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Three-dimensional hydrogen atom in crossed magnetic and electric fields
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We give a solution of the three-dimensional Schrodinger equation for the electron of a hydrogen atom
in external electric and magnetic fields of arbitrary mutual orientation. The rearrangement of the energy
spectrum due to changing in the mutual orientation of the fields is evaluated by using the n =2 multiplet
as an example. The calculations agree with second-order perturbation formulas that exist for the special
cases of mutually parallel and orthogonal fields. For another special two-dimensional case which is
currently being extensively investigated, namely, the hydrogen atom in a strong magnetic field, our ap-
proach agrees with calculations by other authors and yields more accurate binding energies for certain
low-lying excited states that have been considered.

PACS number(s): 32.60.+ i, 03.65.Ge, 02.70.—c

I. INTRODUCTION

One of the basic quantum-mechanical problems, name-
ly, the hydrogen atom in electromagnetic fields, has been
of great importance for the progress of quantum theory
and is still of significant interest because of its numerous
physical applications. A large number of publications
deal with partial aspects of the problem. The present pa-
per is devoted to the solving of the three-dimensional
Schrodinger equation for the electron of the hydrogen
atom in external magnetic B and electric F fields of arbi-
trary mutual orientation. Although the problem has a
history as long as quantum mechanics itself, only a few
quantitative results have been obtained here for special
cases of weak fields in the framework of perturbation
theory so far. Initially, the problem was studied within
the old quantum theory by Epstein (cf. [1]) and its quan-
tal treatment was given in [2]. In both papers, the first
order of perturbation theory was considered for weak
fields B and F of arbitrary mutual orientation. The
second-order formula was obtained in [3] and an equation
for an additional second-order correction, which may
completely lift the residual degeneracy of hydrogen levels
for the case BiF, was analyzed [4]. The higher-order
corrections B F and B F to the ground state of the two
examples B~~F and BLF were computed in [5]. We also
have to mention a quasiclassical analysis of the problem
for BlF [6]; this work offers a qualitative investigation of
an interesting possibility where within the hydrogen atom
the electron may be localized separately of the nucleus at
a certain distance from the center of the Coulomb well,
which gives rise to a large dipole moment of the ground
state of the system.

In the general case of arbitrary mutual orientation of
the fields the separation of variables is not possible. To
solve this three-dimensional problem we use a method
suggested by us in an earlier paper [7]. This approach
has been applied to a number of two-dimensional exam-
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ples, both for scattering and for the discrete spectrum of
the Schrodinger equation. In particular, it has been
demonstrated that the method converges quickly for the
two-dimensional problem of a hydrogen atom in a homo-
geneous magnetic field [7]. An extension to a three-
dimensional case, taking as an example a bound state of
the helium atom, has been considered in [8].

In Sec. II, the formulation of the problem and the
essence of the applied method are presented. In Sec. III,
we consider a two-dimensional special case that is at
present being investigated extensively, namely, the hydro-
gen atom in a strong magnetic field ( B~ ) 10 G, F=O).
Apart from the known applications in astrophysics,
solid-state physics, and in chaotic studies (discussions of
physical applications may be found in [9—11], and refer-
ences therein), the problem has recently attracted atten-
tion as a convenient way of calibrating different ap-
proaches for solving the Schrodinger equation without
separation of variables. By modifying the strength of the
magnetic field B~, it is possible to change dramatically
the wave function of the system from the Coulomb
(~B~ =0) to the Landau (~B~ = ac) limit. For solving the
problem, variational methods ([12], and references
therein), the adiabatic approach [13], the modified
Hartree-Fock approach [14], finite-element methods
[15,16], and Kato's method [17] have been applied re-
cently. Only a few of the most successful analyses using
different approaches are mentioned here. A complete list
of publications devoted to this problem can be found in
the papers cited above. The accuracy achieved by a re-
cent, more refined method [12] for the ground state is
better than 1 part in 10 for fields ~B~ =10' G and better
than 1 part in 10' for ~B~ (10 Cr, which allows one to
take into consideration relativistic corrections as well.
We demonstrate that our approach is comparable in ac-
curacy with the advanced variational finite-basis method
[12] for the ground state of the problem and that it is
more accurate for some of the low-lying states to be ana-
lyzed here.

An extension of the approach to the general three-
dimensional case of nonzero fields B and F arbitrarily
oriented to one another is given in Sec. IV, where the
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evolution of the electron state n =2 as a function of the
angle aE[0,m. /2] between the fields and the relative
strength i)=3n ~F~/~B~ of the fields is analyzed. For the
limited cases a =0 (F~~B) and a =sr/2 (FlB), the obtained
results agree with perturbation theory [3,4]. The conver-
gence of the method is demonstrated for these two mutu-
al orientations and for different relative strengths (i) (1,
q= 1, and i) ) 1) of the fields. In Sec. V, possible applica-
tions of the obtained results and a possible extension of
the usage of the method are discussed.

II. FORMULATION OF THE PROBLEM
AND METHOD OF CALCULATION

The nonrelativistic Hamiltonian of a hydrogen electron
in external electric field F and magnetic field B has a
form:

H(R, 8,$)= —
—,'hit ——+ —,'(B L)+ —,'[B.R] +(F R),1

where R=(R sin8c soP, R si n8si nP, Rcos8) is the radius
vector of the electron and L is its orbital angular momen-
tum. The Hamiltonian is written in atomic units,
A=e=m, =1; the units of the electric and magnetic
fields strengths are equal to Fa=e m, /iri =5.14X10
V/cm, 80

= ( e /A ) m, c =2. 35 X 10 G.
We introduce a coordinate frame in such a way that

the vectors B and F, which form an arbitrary angle n,
determine the plane y =0 and the z axis coincides with
the direction of the field B:

B=Pn~, F=yn~,
where n~=(0, 0, 1) and nF=(sina, O, cosa) are unit vec-
tors and p and y are the strengths of the magnetic and
electric fields, respectively. In this case, the Hamiltonian
is reduced to the form

H(R, 8,$)= — R + U(R, 8,$)2R2 ()R 3R

have exploited the following idea (which has been
developed in collocation [18,19] and pseudospectral
methods [20,21]): to approximate the unknown wave
function g(X) that is to be calculated, we use a set of glo-
bal basis functions on a difference grid Qk (and not a lo-
cal pointwise basis as used in the standard discrete
analysis of finite differences or finite elements). This idea
has already been successfully applied in quantum chemis-
try to solve Schrodinger-type equations (the "discrete
variable representation" of Light and co-workers
[22—24]) and Hartree-Fock equations (the "pseudospec-
tral method" of Friesner [25,26]), where hybrid computa-
tional schemes based on manipulating a basis set and a
physical space grid have been developed to increase the
ef5ciency of computations.

Below we give a brief account of our approach [7] with
more detailed consideration of the peculiarities of prob-
lem (2). In space X subspace Q is defined, and from the
D-dimensional Hamiltonian (3) a (D —1)-dimensional
Hamiltonian h0(Q) with an orthogonal set of eigenfunc-
tions y„(Q) is extracted:

g(R, Q) $(R, Qk)=—. gk(R) . —=1 (5)

Furthermore, a discrete index v (v = 1,2, . . . , oo ) is intro-
duced, which corresponds to the set [p] of quantum
numbers that characterize the system of basis functions
y„(Q). Now the set of the first N eigenfunctions y„(Q)
(v=1,2, . . . , N) of the Hamiltonian ha(Q) at the nodal
points Qk forms a square matrix yk, = [y,(Qk)] of di-
mension N XN. Assuming the system y„(Q) to be a Che-
byshev set on Q [27], we introduce the inverse matrix
yk

' and represent the wave function g(R, Q) we want to
calculate as an expansion

H(X) = — R + U(R, Q)+f(R)ha(Q) . (4)
2R2 M aR

In subspace Q a difference grid Qk (k =1,2, . . . , N) is in-
troduced, in whose nodes the values of the wave function
that is to be calculated are

where

+ L (8$),
2R

(2) N N

g(R, Q)= —g g p (Q)y,,
'

P, (R)
j=1 v=1

(6)

L (8$)=— . sin8 +a a 1 a'
sin8 B8 B8 sin8 gp~

U (R, 8, $ ) = ———i +—sin 8.P a (PR)' . ,
R 28$ 8

[H(X)—E] p(X) =0 (3)

in the multidimensional space X= [R,Q] to a system of
differential difference equations in terms of one of the
variables R. To make the procedure more eKcient we

+yR (sin8 cosP sina+ cos8 cosa ) .

An essential point of the method [7] for solving the
Schrodinger equation with the Hamiltonian (2) is the
reduction of the partial differential equation

in terms of the basis functions y (Q).
For this expansion relation (5) is fulfilled automatically,

and the relations
N

(h ( 0)Qg(R, )Q) nn
=—g g q)i, e. y, ' f (R),

j=1 v=1

N

(U(R, Q)$(R, Q))n n =—g U(R, QI, )
R

N
X g VkA „)' itjq(R)

v=1

=—U(R, Qk )pk(R)
1
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are valid. Here e is the eigenvalue of the Hamiltonian
ho that corresponds to the eigenfunction p (0). By sub-
stituting expansion (6) into the Schrodinger equation (3)
and using relations (7) and (8), we obtain a system of N
differential difference equations:

N d2
F, (z)= g 5k +2[5i, E —Vk (R)] g (R)

(9)

where
N

Vk~(R)= U(R, Qk)5k)+ g q«e~q~, 'f (R) .

In [7] it was shown for the two-dimensional case how
Eqs. (9) may be transformed to the equations of the
discrete variable representation [22].

Following papers [28,29], we formulate the eigenvalue
problem for the system of Eqs. (9) as a nonlinear equation
F(z) =0 for an unknown eigenvalue s and eigenfunctions
itjk(R), z = [E,ij'jk(R)), by adding to the equation
Fi(z)=0 boundary conditions at R =0 and R =R ~oo
and a normalization condition:

In approach [29] both the eigenvalue and the scattering
problem for the system of equations (9) are formulated as
a functional equation F(z) =0, which is solved by
Newton's method. So the same computing technique can
be applied for calculating the bound states as well as the
ionization of a hydrogen atom by the electric field.

Let us formulate problem (9) and (10) for a hydrogen
atom in arbitrarily oriented magnetic and electric fields
(2). For this case it is convenient to define subspace fl as
a rectangle 0= Ix, g), where x = —cosHH[ —1, 1],
PH[0, 2n], and to choose the Hamiltonian ho(Q) as
L (x,P) with basis functions y (0) defined by

m&0—Pi x X

where PP (x) are the associated Legendre polynomials,
v= tl, m).

We will look for the wave function g(R, Q) as an ex-
pansion

N N

g(R, Q)= —g g y, (Q)y, ' [g (R)+if (R)]
j=1 v=1

(12)

F2(z) =fk (0)=0, F3(z) = pk (R ) =0,
N

F4(z)= g f P„(R)itj,(R)dR —1=0 .
k,j

(10)
containing both real g (R) and imaginary g (R) parts.
By substituting this expansion into the Schrodinger equa-
tion (3) with Hamiltonian (2), we obtain a system of
differential difference equations

N d2 N

5k, 2-+2[5k)E Vi„(R)]—g (R)+ g Vk~(R)g (R)
J 1

JdR2 J J J j=1
F, (z)= .

N d2 N

5kj 2 +2[5k@—Vk)(R)] QJ(R) —g VI, (R)p (R)

=0

where

Vk (R)= ——+ (1—xk)+yR(+1 —xkcosPksina —xkcosa) 5k +1 (PR) 2 l l(l + 1)0'k~9

(14)

aq (n)
Vk (R)=p g —1

Q=Qk
O'Vj

In those equations the summation indices take the following values:

k=[ke, k~), ke=l, . . . , Ne, k~=1, . . . , Np,

i =[i e Jp) Je=l Ne

v=Il, m), 1=0,1, . . . , Ne 1, m= —(N~ ——1), . . . , (N~ —1),
Ng=N~, N=NON~ .

III. HYDROGEN ATOM IN A STRONG
MAGNETIC FIELD

We start the analysis of problem (13) and (14) from a
special case p~ 1, y =0, i.e., a hydrogen atom in a strong
magnetic field. Also, we do not include the term

—i (P/2)BIB/, which is linear in the magnetic-field
strength p, in the Hamiltonian (2) in order to have the
possibility of direct comparison with the analyses of other
authors. As in this instance the variable P may be
separated, the initial three-dimensional problem is re-
duced to the problem on the plane X= [R,x ), which al-
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TABLE I. Binding energies E„ofthe ground state U = ( iso/000) of the hydrogen atom in a magnetic field f3

Ref. [13]'

Ref. [14]
Ref. [16]'
Ref. [17]

Ref. [12]'

Present work

1.662 338

1.662 337 793 2
1.662 337 794 6
1.662 337 793 46

1.662 337 793 49

1.636 4
2.120 0
2.044 428
2.044 426
2.044 427 816
2.044 427 820
2.044427 815 32

2.044 427 815 36

20

4.430 797
4.430 786
4.430 792
4.431 826
4.430 797 030

4.430 797 031

200

2.292 4
2.477 4
9.453 1/50
9.454 16

9.454 290 216

9.454 290 22

2000

18.550 8
18.6204
18.608 96/986
18.609 28

18.609 530 0

18.609 52

'Adiabatic approximation of Liu and Starace, giving both lower and upper limits for binding energies.
Modified Hartree-Fock approach of Rosner et al. The value calculated with maximum number of expansion terms being used (n, ) is

given before the slash; after the slash are the last figures of the value still changing if the two binding energies last computed are
linearly extrapolated to 1/n, —+0.
'Finite-element analysis of Shertzer.
Lower and upper bounds obtained using Kato's method by Fonte et al.

'Variational finite-basis-set evaluation of Goldman and Chen.

lows one to use as the basis set y (0) in expansion (12)
the Legendre polynomials PI (x) instead of the two-
dimensional basis functions (11). Also, as the Hamiltoni-
an defined in such a way does not keep the terms that
violate the wave-function symmetry relative to inversion
(x —+ —x), one may use either even or odd polynomials
PI(x), depending on the z parity of the state one is seek-
ing. Now the imaginary part of expansion (12) is equal to
zero, and the effective potentials Vk (R) (14) of the sys-
tem of Eqs. (13) are reduced to:

V (R)= ——+ (1—x ) 5
1 (PR)

8 k kj

+ g v(v —1)P,(xk)Pkj
1 —1

2A

where the summation index v takes the values
v=1, 3, . . . , 2N —1 or v=2, 4, . . . , 2iV„ for the respec-
tive states with positive or negative z parity, and the neg-
ative nodes of the 2N, -point Gauss quadrature on [—1,1]

TABLE II. Binding energies E, of the low-lying excited states U =(nl /n'm v) of the hydrogen atom
in a magnetic field P.

State So 20 200

(2po /001) Ref. [13]'

Ref. [14]
Present
work

0.511 4
0.524 4
0.520 013 2
0.520 013 779

0.590 0
0.598 2
0.595 421 9
0.595 422 153

0.826 754 5/72
0.826 756

0.954 8
0.955 0
0.953 064 0/1
0.953 0

(2so/002) Ref. [13]'

Ref. [14]
Present
work

0.271 4
0.318 8
0.320 937 9
0.320 938 144

0.314 8
0.348 8
0.347 888 0
0.347 889 41

0.447 62/73
0.447 678

0.538 0
0.540 0
0.537 921/45
0.537

(3d /004) Ref. [14]"
Present
work

0.132 02/63
0.132 465 93

0.13841/66
0.138 551 0

0.160 647/74
0.160 65

(3s /006) Ref. [14]
Present
work

0.071 28/53
0.071 464 5

0.073 658/753
0.073 721 9

'Adiabatic approximation of Liu and Starace.
Modified Hartree-Fock approach of Rosner et al.
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TABLE III. The convergence of the ground-state energy values E„as a function of the number of
terms, N„, included in expansion {12)for various magnetic fields P.

20 200 2000

8
12
16
24
32
40
48
60
70
80
90

1.662 337 793 449

1.662 337 793 593
1.662 337 793 593

4.430 773 182

4.430 797 011
4.430 797 012 9.454 276 938

9.454 289 557
9.454 290 139
9.454 290 169
9.454 290 172

18.608 963
18.609 424
18.609 506
18.609 52

are used as N grid points Qk =xk H [ —1,0]. For solving
problem (13) and (10) we use the computational scheme
successfully applied to a number of various multichannel
problems of muon-catalyzed fusion [30,31] and atomic
physics [32—34]. Here we will not discuss the details of
this scheme, which may be found in [7,29], but turn
directly to the analysis of the obtained results.

In Tables I and II the evaluated quantities E,= —2(E„—p/2) are presented for the ground state and
for several low-lying excited states of the problem togeth-
er with more accurate results obtained recently by other
authors using different approaches. We performed the
calculations for several field strengths in the region
1 & P & 2 X 10, which is usually tested. For numbering
the states, the classification of [14] was used,
U=(nl /n'mv), with the set of asymptotic quantum
numbers (nl ) and ( n 'm v) of the boundary cases p =0
and P= oo.

There are two sources of computational errors in our
approach: h(N„), caused by the truncation of expansion
(12) and b, (Nz), caused by numerical integration of sys-

tern (13) over R, N„and Nz being the numbers of grid
points for x and R, respectively. Notice that the number

of grid points for x is equal to the number of terms in
expansion (12). It has been shown in [7] that the accura-
cy of expansion (12) is of the order —I /N„! for N, )N„
(where N depends on p), and this estimate was proved
by "numerical experiment" for fields P& 1. It allows us
to expect that expansion (12) will converge quite fast for
stronger fields as well. The convergence of the method
for 1 &p & 2 X 10 with respect to N„ is demonstrated in
Table III for the ground state and in Fig. 1 for two excit-
ed states. The calculations were performed on the quasi-
uniform grids I0 . R,. i(h; )R; . R J for R given in
Table IV with finite-difference approximation of Eqs. (13)
of the order —h, —Nz . Esti.mating the accuracy b(N~ )

of the approximation of problem (13) and (10) for variable
R is quite standard procedure if the order of the approxi-
mation is known. The cutoff' values R were selected by
requiring that the error due to the truncation of infinite R
should be at least one order of magnitude smaller then
the errors h(N„) and b, (NIt ). Some technical details con-

0.074—

0.07S—

0.07Z—

0.07t
So

Sii/'006), p=Z

O.W+7e—

0.4476—

0.4474—

0.4472—

0.4470—

0.446e
80 80

FIG. 1. Two examples illustrating the convergence behavior of energy values E, (N ) of excited states U as N„~ ~. Here the dot-
ted hnes show the lower and upper bounds to E,{N„)obtained in [14] by Rosner et al. Energies and magnetic-field strengths are
given in atomic units.
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cerning the integration of the problem over E. for fixed
N may be found in [7,29].

The error analysis of the computation is illustrated in
Table V, which shows, as an example, the binding energy
E„(N„,Nz) of the ground state v =(10o/000) for a field
13=2. An evaluation of the quantity E,(N„,Nz) on a se-
quence of converging grids for both variables x
(N =8, 12,24, 32) and R (Nz =350,700, 1400) yields an
estimate of the resulting computational error:
b (N )+b, (Nz ). Furthermore, since the computed quan-
tities

6(N~ )
~ ~,s = E( 4 N~ ) E( ,' N~—) /—E(,'N~ )—E(N—„)= 14

5(Nii ) I ~ =p4 = 14 ~

which characterize the order of the convergence over Nz,
agree with the theoretical value 6,h=16 for the h; -order
numerical integration, this allows one to suppress the er-
ror b, (Nz =1400) at least on the order of magnitude by
the extrapolation to h, ~0 (Nz ~ oo) (see last column in
Table V):

E(N~ ~ oo ) = E(N„)——,', [E(—,'Ng ) E(Ng ) ] . —

Concerning the convergence of the results to N ~~, the
following fact should be noted. It may be seen from
Tables III and V that the quantity

5(N„)=E( ,'N ) E( ,'N—„)/E(,'N—) —E(N—)—
is large enough and grows fast with increasing N, which

shows quite high order of the convergence over N .
However, for examining how the order of the conver-
gence of expansion (12) for the fields 1 &/3~ 2X 10 agrees
with an estimation b(N )-1/N„! given in [7] for weak
fields P & 1 we would have to increase the accuracy of in-
tegration over R and to carry out the evaluation with
more significant digits than we used here (all calculations
were performed in double precision on a RISC/320h
workstation computer).

In Tables I and II we give the calculated quantities E, .
For the ground states of the hydrogen atom in the fields
P&2X10 the extrapolation to Nz —+ ~ has been per-
formed to suppress the errors b, (Nz ). For the rest of the
binding energies given in Tables I and II only the estima-
tion of the errors b, (Nz) has been done, and the grid
points I0 R;,(h; )R; . R ] (see Table IV) were
selected by requiring that the value b, (N~) should be the
same order as the error b, (N„) due to the truncation of
expansion (12). An analysis of the spread of computa-
tional errors allows us to guarantee the correctness of all
digits given in the quantities E„except for the last one,
which may be subject to computational errors. This
analysis and the comparison with advanced evaluations
by other authors using different approaches, which are
given in Tables I and II, allows us to come to the follow-
ing conclusion: our approach agrees with very accurate
variational calculations of the ground states [12] and
yields more accurate binding energies for the low-lying
excited states with different z parities, which are con-
sidered here for fields P & 2 X 10 .

It is also interesting to note that we have used the same
expansion (12) over the whole range of field strengths

TABLE IV. Parameters of the method used for each calculation: quasjuniform grid I0 . R;,lh;)R; R I over R with the to-
tal number of the points N& and the maximum number N, of the terms used in expansion (12). The steps of integration h; are given
in units h=0. 000625.

State

(1s /000) 1

2
20

200
2000

0 R; i(h )R; R

0(h)0. 125(2h)0.25(4h)0. 5(8h) 2(16h)6(32h) 10(64h) 14
0(h)0. 125(2h)0.25(4h)0. 5(8h) 2(16h)6(32h) 10(64h) 14
0(h)0. 125(2h)0.25(4h)0. 5(8h) 2(16h)6(32h) 8
0(h)0. 125(2h)0.25(4h)0. 5(8h) 2(16h}4
0{2h)0.25(8h) 0.5(16h) 1(32h)2

1400
1400
1200
900
350

24
32
32
60
90

(2@o/001) 1

2
20

200

0(h)0. 125(2h)0.25(4h)2(8h) 6{16h}10(32h)22
0(h)0. 125{2h)0.25(4h) 2(8h) 6(16h) 10(32h)22
0(2h) 0.125(4h)0.25(8h)0.5(16h)2(32h)4(64h) 16
0(4h)0. 125(8h)0.25(16h)0.5(32h) 2(64h) 6(128h) 14

2800
2800

750
250

24
32
60

100

(2so /002) 1

2
20

200

0(h)0. 125(2h)0.25(4h) 0.5(8h)2(16h)6(32h) 16(128h)28
0(32h)4(64h) 8(128}1)16(256h) 32
0(16h) 1(32h)3(64h) 5(128h) 15
0(32h}1(64h)3(128h)5{256h)9

1750
500
375
150

32
40
70

120

(3d /004) 1

2
20

0(32h)4{64h)8(128h) 30(256h) 42
0(32h)4(64h) 8(128h) 16(256h)32
0(32h) 1(64h)3(128h)5(256h) 13(512h)37

650
500
250

48
60

120

(3so /006) 0(32h)4(64h) 8(128h)30(256h)42
0(32h) 3(64h) 6(128h) 12(256h) 32(512h)56

650
500

60
90
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TABLE V. The convergence of the method over N and N& for the example of the ground-state
binding energy E„(N„,NR) for a magnetic field P=2.

350 700 1400

8
12
24
32

2.044 427 836 258
2.044 427 836 284

2.044 427 816 799
2.044 427 816 826

2.044 427 793 139
2.044 427 815 429
2.044 427 815 455
2.044 427 815 456

2.044427 815 32
2.044427 815 36

1 ~P ~ 2 X 10 while other approaches normally use two
separate expansions for the wave functions to be calculat-
ed and suppose either a spherical symmetry of the
Coulomb states (P=O) for weak-to-moderate fields or a
cylindrical symmetry of Landau states (P= ac ) for
strong-to-very-strong fields. The exceptions are the
finite-difference analysis of [16] with the local pointwise
basis and the finite-basis method [12], where the basis set
of trial functions contains both terms with spherical and
cylindrical symmetry.

We have obtained a rather fast convergence of our ap-
proach over N and X&, although the problem of finding
the optimum distribution of grid points [xkI for given
N has not been investigated. By carrying out such op-
timization and by using more accurate approximation
formulae for R, the computational efficiency of the
present method may be further increased.

IV. HYDROGEN AT@M IN ARBITRARILY
ORIENTED MAGNETIC AND

ELECTRIC FIELDS

Now, as an e%ciency of our approach has been tested
on a particularly well-investigated two-dimensional ex-
ample, we turn to the general three-dimensional case of
nonzero magnetic and electric fields of arbitrary mutual
orientation: a&0, P&0, y&0. To make the analysis
clearer we consider a well-known example, the evolution
of the n =2 multiplet in external fields, which is usually
used in courses on quantum mechanics as an illustration
of the development of the classical Stark (S) and Zeeman
(Z) effects. Now we have the possibility of considering
both effects simultaneously. We will analyze rather weak
fields P and y in order to separately investigate the states
of the neighbor multiplets n and n + 1.

For the three-dimensional Schrodinger equation with
Hamiltonian (2) the set of two-dimensional basis func-
tions y„(Q) in expansion (12) is defined by formula (11) on
the rectangle 0= [x,PI, where x E[—1, 1], /&[0, 2ir],
and the index v= [I,m I takes the values
1=0,1, . . . , N„1 and m = —(N~ —1), . . . , (N—

~
—1).

Here the numbers X =N& have to be equal to the sums
of the nodes in the X -point Gauss quadratures over the
variables x and P on the intervals x H [

—1, 1] and
QH[0, 2m. ]. The total number of grid points Qk in the
rectangle Q= [x,PI is equal to N=N N& and the sum-
mation indices j and k in Eqs. (13) take the values
j=[j ej yI =1 . . N and k [ke kgb 1 . . . , N. The

and 4k coordinates of the grid points Qk [xk 4'k Ie 8
are determined as the nodes of the Gauss quadrature for-

mulae over the variables x and P. Notice that now the
bound states of problem (13) and (10) do not have a
definite symmetry relative to inversion (z ~ —z) any more
because in the Hamiltonian of the problem there are
terms proportional to f3 and y that violate the symmetry.
Therefore in expansion (12) one has to keep both even
and odd basis functions Pi (x ) (relative to inversion
x ~—x), which are defined in the whole interval
x H [ —1, 1], and the functions sinmP and

cosmic

as well.
The abscissas Pk of the grid points Qk have been chosen

as the nodes Pk =(rr/N&)(2k& —1) (with odd N&) of a

quadrature on the whole interval [0,2ir] being two times
larger than the standard intervals of the definition for or-
thogonal polynomials sinm P and cosm P.

We start the analysis from the case of parallel fields
(a=0) where the problem still has cylindrical symmetry,
which permits one to classify the bound states with para-
bolic quantum numbers ([n, n „n m2I, n =n, + n z

+~m ~+ I). For small fields I3 and y the second-order
perturbation formulas are known [3].According to these
analyses the degeneracy of n multiplet is removed com-
pletely by the fields:

E„+b,e„g, p&0, y=O

E„(p=y=0)=e„& = ~ E„+b,E„&, 13=0, y&0

E„+b,E„&, pWO, yWO .

Here Q =n, —n2, Ac, „& and b,e„& are the splittings of
the Coulomb level n by magnetic and electric fields ex-
pressed as power series in P and y, respectively. If both
fields are applied to the system simultaneously, the split-
ting kc„& is not equal to the sum of Ac.„& and Ac„&

AE„g —Ac„g +Ac.„g +AE„g

where the additional shift AE„& contains cross terms of
13 and y. However, the cross terms do not arise in the
second-order perturbation theory yet [3]:

+ariz'"+aEzg" .

The shifting EE„& has been analyzed only for the
ground state n = 1 in [5].

The results of our evaluation of the binding energies—2e„& of the (ngm) states of the multiplet n =2 are
given in Table VI together with the quantities obtained
with first- and second-order perturbation formulas [3].
We have performed calculations on a sequence of con-
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verging grids IQkI with N=9(N, =N&=3), 25(5), and
49(7) grid points to examine the convergence of expan-
sion (12). Note that the number of terms in the expan-
sion is equal to the number of grid points I Qk },while the
number of coupled equations in system (13) is twice as
large because the expansion contains both real and imagi-
nary parts. We have chosen a quasiuniform grid
IO(0.04)4(0.08)8(0. 16)28] for R in such a way that the
error of numerical integration over R would give a con-
tribution in the last digit of the values given in Table VI.
The evaluation has been done for three possible relative
strengths of the fields, i)=3ny/P(1, i)=1, and rj) 1,
with respect to the critical point g=1, where the first-
order perturbation corrections due to P and y fields are
identical. The magnetic field strength was fixed,
P= —,

' X10, and the strength of the electric field was
varied, y= —,'X10, —,', X10, and —,'X10 (g=0.2, 1,
and 2).

The performed numerical analysis permits one to esti-
mate the computational errors b,E(Nit, N) of the values
—2E„& (N=49), given in Table VI, as b, e(N~, N) ~ 10
for g=0.2, and 5 (sN~, N) ( 10 for q) 1. As in the in-
vestigated range of field strengths f3 and y, our numerical
evaluation of the binding energy c„& is more accurate
than the value E'„& (16) given by second-order perturba-
tion formulas [3], we have a possibility of estimating the
main cross term in b,E2&0 =c.2&0

—c.2&0. From Fig. 2 oneZS (2)

sees that the main term may be approximated as
bEz&o ——Az&oP y+ . in the limit y~O with the
coefficient Az&o estimated as A2&o

——QX170. For more
accurate evaluation of this coeKcient one can do the cal-
culation with more significant digits and for smaller field

3.00—

Z.00—

CO

X

I

1.00—

O.OO-

—$.00—

-2.00—

3 00
0.00

~.~ ~ N —gg
===== N —48

0.05 0. t0 0. f5 O.ZO

$0

FIG. 2. Deviation AEz&p of the calculated binding energy
E'.2gp from the value cz&p given by the second-order perturbation
formulae as a function of y for fixed P=

~
X10 (B~iF case).

Energies and electric- and magnetic-field strengths are given in
atomic units.

strengths (y-0.0001), where perturbation theory is ap-
plicable with a higher degree of accuracy.

In Table VI the convergence of the method over iV is
analyzed for orthogonal fields ( a= ri2/) too by analogy
with the case of parallel fields (a=O). For a=a/2 the
first- and second-order perturbation formulas [2,4] give
the following:

TABLE VI. The convergence of the binding energies —
2c&& (a=O) and —2c2~q(a=~/2) over N for various relative strengths g

of the fields Pand y: P=10 /2; y=10 /6, 10 /12, 10 /6.

N=9
Present work

N=25 N =49 2nd order 1st order

Perturbation theory (Q, m)

0.2 0.245 152 9
0.248 878 3
0.250 881 1

0.255 153 1

0.244 853 9
0.248 878 3
0.250 881 1

0.254 853 9

0.244 854 5
0.248 878 3
0.250 881 1

0.254 854 4

0.244 854 3
0.248 879 7
0.250 879 7
0.254 854 4

0.245 000 0
0.249 000 0
0.251 000 0
0.255 000 0

(0,1)
(1,0)

( —1,0)
{0,—1)

0.244 988 7
0.245 989 4
0.254 994 3
0.255 992 6

0.244 960
0.244 988 5
0.254 960
0.254 994 2

0.244 960
0.244 988
0.254 960
0.254 995

0.244 958 3
0.244 991 7
0.254 958 3
0.254 991 7

0.245 000 0
0.255 000 0

0.240 326 3
0.248 591 1

0.258 563 8
0.260 358 6

0.240 328 5
0.245 232 6
0.255 231 8

0.260 361 2

0.240 328 9
0.245 287 2
0.255 287 2
0.260 362 0

0.240 341 7
0.245 283 3
0.255 283 3
0.260 341 7

0.240 000 0
0.245 000 0
0.255 000 0
0.260 000 0

0.238 326 6

0.249 850 2
0.250 335 3
0.260 3199

0.239 123 9

0.250 259 1

0.250 259 0
0.261 499 9

0.239 1307

0.250 259 1

0.261 507 8

0.239 1364

0.250 340 8

0.261 497 0

0.238 819 7

0.250 000 0

0.261 180 3

f 1 I

[0I
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b E'„"=—,'qt/(3ny) +P
+2 2

b, E'~' = (3n2+ 1 —q2+A. )~nqx 16

2 4

+ 3q —17n —19
16

(n —3q —1)
1+g

Here the quantum number q takes the values

q = (n——1), . . . , (n —1)= —1,0, 1 and X is the eigenval-
ue of the operator that removes (n —q) degeneracy
remained in the first-order correction hc. '„" [2]. The
values 'Epqp E'p+laLE''nq+LaLEtpqp given in Table VI were
evaluated with formulas (17) without contribution of
terms —A, . The eigenvalue problem for A, (which does not
allow an analytical solution) has been analyzed in [4] as a
function of parameters P, y, and g. According to this
analysis the removal of the (n —q) degeneracy for the
states with q=0 does not take place for the fields con-
sidered here with the parameters P= —,

' X 10
y= —,

' X10 (g=2). But one may see an "artificial" re-
moval of the (n —q) degeneracy at N=9, which is, how-
ever, suppressed as the number of terms in expansion (12)
is increased to 1V=25 and the approximation of the ini-
tial Hamiltonian is improved. The performed numerical
analysis shows that the same accuracy of the method has
been achieved for both considered cases, a =0 and
a=~/2.

While analyzing the n =2 multiplet for the two limit-
ing cases a=O and a=a. /2, we observed a total change
in the structure of the spectrum due to changing in the
mutual orientation of the fields F and B. The rearrange-
ment of the spectrum of an electron in a hydrogen atom
in crossed electric and magnetic fields as a function of
their mutual orientation

E„& (a=O) . s„~i(a=sr/2)

is illustrated by the example of the n =2 multiplet shown
in Fig. 3. The calculated curves are plotted as functions
of a for fixed P= —,

' X 10 and y varying over three possi-
ble relative strengths of the fields: g=0.2, 1, and 2
(y= —,'X10, —,', X10, and —,'X10 ). The calculated
binding energies —2E„& (a) are also given for several
values of e in Table VII. The calculations were per-
formed with N=25. Computational errors may give a
contribution to the last decimal digits of the values
—2E„& (a) presented in Table VII.

We also mention that, according to the analysis per-
formed in [4] in the framework of perturbation theory,
the (n —q) degeneracy of the states with q =0 for a =vr/2
may be removed only in one of the cases being considered
here, g = 1, although the splitting of Acpqp in the second-
order of perturbation theory due to A, does not exceed by
the order of magnitude the computational errors (see
Table VII). To analyze a removal of the (n —q) degenera-
cy due to the term A, one has to carry out the calculation
with more significant digits and a higher value of N for
various values of P and y.

For classifying the states we used the quantum num-
bers (ngm) and Inqk. ] of the limiting cases of parallel
(a =0) and orthogonal (a =~/2) fields but it is not clear if
classification I nqk, ] is also useful for stronger fields
where the application of perturbation theory becomes
questionable. It seems that in the nonperturbative region
only a classification by the well-defined quantum numbers
of the B~~F case (for a~O) and by the number of nodal
surfaces of the three-dimensional wave function, the form
of the surfaces and the possible symmetry of the wave
function with respect to the IBFI plane (for other a)
would be meaningful.

It should be noted that the results presented in Tables
VI and VII and in Figs. 2 and 3 do not depend on the
space orientation of the [BFJ plane. As the applied ap-
proach allows to carry out the calculations for different
plane orientations, this yields an additional test of the
consistency of the calculations.

—28
D.SF- g =0.2

D.SO-

(o. -1)
(-1, o)

(1, o)

( o, 1)
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(o, -1)
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DÃ4- 0.$4- 0&4- (1, 0)
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FI~. 3. The rearrangement c(Q )(a=0) &I I(a=w/2) of the structure of the n =2 multiplet due to changing of the angle a be-
tween fields B and p for three possible relative strengths q=3ny/p of the fields (p= —,

' x 10 '). Energies and electric- and magnettc-

field strengths are given in atomic units.
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TABLE VII. Evolution of the n =2 multiplet in crossed magnetic and electric fields as a function of
the mutual orientation a for various relative strengths i) of the fields P and y: P=10 /2; y= 10 3/6,
10 /12, 10 /6.

0.2

(Q, m)

(0,1)
(1,0)

( —1,o)
(0,—1)

0.244 854
0.248 878
0.250 881
0.254 854

0.244 839
0.248 957
0.250 802
0.254 869

0.244 804
0.249 178
0.250 582
0.254 905

0.244 769
0.249 500
0.250 259
0.254 939

1

2

0.244 756
0.249 830

0.254 953

r0I

(0,1)
(1,0)

(0,—1)
( —1,0)

0.244 96
0.244 99
0.254 96
0.255 00

0.244 09
0.246 05
0.253 91
0.255 85

0.243 44
0.247 26
0.252 69
0.256 50

0.243 03
0.248 60
0.251 37
0.256 90

0.242 90
0.249 93

0.257 04

0.240 33
0.245 23
0.255 23
0.260 36

0.240 08
0.245 76
0.254 80
0.260 57

0.239 64
0.247 00
0.253 62
0.261 02

0.239 28
0.248 57
0.252 04
0.261 38

0.239 12
0.25026

0.261 50

V. CONCLUSION

Our interest in the problem considered here was
aroused by two circumstances: we wanted to examine the
efficiency of the method [7] in an application to a real
three-dimensional physical problem whose solutions are
known with high accuracy for certain special cases, and
we tried to give an alternative point of view on the well-
known classical problem usually analyzed with some ad-
ditional conditions imposed upon its parameters (the con-
ditions permitted the use of conventional methods of
quantum theory such as separation of variables, perturba-
tion theory, quasiclassical approximations, etc.).

In solving the Schrodinger equation for the electron of
the hydrogen atom in external magnetic B and electric F
fields as a three-dimensional problem without separation
of variables we have calculated the rearrangement of the
spectrum due to changing in the mutual orientations of
the fields. As any interaction is introduced in addition to
the Hamiltonian (2) and projected into the space [R,8, P]
is diagonal in our approach [see Eqs. (13) and (14)], this
allows one to take into consideration in a natural way the
effects of finite mass and finite size of nucleus, relativistic,
and QED effects, etc. , and yields a background for an ex-
perimental analysis of the rearrangement phenomena.
The hydrogenlike atoms in external B and F fields have
recently become feasible for experimental investigations
[35,36].

Our approach may also be applied to analyzing the
ionization of hydrogen atom which occurs when an elec-
tric field is added to the system [37], because Eqs. (9) and
(10) have been formulated in [7] both for eigenvalue and
the scattering problem.

It seems interesting to analyze the possibilities for the
bounding of the electron away from the hydrogen nu-
cleus, at a certain distance from the center of the
Coulomb well and with another, deeper effective poten-
tial well, which gives rise to a large dipole moment of the
ground state in the crossed fields [6]. So far the existing
models for describing the effect are based on one-

dimensional approximations [6,38—41], but an adequate
theoretical consideration of the phenomenon demands
direct analysis of the three-dimensional nature of the
problem [42].

We would also like to mention a possible, quite unusual
application of the problem of the hydrogen atom in
crossed fields for describing the Coulomb interaction of a
particle colliding with the hydrogen atom as an effective
electromagnetic field in the rotating coordinate frame [3].

It is obvious that our approach may be applicable for
investigating some particular aspects of the problem that
are currently under study, such as the Stark effect in
strong fields and the Zeeman effect in hydrogenlike atoms
(or exitons in a magnetic field) with finite mass of the nu-
cleus (it was shown [43] that the hydrogen Zeeman Ham-
iltonian with finite nuclear mass is unitary equivalent to
the BlF Hamiltonian for hydrogen with infinitely heavy
nucleus).

Concerning the efficiency of the method, the following
should be noted. All computations were performed on a
conventional RISC/320h workstation, which limited the
number of terms in expansion (12) to N =100. However,
for the special case of a hydrogen atom in a strong mag-
netic field, we obtained highly accurate binding energies
for the low-lying excited states that were investigated,
and for the ground state the results we obtained are in
agreement with advanced variational calculations. This
allows us to expect an important increase in the accuracy
of the calculations when more powerful computers wi11

be used. Possible optimization by an adequate distribu-
tion of the grid points Qk may give an additional increase
in the efficiency of the calculations.

The rather good convergence of our method for the
low-lying excited states we considered suggests that it
might also be used for higher excitations, in the energy
region where the application of quasiclassical analysis is
still questionable. The high order of smoothness of the
calculated wave function (12) allows one to expect highly
accurate calculations for matrix elements with wave func-
tions such as mean-square radii, multiple moments, oscil-
lator strengths, etc.
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