge in which HQ coincides with
the unperturbed energy operator [9], so that an expansion
of the interacting wave function in terms of P, is directly
amenable to physical interpretation. This is of particular
importance here, since the transition amplitudes are ulti-
mately expressed in terms of the Floquet expansion
coeKcients of the basis states embedded in the field. A
more detailed discussion of this point is taken up in Sec.
III; for the present, we follow Forney, Quattropani, and
Bassani [9] and consider a monochromatic beam propa-
gating in the y direction with electric and magnetic fields
given by

evolving from the unperturbed state P, exp( i—E, t) as
t ~—~, of the form

[P +IF (r t) —P Je "'
] (6)i)'j, =e

Equation (6) clearly satisfies the stipulated initial condi-
tion, and also reduces to the usual Floquet form [6] as
i)~0. Note that f, will go over to the reference state P,
as ltl~oo, since the evolution is adiabatic. However,
what one is interested in is the amplitude for switching
the reference state from P; to Pf due to scattering, which
happens, according to the adiabatic hypothesis (e.g. , Ref.
[7]), around t =0. This is also clear from the representa-
tion of the S operator in terms of the evolution operator
Uas [7]

S= U(&x, 0)U(0, —~) .

Before proceeding to the calculation of the S matrix, we
shall indicate how 6, and F, can be determined in prac-
tice. To this end, we expand y„ in terms of the basis set

y'„(r)= pa'„P„.
Since the switching factors have been separated out in
Eq. (6), i.e., b,, and a'„„are independent of ri, we may
substitute Eqs. (4), (6), (7), and (8) in Eq. (5), and take the
limit g~O to get

where F, is a periodic function of t with period 2m. /co,
i.e., we may write

F, (r, t)= pe '" 'y„'(r) .

and

Eoz cos(cot) —.
( E, + b,, +n co —s„)a'„„=g g a'„(p, V v ) . (9)

The interaction operator is then given by

CEQV= ysin e t ——
c

—sin(cot) .p,

c EQ y
2 2

sin co t ——
2Q) c

—sin(cot) .

+Eoz cos(cut ),
which can be written in the general form [6]

V y V e
—im cot

2

(3)

(4)

As described in Sec. IV, 5, and a'„„can be determined
numerically, using Eq. (9).

To calculate the S matrix, we proceed as in Ref. [6], ex-
cept that the adiabatic prescription is followed and
wave-function renormalization is also carried out. Thus
we introduce the adiabatic level-shift operator

~= g lg, ~b,,e gl I( (10)

so that

hp, =b,, exp( rilt l )P, , —

with V = V, so that V is Hermitian. It is assumed
that any terms which commute with the total Hamiltoni-
an H=HQ+ V, such as those arising from the second
term in Eq. (3), do not appear in Eq. (4) (see Appendix A).
Further, it is understood that V is accompanied by a
switching factor exp( rilt l ), with ii —+0 f—inally. Except
where its presence is essential, this factor will be
suppressed. We now look for an adiabatic Floquet solu-
tion to the Schrodinger equation,

and split H as H=(Ho+6, )+(V—b, ), with (Ho+6, )

defining a new reference system and (V—b, ) an interac-
tion which does not produce any level shifts. The new
reference states evolve as

P, exp[ —i(e, +b.,e "")t ],
while g, is still given by Eq. (6) since it is independent of
the splitting of H, and can be normalized (in the sense of
Sambe [5])by requiring that
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This takes care of the "in" state P, [7]. As for the "out"
state g&, we note that the final state P&exp( i—e&t) (to
which itj& goes over as t ~ oo ) has an amplitude ao& in P&
at t =0. The renormalized S-matrix element connecting
P, and P& (fWi ) is therefore given by

S&,
= i l—im ao& f e (PI (V b, )~g; )d—t .

r]~p

(12)

It is important to remember here that the operations
iI~0 and f dt cannot be interchanged, since the presence
of g is required to render the evolution operator U(t, to)
well defined as t~~ or to~ —~ [7]. In fact, letting

g —+0 in the integrand will only lead to the null result of
Ref. [6], which forbids any transition, even when pertur-
bation theory permits it, e.g. , for the model considered in
Sec. IV.

The time integrals in Eq. (12) can be evaluated, after
substituting for V, 6, and g; and using the following re-
sults proved in Appendix B:

The intimate relationship between level shifts and tran-
sition amplitudes can be made more transparent by
means of a detailed analysis of first-order transitions. It
is worth stressing here that truncating Eq. (9) at any n

does not imply nth-order perturbation theory, since n

denotes the net number of photons absorbed. Further,
the presence of b, (which, being entirely due to the in-
teraction, is at least of order V) on the left-hand side
makes a general perturbation analysis extremely cumber-
some. However, the first-order case can be handled with
some facility by noting that in this case only the states P;
and P& are involved, i.e., all virtual transitions are ig-
nored. One may therefore make use of the well-known
results for a two-level atom in a spatially homogeneous
electromagnetic field in the rotating-wave approximation
[10] to calculate the relevant parameters, as follows: Two
normalized solutions can be formed, one of which goes
over to P; exp( —iE, t ) and the other to P& exp( i EIt) —as
V~O, depending on whether co ) (EI —E, ) or
co ((E&—E; ). In the former case, these can be reduced to
the desired form:

P, =e ' ' [ao, (b, +a', /e ' 'P/]

and

lim exp i x+ Ye gl'I t dt =2~g x
q~P —oo

(13)

where
lim f exp[i(x+ I'e "~'~)t rt~t ]dt =2n5—(x) .
TI ~P —oo

After some simple rearrangements, we get

S&, = —2mi g T&,"'5(E&—E, neo), —

Tfi aof X (f ~ Vm ~Xn —I ) ~f (kf ~X

(14)

(15)

0—e
E'=CO (E/ E; )

Q=[e +4~ V/i'~ ]', V/, '=(f
~ V, ~i )

ao; = (e+0)/[(e+ 0) +4 V~'
~

]'~

a', /= —2ao, V/, '/(e+0),

T/',"'=(b,; —b.&)ao/&a'„I, E&=E;+nm . (17)

Two notable features of Eqs. (15) and (17) are the follow-
ing: First of all, despite the induced level shifts, which
are not constrained to be commensurate with the photon
energy, the final energy transfer strictly corresponds to
the absorption of an integral number of photons. This is
as it should be, since the system is in one of its eigenstates
before and after the scattering event, so that the transi-
tion energy does not involve any level shift. Since the
field can lose energy only in integral multiples of co,
overall energy conservation demands that cf —c.; =neo.
Second, the transition amplitudes are proportional to the
difFerence between the level shifts of the initial and final
states. Thus level shifts are necessary, but not sufBcient,
to induce a transition. The example of the harmonic os-
cillator considered in Ref. [6] is a case in point. Here no
transitions are permitted, since all level shifts are equal.

From Eq. (15) we see that the T&,
"' satisfying the energy-

conservation condition cf —c;= neo are the transition am-
plitudes for the absorption of n net photons, from which
the corresponding transition rates can be deduced as usu-
al [1]. Using Eqs. (8) and (9), we may express these on-
the-energy-shell T-matrix elements compactly as

~f ~
CKf li 0!1f~

e —0
and apf = —ap; .f i

When energy conservation permits one photon absorp-
tion, @=0,and we get

III. GAUGE DEPENDENCE

As has already been stressed, the present scheme is
designed for use in a gauge in which the unperturbed

a = —b, =[VI'/

so that ~TI,"~ = V, '~, which is the standard first-order
formula. A similar calculation for the case co&a,f E;
leads to the same result. In other words, the first-order
transition amplitude is simply the lowest-order level shift
of the initial state at resonance. (Note that the usual
second-order ac Stark-shift formula [11,12] is not valid
near resonance. ) Rather than attempt to pursue this type
of analysis for higher-order processes, we shall demon-
strate the equivalence of the present nonperturbative
theory (NPT) and LOPT for low field strengths by a nu-
merical calculation (cf. Sec. IV).
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Hamiltonian coincides with the energy operator. In fact,
it is easy to see that, in an arbitrary gauge, there Inay not
be any quasiperiodic solutions at all. After a gauge trans-
formation,

A~ A+PA(r, t), 1 BA(r, t)
at

the new wave function will be

—eieA Icy

(18)

(19)

where y is a constant and A is a periodic function of t
with period 2~/co. The linear term only contributes a
constant to the scalar potential [cf. Eq. (18)] and there-
fore, in accordance with the discussion in Appendix A,
need no longer be considered. Clearly, a gauge transfor-
mation induced by A leaves the level shifts unafFected.
However, unwanted terms may yet arise from VA. For
example, in the dipole approximation, the preferred
gauge interaction assumes the so-called "length" form
E(t ) r. Choosing A= A(t ).r, where A= Ao sin(cot ),
Ao= —(cEO/co)z, one gets the "velocity" form
A p/c+ 2 /2c . Here, the A term, which arises from
VA, commutes with H and has both time-dependent and
time-independent Fourier components. In the light of
Appendix A, the former must be discarded. If the con-
stant term A 0/4c is retained, the total level shift will be
the same as in the length gauge. That this is so up to
second order has been shown by Milonni and Ackerhalt
[12];our analysis generalizes this conclusion to all orders.

Since all terms in the interaction potential, which com-
mute with H, can be removed by a unitary transforma-
tion involving VA and BA/Bt, the new wave function will
still have the form of Eq. (19), with A replaced by, say, A,
which does not produce any spurious efI'ects. It is readily
verified that the new Floquet coeScients cx are related to
the old o. s through

Therefore, in order for g, to be quasiperiodic, given f,
is, A should be of the general form

(20)

IV. NUMERICAL APPLICATIQN

0, L/2~z ~L/—2
W( ) (24)

The interaction in the preferred gauge [Eq. (3)] is exactly
equivalent to the length form in the dipole approxima-
tion. This gauge will be referred to as G1 in this section.
The Fourier components [Eq. (4)] of V are

Eoz
V+) = (25)

Measuring energy with respect to the ground state, the
energy levels and wave functions of Ho are [14]

Implementation of the above formalism in practice
may proceed as follows: Let the maximum number of
photon exchanges to be considered be X and let the Hil-
bert space of the unperturbed system be represented by
X, basis states. These can be finally fixed by means of an
appropriate convergence criterion. Arranging a„„in as-
cending order from n = —X, . . . , X and p= 1, . . . , N„
Eq. (9) can be recast as an eigenvalue equation for 5„
with N, (2X + 1) rows and columns. At low field
strengths, 6, will be given by the eigenvalue such that
the corresponding eigenvector will have a~, as the dom-
inant element. 6, at progressively higher field strengths
may be determined by requiring it to be a smooth func-
tion of Eo (adiabatic evolution). For any transition, two
calculations are needed: one with the initial state as the
reference state and the other with the final state as the
reference state. The first one determines 6; and a',&, and
the second b,& and a/OI. Equation (17) then gives the am-
plitude for the transition P,.~P& such that e&

—e; = n co.

The model system chosen to illustrate the above
scheme consists of an electron in a one-dimensional
infinite potential well, described by the Hamiltonian

2

Ho= + W(z),

n'„„=g pa'„,(p„g ~p ),
where

(21) E„= (n —1)
2L

(26)

f ~ i[e(Aic)+meet]dt
2' 0

(22)

To lowest order in A, g =5 0 and a'„„=a'„„. lf, as in
the transformation between the length and velocity
forms, A is of the order of the interaction potential, this
means that the Floquet coefficients are gauge independent
when LOPT holds. Since we have already shown that the
relative level shifts are exactly gauge independent, the
transition amplitudes [Eq. (17)] are also gauge indepen-
dent in LOPT. (It may be mentioned here that the expli-
cit verification of the gauge independence of transition
amplitudes for multiphoton processes, discussed in Ref.
[13],is actually at this level. ) When higher orders are im-
portant, the Floquet coefIicients can be gauge dependent
and only the preferred gauge can be expected to yield the
correct transition amplitudes.

P„=&2/L sin . LZ+
2

(27)

The required matrix elements are easily evaluated to be
r

—4nn 'LE0
n +n odd(&+i)„„= m. (n n' )—

0, n+n' even .
(28)

To study the efFect of gauge transformation, we may
also specify the interaction in the velocity gauge, referred
to as G2,

V = Ap, /c + A /2c (29)

where 3 = (Eoc/co) sin(cot). As discu—ssed earlier, the
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2Eonn '+, n+n' odd
( V+) )„„= co(n' n—')I.

0, n =n' even

(30)

time-dependent Fourier components of the 3 terms
should not be retained; however, to facilitate comparison
of absolute level shifts, it is advantageous to keep the
time-independent part. With this convention, the re-
quired matrix elements in this gauge are

E2

4co
(31)

2i V„„ i
(e„—e„)

(e„E„—) co—
(32)

For comparison with LOPT, we shall use the well-known
expressions for the level shifts [11]and transition ampli-
tudes [15],viz. ,

(33)

where VJ;
= (j ~ V, ~i ), in either gauge. All the results dis-

cussed in this section refer to a binding potential [Eq.
(24)] with I.=2 a.u. As with the numerical calculation of
the second-order matrix elements for hydrogen by Bas-
sani, Forney, and Quattropani [16], it was found that the
convergence is much better in G1, both for LOPT and
NPT. Typically, the value of X, or X required in this
gauge for convergence varied from about 7 at low field
strengths to about 12 at high Eo.

Figure 1 shows the variation of 6, and 42 with ~ for
EO=1 a.u. It might be worth stressing once again that
these are obtained from two separate calculations with
different initial conditions. Thus, 6& —6; cannot be in-
terpreted as the change in c&

—c; due to the interaction,
for any given initial condition. As expected, the level
shifts were found to be gauge independent and the values
displayed correspond to G1 as well as to G2. The level
shifts diverge at exact resonance in LOPT [cf. Eq. (32)],
whereas the NPT results exhibit a finite discontinuity at a
slightly lower frequency. As expected, far away from res-
onance, NPT and LOPT are in full agreement.

A comparison of the level shifts and transition ampli-
tudes in the two gauges and LOPT is presented in Table
I, for cu = c.2

—c, . Also given are the two Floquet
coefficients governing the excitation of the level n =2.
Convergence to the figures quoted could be achieved in
G1 with N, =X =7, while X, =14 and 1V =20 were re-
quired in G2 at Eo=2.0. Since Eqs. (9) and (11) fix a'„~
only to within an overall phase (for a given a ), the NPT
calculation actually determines only ~T&,"'~, which, of
course, completely determines the transition probability.
In Table I the level shifts in LOPT are not shown since
they are divergent for this case. At E0=0.05, represen-
tative of the low-intensity regime, both level shifts and
the transition amplitude are gauge independent, and the
latter is also in agreement with the LOPT result. At
Eo =2, the level shifts are still gauge independent, while
the transition amplitude is not. Further, NPT predicts a
lower transition amplitude as compared to LOFT.

Data presented in Table II demonstrate how unsuitable
gauge G2 is for calculations of multiphonon absorption
cross sections. The results pertain to co=(e2 —c&)/3 and
Eo =0.05. We shall henceforth denote e —e; by e, . The

NPT results in G1 are seen to agree with LOPT, while
the G2 data are approaching the G1 values slowly as X
and X, are increased. Calculations in G2 were stopped
at N = 15 and X, =24, by which time the size of the ma-
trix involved had reached 744X744. In the rest of this
section, NPT refers to the gauge G1.

Figure 2 illustrates the field-strength dependence of the
excitation of the level n =4 via one-photon absorption
(co=@2&) and three-photon absorption (co=@&&/3), both
of which can occur in LOPT also. [It is clear from the
structure of the matrix elements ( V+, )„„,Eq. (28), that
(i+j+n ) has to be even for T~"~ to be nonvanishing. ] It
is seen that nonperturbative effects set in at a much lower
field strength for multiphoton excitation as compared to
single-photon absorption. Further, in both cases, these
effects are such as to diminish the rate of increase of the
transition amplitudes in comparison with LOPT.

Finally, Fig. 3 shows the variation of transition ampli-
tudes in the presence of an intermediate resonance. It is
readily seen from Eq. (26) that if a level r can be excited
through the absorption of l photons, i.e., if Ice=@„„any
level s satisfying

1(s —l ) =k(r —1)

can also be excited through the absorption of k photons.

3.0 I I I I I I

0.0

-2.0

-3.0
3.0 4 5

FICi. 1. Level shifts 6& and 6& at Eo =2 a.u. , as a function of
co. Solid line, 6& (NPT); dotted line, 6& (LQPT); dashed line, 62
(NPT); dot-dashed line, 62 (LOPT).
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TABLE I. Level shifts and transition amplitudes for single-photon excitation of the level n =2 of the
system considered in Sec. IV, with I.=2.

LOPT
Gl
G2

LOPT
Gl
G2

0.089 82
0.089 82

0.3177
0.3177

Ep =0.05

—0.090 30
—0.090 30

Ep =2.0

—0.394 8
—0.394 8

0.706 6
0.704 9

0.675 1

0.584 1

0.707 6
0.709 3

0.718 3
0.766 1

0.009 006
0.009 006
0.009 006

0.360 3
0.345 5

0.318 8

Thus, when single-photon excitation of level 2 is permit-
ted, five-photon excitation of level 4 is also allowed. Tz&'

refers to the former and T4]' to the latter, which is clearly
beyond LOPT. The interesting feature here is the de-
crease of Tz", after Eo =11. This is evidently the analog
of "peak suppression, " observed in above-threshold ion-
ization [17],where the final states are in the continuum.

In conclusion, the formalism presented in this paper is
numerically tractable, whenever the system of interest
can be represented by a basis set of square-integrable
functions. From a forrnal point of view, the chief merits
of this theory are its adherence to the guidelines provided
by scattering theory in the presence of level shifts and its
ability to explain energy absorption in integral multiples
of photon energy despite these level shifts. Its limitation
is the uncertainty regarding its extension to systems hav-
ing a continuous spectrum, but, then, as pointed out by
Chu and Reinhardt [3], in this situation, the use of
Floquet's theorem is itself questionable and, as such, this
limitation is shared by any Floquet theory of multiphoton
ionization. As is well known, in this case one would ex-
pect the level shift to be complex, making it impossible to
normalize the wave function in a time-independent
manner. Again, any Floquet theory of transition rates
makes sense only if Imh, . is sufficiently small, in which
case the present scheme may also be expected to work, to
the same degree of approximation. This is currently be-
ing explored. For the present, it can be stated without
qualification that, under conditions where the interacting
system has properly normalizable Floquet states, the ex-
act transition probabilities can be calculated nonpertur-
batively, in a manner consistent with time-dependent
scattering theory.

APPENDIX A: DIAGQNAL MATRIX ELEMENTS
QF THE INTERACTION

where

v=y y la&&blv. „
a b&a

and

(Al)

u= g la)&alv. . . (A2)

with V,b
=

& a
l Vlb ). Since [Mo, u ] la ) =0 for every a

and the basis states form a complete set, u commutes with
Ho. However, this is not sufficient to warrant omitting U.

It is easy to see that

&bl[v, u]la&=v. (v..—v ) . (A3)

Therefore, if, and only if, the diagonal matrix elements of
V are the same for all states, U also commutes with V, i.e.,
v commutes with the total Hamiltonian and cannot pro-
duce any genuine transitions. In general, let V= V+ V,
where [V,H]=0. Any time-independent part of V sim-

ply contributes a uniform extra level shift; however,
higher Fourier components of V can lead to unphysical
transitions, and hence should be discarded. This has been
amply demonstrated in Ref. [18]; the potential well con-
sidered in Sec. IV provides yet another example. Had we
chosen the origin not at the center, but such that V=O,
0 & z & L, we would have gotten

If the interaction potential V has nonvanishing matrix
elements between the same basis states

l
a ), we may write

V(t ) = V(t )+u(t ),

TABLE II. Convergence of various parameters in the velocity (G2) gauge, for three-photon excita-
-tion of the level n =2 (ct) = 6'pl/3) at Ep =0.05. The numbers in brackets indicate powers of 10.

14
15
15

18
20
24

—4.93[—5]—4.94[ —5 ]—4.94[ —5 ]

1.76[ —5]
1.75[ —5]
1.74[ —5]

1a321

0.1074
0.1078
0.1084

laozl

0.9999
0.9999
0.9999

7.182[—6]
7.206[ —6]
7.233 [—6]

G1
LOPT

—4.94[ —5]—4.94[ —5]
1.73 [

—5 ]
1.73 [—5 ]

0.1093 1.0 7.277[ —6]
7.277[ —6]
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APPENDIX B: PROOF OFOF EQS. (13)AND (14)

The integral of E . (13)q. may be written as

I(0)= oo (83)

Ifx)0 we, we may carry out the inte ration
1

'
th ot

I(x)= —lim [I, +I
R co

It is readily verified that as R ~ ~ Ia as ~ ~, I, ~0, and we get

First we note that, if x=0, the intt e integrand tends to 1 as

I= lim [I(x)+I(—x )], (Bl) I(x ) =i exp[ —(x + Ye '"')t ]dt .

where To evaluate I( —x ), we ma use
fl d b h R

th
e et axis so that the c
's es as R~~ Th'is gives

10'

10

I I
i

f I

NPT

I( —x)= i-i exp—[ —(x+ Ye'"')t]dt .

Using Eqs. (85) and (86) in E . (Bl)q. , we get

(86)

I= lim i e "' ex — '"' —
pe exp( —Ye '"'t )

—exp( —Y '"'
p

— e t)].
O

in

G$

I—

10

10

0 4 I I I I I

(87)

The integrand is 1 1c ear y zero at t = oo

or not. For any finit
=~, whether g is zero

ni y pand the e ponent 1niet, wema ex a
ces o s ow that ihe
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I(x (0)=0 . (89)

From Eqs. (83), (88), and (89), we see that I(x ) must be
proportional to 5(x); the normalization constant can be
determined by noting that these relations also imply that

I is actually independent of Y, so that one may set Y=0
in (82). This immediately yields Eq. (13). Equation (14)
can be proved in exactly the same way; the extra factor,
exp( —q~t ~ ), makes essentially no diff'erence to the argu-
ments.
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