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Using exact analytical expressions of the non relativistic dipole recombination cross sections for
a pure Coulomb potential summed over the quantum numbers j and l, we numerically compute the
recombination cross sections in the various n states for 1 ( n & 500 and the total cross section for all
possible values of the incoming electron energy. We present a parametrization of the recombination
cross sections in the various n, states, of the total cross section, and of the energy emission cross
section. A few low- and high-energy approximations are also derived and discussed,

PACS number(s): 34.80.Kw, 32.80.—t, 36.10.—k

I. INTRODUCTION

The study of radiative recombination of elementary
particles in the Coulomb Beld of a nucleus or an ion, par-
ticularly in the relatively unexplored (both theoretically
and experimentally) very low energy region, is quite im-

portant in several diferent fields of physics: particle ac-
celerators, plasma physics, astrophysics, both normal and
exotic atoms, antimatter production, and laser-induced
recombination.

As an example in the field of particle accelerators we
consider the electron cooling of proton beams. When a
proton captures an electron, a traveling neutral atom is
formed; information on electron and proton beams can be
obtained by observing such neutral atoms [1—5]. Let us
remember that the cooling mechanism of protons by elec-
trons consists of a redistribution of energy during the col-
lision of the two gases; usually the energies of the incident
particles are nonmonochromatic. Recently the subject of
laser-induced recombination has been investigated both
theoretically and experimentally with particular atten-
tion to the enhancement of recombination cross sections
with moderately high n states [6—10], and also very re-
cently the B.rst measurements performed at Gesellschaft
fiir Schwerionenforschung Darmstadt (GSI) of radiative
recombination of very highly charged ions at very low
energies have been published [11].

In plasma physics, when an electron emits a photon,
with the heavy ion absorbing the momentum, the elec-
tron energy decreases and free-free or free-bound transi-
tions can be observed; in the latter ease an electron can
be captured into any level of total quantum number n.
The study of the recombination radiation is important in

determining the rate at which positive ions, for instance,
recapture electrons, although it is usually believed that
at higher temperatures recombination radiation is negli-
gible compared to bremsstrahlung [12—16).

In astrophysics, in addition to the application of re-
combination to opacity and to the traditional astrophys-
ical problems, a few new applications have been proposed
regarding recombination of primeval plasma in the pres-
ence of light gauginos and Higgsinos and recornbination-
induced stellar axion production [17—19].

In the study of exotic atoms, and particularly when
studying the slowing-down, the Coulomb capture, and
the electromagnetic cascade of negative mesonic and
hadronic particles, there is great interest in the radiative-
capture rate [20—24]. In addition, we wish to recall that
radiative recombination is of great importance also in
muon-catalyzed fusion [25] and antimatter production
[26,27].

Using the nonrelativistic dipole cross section in a pure
Coulomb potential cr„~z(v, co„) for the capture of a neg-
ative particle into the atomic orbit (n, l, j) that we have
calculated exactly [28,29], we may calculate measurable
quantities like the rate coeKcient:

where Lu„ is the energy of the photon emitted in the free-
bound transition taking into account the recoil term, v is
the velocity of the captured particles in the rest frame of
the negative-particle gas (for instance the electron gas),
f(v) is the statistical distribution of velocities, v is the
velocity referred to the center of mass of the captured
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and capturing particles: v = v„—v, ~ and v„ is the
velocity of the positive particle (i.e. a proton) with re-
spect to the rest frame of the negative particles (i.e. , the
electron gas). In the electron-proton atomic capture, the
c.rn. reference system coincides with the stationary pro-
ton system. Therefore, in this case, the velocity 8 in Eq.
(1.1) may be substituted by v:

A = 'UO 'U (1.2)

has been derived by Milstein [36], but his result is still
an expression involving the principal part of an integral
over the nonconBuent hypergeometric function; the total
cross section is a partial sum because the sum is only
over the discrete levels of the spectrum. We obtained
directly [29] only a sum rule over the complete (discrete
plus continuum) spectrum of levels. For the sum over l

we wish to recall the works of Menzel and Pekeris [37],
Seaton [38], and Burgess [39—42].

Usually the quantity

The hardest problem in the evaluation of n is to obtain
a comps, ct sum over n, t, and j of o ti (t', ~ ); the di&-
culties involved in this particular topic were discussed
in an early work by Stiickelberg and Morse [30], by
Stobbe [31], by Brussard and Van de Hulst [32]; recently
the recombination cross sections and rate coefflcients into
specific energy levels have been studied by Omidvar and
Guimaraes [33] and by Pajek and Schuch [34,35]. The
total recombination cross section

O(V) = ) 0'n, lj(V~ Cdn)

II. BEHAVIOR OF THE CROSS SECTION
SUMMED OVER j AND L

It is well known that, in terms of the Gaunt factors
g„(e), the cross section cr„(e) is

8vr 4 (hc) ~ ( e~ 5 g„(~)
(n + E)c g 5cp Eisns

(2.1)

are able to show that the behavior of a„(e) is n
with X(n, e) being a family of simply behaved functions
with respect to n for fixed values of e. This scaling law
is in our opinion easier to use than the formulas by So-
belman [46,47] containing the Gaunt factors g„(e), and
looking at the behavior of A (n, e) one gets immediately
the behavior of the cross section.

In Sec. II of our work we report the exact values of
o„(e) we calculated and we give a parametrization of the
cross section o„(e). In Sec. III we report the exact values
of the total cross section o (e) and give a parametrization
of o.(e). In Sec. IV we deal with the energy emitted in
the recombination process and give a scaling law that
allows one to compute easily the energy emitted. In Sec.
V we give an analytical expression of o„~(e) in the low-
energy limit, and report the details of the calculation in
Appendix A. In Sec. VI we discuss some approximations
useful to calculate the recombination rates in the low-
energy eases. In Sec. VII we give an analytical expression
of o„,t(e) in the high-energy low-n limit and in the high-
energy high-n limit; the details of the calculation are in
Appendixes B and C, respectively. The conclusions are
in Sec. VIII.

1 Ze2't
Ei, = —

~
Mc,

hc g
(2.2)

is taken to behave like n s at high energy. For low en-
ergies, e&&Z /n [e = Eg/Ei» Eg is the incident ki-
netic energy in the c.m. system, E~, is the ground-
state energy defined in Eq. (2.2)], the cross section
is taken to be proportional to n ~; the dependence of
the cross section on the principal quantum number n is
n i (for n&n~«) and n s (for n ) n~a„), with n~»
= (Z /e) ~ . This gives, of course, assurance of conver-
gence of the sum over n of o„, except for Ey = 0. For
~ )& 1 the behavior of o.„(e)with respect to n is n . This
is also relevant in beam-foil spectroscopy when highly ex-
cited hydrogen atoms are formed. Different authors have
determined the population of such atoms in states with
principal quantum number n together with the scaling
law with respect to n [43—45]. These high-energy exper-
iments have established the validity of the n scaling
law. At low c there is a very wide area in which o„(e)
behaves very differently from n or n s. We have been
able to calculate exactly the cross sections in that region,
and we have also derived a parametrization of the cross
sections for all n and ~, and a very precise parametriza-
tion of the total cross section which can be useful in the
calculation of the rates.

Taking advantage of our e~act calculation of cr~tz (e) we

&a
2

(2.3)

where M is the reduced mass and E~ the c.m. kinetic en-

ergy. The numerical values of the Gaunt factors are usu-
ally obtained either from their curves, given by Karzas
and Latter [48], or from their tables or their asymptotic
expansions as given by Menzel and Pekeris [37], corrected
by Burgess [39,40]. Recently other authors [49,50] claim
to have obtained a better expansion valid at low e and
large n and claim also that the same expansion fits the
low n Gaunt factors with an error of less than a few per-
cent. We report here the analytical expression of the fac-
tor gi(e), which is also the only one of the Gaunt factors
to have a simple exact analytical expression:

4 arctan ~e)
gi(e) = 82rV 3~+1 1 —exp( —P)

(2.4)

The quantity g~(e) is a very complicated function of
e. g„(e) as we will see later depends on nonconfluent hy-
pergeometrical functions of a complex variable. Usually
one takes g„(e) = 1 with an error of (10—20)Fo. Approx-
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because we know the exw e exact value of
scu and co-workers [49,50]:

g„(0) given by
+8(n —3) 1+

inn
ln

~
G(n, e)'1+ )~

(2.9)

g„(0) = 1 —0.172 825n ~ —0.n 3 —0.016530n &+0.005 714n

(2 7)
where X 2 , c) is given by E . 2. , „, '

e ronecker
delta, and

q. (2.8), 6„,2 is the Kronecker
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1'(') = ):„x(.„)~2n=1"
(4.2)

In Fig. 8 we report the plot of the exact values of t(6). We
want to stress that, similarly to what we did in computing

s(6), we have used the exact values of Ã(n, 6) until we
reached the value of n for which we got overflow, and
from then on we used the value of X(n, 6) we got from
the parametrization of Menzel-Pekeris. From the figure
it is easy to see that for 6 —+ 0, t(6) —+ 1.22. For 6 —+

oo, t(6) ~ ((5). We have parametrized t(6) with the
following expansion:

1.220 iffy&10
t(&) = 0.00835381(log&o 6) + 0.21132(logi66) —0.06126681ogi66+ 1.07183 if 10 s & 6 ( 10

1.041

if'�&10.
(4 3)

The energy emitted per unit volume and per second in
the bremsstrahlung process may be obtained. Detailed
study of the energy-loss balance of bremsstrahlung and
captured emission and their comparison will be published
elsewhere.

k n
(

g 2 1)
n n (5.2)

and the confluent hypergeometric function I" is defined
in Appendix A [Eq. (A23)]. The relation between k and
6 1S

V. LO%-ENERGY APPROXIMATION
k= —ZMc .

+6 e~
(5.3)

We report in Appendix A the rather complex analytical
expression of crnl~(v, con) we previously deduced exactly
through the computation of nonconfluent hypergeomet-
rical functions of a complex variable [29]. In this section
we will write down a low-energy approximation (LEA),
by means of which it is possible to verify the convergence
of the sum over n of our o„(6). The different factors en-
tering crnl~(6) have been derived in the limit 6 (( n in
Appendix A. We define some quantities we use in this
section, M being the reduced mass of the recombining
particles; the kinetic energy in the c.m. system, EI„ is

(hk)'
2M '

1 f e2 ) Z2Mc2

2k, h)~

q= ka, a=

In this expression of the o„"l (6) we neglect the term that
refers to the transitions (l —1) ~ l and we explain in Ap-
pendix A why we only need to consider the term propor-
tionsl to I'2 which refers to the transitions (l +1) —+ l. A
low-energy approximation has also been derived by Pa-
jek and Schuch [35]; although their expression coincides
with the one we derive in Appendix A [Eq. (A24)], they
rather prefer to keep within the formal expression of the
cross section all the contributions. A further comment
on this point will be made in Appendix A.

Using the asymptotic calculus of hypergeometrical
functions by Tricomi [51] it is possible to verify the con-
vergence of

) LEA

n, l

for n ~ oo. It is possible to verify that the exact numer-
ical value of

aon

where ao is the Bohr radius of captured and capturing
particle system. Using the LEA approximation we ob-
tained the following result for the low-energy cross sec-
tion:

LEA 4vr e Mc k e "(n + l)! 4 2l+624l~l
3 hc hc k~ (n —l —1)!

) a„,l
n, t

converges more rapidly than the LEA.
We now wish to mention that in the LEA, if one knows

the cross section crn l for a particle x of rest mass M(x)
at energy Ek(x), one can obtain at once the cross section
on, l for another particle y of rest mass M(y), at energy
Ey(y). In fact, the following relation holds:

2 (l+1)
[(2l + 1)']'

where in our approximation

(5.1) ~";l"(M(~) &i(&)) = &",l"(M(y) &i(y)) M( )@ ( )
(5.4)
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VI. APPROXIMATIONS FOR THE
RADIATIVE-RECOMBINATION COEFFICIENT

I et us define

M,v = ' (v„—v).
M, +M„ (6.1)

Let us concentrate our attention on cases similar, for
instance, to the electron cooling, where a cold gas of elec-
trons is injected into the accelerator and travels at the
same average velocity of the hot gas of protons (the for-
mulas we will deduce can be used for any type of physical
system). Let us take a reference frame which is station-
ary with the center of mass of the electron gas. Then in
Eq. (1.1) we have

M kF )) @Ion1zat1on. (6 9)

This means that in the evaluation of o(v) one has to
be sure that not only the low-energy, but also the high-
energy behavior is reproduced. The high-energy contri-
bution to a is very important due to the v3 factor, even
if o.(v) is much lower at high energy.

role in most laboratory plasmas, it is important in as-
trophysical nebulas and HII regions, in the ionosphere
(tropical night glow) and in controlled-fusion plasmas
[12,14,52—54]. In addition, we wish to make the following
comment: if we assume a density of electrons as high as
in a metal, about 102 electrons/cm, we obtain k~ 10
cm . Then the Fermi energy for an electron gas is

then

V )4)~ =0 Vp —V

n, t,j

n = n(v„) = vf(v)cr(~vp —v~)d v. (6.3)

VII. HIGH-ENERGY APPROXIMATIONS

By high energy we mean Ek )) E„j q n )) 1. For n
not too high we can make the further hypothesis q2 )) 1.
In this high-energy low-n case we can apply the approxi-
mations shown in Appendix B to the exact expression of
the recombination cross section (Al). We obtain

Now we calculate a(v„) in the approximation v ( v„.
We make a Taylor expansion of o.(~v~ —v~); after angular
integration we have

4vr e2m k 24'+4 (l —1)!
3 h2 k a2'+sn~'+4 (2l —1)!

(n+ l)'
k 2t a- —

(n —l —1)! (7 1)

4~ v
8 (~v~ —v~) = 47ro (v„)+ —o'(v„)+ v2cr" (v„). (6.4)3 vp 3

A fraction of the electrons has energy larger than the pro-
ton energy; however, this fraction is absolutely negligible.
In general:

~(v.) =4~~(v )(v)+ I

" +~"(v.) I
(v') (65)

4~ (o'(v„)
3 ( v& )

A few words about the statistical distribution of veloc-
ities are appropriate. When the electrons are at T = 0
K, the distribution becomes very simple:

with

&I +E Ek
V (7 2)

We can calculate another limiting case: the condition
q n )) 1 is still valid, but we consider the condition
q (( 1. In this high-energy high-n case we are interested
in the radiative capture in the highest levels, near the
continuum. The approximations valid in this case are
shown in Appendix C. Using these approximations we
obtain an approximated expression for a.„t(k) for high
energy and high n:

hk
f(v) =c for v (v

M (6 6)
(l + 1)2

~(2l + 1)t
The constant c may be calculated after normalization

and is given by
6 1

g(q '+ ') .t+s z+sn+ q+ (7.3)

v (5)'
(2~)' qM)

(6.7)
The factor g(q, l + 1) can be further simplified in the

hypothesis ql (( 1, i.e. , if we consider high-n low-l states:

Then n(v„) in the first approximation and for v„—+ 0
and v„( v is

VF

g(q, l+1) =
/+1 (

~

s'+ —,
~

=1/q"+'.
q'i (7 4)

n(v„) = 4m. cvso. (v)dv. (6.8) For t =0 we get

Therefore o, gives a partial-sum rule up to v = vF.
Whereas radiative recombination generally plays a slight

vr' (e2& (' 4, & a'
o„a(k) = —

~

—
I

2 exp
~

——tan qn
~

. (7.5)3 qhcp q q ) nsqs'
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some fundamental quantities in astrophysics, plasma
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bination rates and the energy produced during recombi-
nation which we shall analyze in a later work. The tools
we propose to use are as follows: the recombination cross
section at the level n given as a scaling law with respect
to the n = 1 cross section [o i, (e)], a scaling law for the
sum over n of all the cross sections and also another scal-
ing law that is useful in evaluating the energy produced
during recombination. We give exact values of the above
quantities, because of the approach used to calculate the
hypergeometrical function of complex variables, and we
also give the three parametrizations which are very use-
ful in the evaluation of quantities averaged over statistical
Maxwellian and non-Maxwellian distributions.
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APPENDIX A: LOW-ENERGY
APPROXIMATION

In this appendix we report the detailed calculation of
the LEA cross section. The analytical expression of the
recombination cross section [29] is

o.„,i(k) = q„i(k) (a„—ik) Fi —(a„+ik) F2 +p„i(k) (a„—ik) Fs —(n„+ik) F4 (Al)

with

t24'k2i-' .--'"" " (n+ l)~
qn, i A:

[(2l 1 ) f] 2 a(2l+1) n(2l+2) (n l I) t ' ' ' (a2 + k2) 2l+4 'e ~ II'(l —i/q (A2)

(t + I)24'+4k~' e ~
'~" q" (n+ t)!Pni& =

[(2t+ I)!]' a!2i+sln~~i+4l (n —t —1)! ~ (a& + k2)2i+s 'eq II'(l + 2 —
iraq (A3)

and the F, (i = 1, 2, 3, 4) are nonconHuent hypergeomet-
rical functions of complex variable defined as

4ia„k
F1 —F —n+ l —1, l + —,2l, — ", A4q' '

(a.„—ik)2p '

function is given by

]r(t —i/

and then we find

( +I/q )-rl — r]1 ——
] (A8)

ri r

F2 = s'
l

—n+ l + 1, t + —,2l— ". ,), ,(&&)
i 4io;„k

i 4ia.„kF, = F
]

nt++ I, l + —,—2t + 2, —

(A6)

F4 = F
I

n+t+ l—, l+2+ —,2l+2i 4ia;„k

(A7)

l —1

Ir(t —i/q) I' = (s'+ 1/q'),
s=1

(A9)

Since s & n and n « 1/q; we can neglect s~ com-
pared to 1/q~; we can also neglect the exponential in the
denominator of (A9) and then we get

and M, k~, k, a, n~, q are defined in Sec. 5.
Low energy, for us, means

E&«E„=——
]
—

] (Z Mc)1 1 re l
n'2 lhc)

and therefore Ei,/E„= a k n = q n2 « 1. The I'

e ~I'(t —i/q)] = 27rq

in the same way we get

e ]r(t + 2 —i/q)] = 2vrq

We can also take, in Eqs. (A2) and (A3),

(Alo)

(Al 1)
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e
——tan qn4 —1

rv g
—4n

(n„+n ) n„,

(A12)

( n+l+1). f i) (

(—iq)" (4n)"
v! (1 —aqn) 2" ' (A15)

~l2 '+'e " (n+ l)! s ~,+s1
[(2l —1) '] (n —l —1)! k ' (A13)

~(i+ 1)2 '+ e " (n+l). s ~)+s 1
t( )

[(2l + 1)!]g (n l 1)t k3

(A14)
We now consider the nonconHuent hypergeometric func-
tion:

which is defined by the following series:

and therefore, using Eqs. (A10), (All), and (A12), we
can write q„,i(k) and p„,i(k) as

where

(A') = A'(A'+ 1) (A'+ v —1)

and the same for ( n+ —l 6 1)
If we group together each one of the v factors of the

type A+ —' + r with one of the (—iq), we get v factors
[
—(A+ r)iq+ 1] which, in the limit q2n2 « 1, are:

[
—(A)iq+ 1][—(A+ l)iq+ 1] [

—(A+ v —1)iq+ 1]

(2A+ v —l)v
2

Keeping in mind that (1 —iqn) 2 . 1 p 2iqnv, the
approximated expression for (A15) is

(2A+ v —1)v
1 —zq

2
+ 2iqnvF

i
n+ l +1—, A+ -, A', — ",

~

-1+)( i, 4in„k 5 .( n+ l +1—), (4n)"

= F(—n+ l +1,A', 4n)

( n+ l +—1)„(4n)' (2A + v —1)
(A') ~ (v —1)! 2

(A17)

where

F(—n+l +1,A', 4n) = ) . ( n+ l +1).—(4n)"

v=0
(A18)

is a conHuent hypergeometric function. We can therefore write the two parts of Eq. (Al) containing the differences
of the hypergeometric functions as

(n —ik) R —(n„+ik) F2 = n„(l —iqn) Fi —(1+iqn) F2 —n (Fz —F2), (A19)

(n„—ik) Fs —(n„+ ik) F4 - —4in„qnF+ in„q)
- ( n+ l+ 1)~ (4n)~—

2l+2 v v

(2l + v —1) (2l + 4 + v —1)X + 2n+ —2n
2 2

( n+ l + 1). (4n)—
(2l + 2) (v —1)!

= —4ia„qn E—(—n+ l + 1)
(l+1) F(—n+ l + 2, 2l + 3, 4n), (A20)
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where we used the following notation for the conHuent
hypergeometric function:

F—:F'(—n+ l + 1, 2l + 2, 4n). (A23)

Fr =—F (—n+ l —1, 2l, 4n),

F2 = F ( n+—l+ 1,2l, 4n),

(A21)

(A22)

Finally, gathering Eqs. (A13), (A14), (A19), and (A20),
we obtain the following expression for the LEA cross sec-
tion (which is in agreement with the results of the deriva-
tion of Pajek and Schuch [35]):

r EA 47I e Mc k e (n + l)! 4 2t+s 4i+r
3 hc hc k2 (n —l —1)!

l (Fi —F2) 2 (l+ 1) — ( n+ l+—1)
—1)!~ ~(2l+ 1)!j (l+ 1

(A24)

Several considerations must be made at this point: first
of all the term proportional to (Fi —F2)2 refers to the
transitions (l —1) —+ l, and is always very small (at the
most a few percent) compared to the other term, there-
fore we conclude that the (l —1) —+ l transitions are
suppressed compared to the (l + 1) ~ l transitions and
we can neglect this term. The expression of Eq. (5.1)
is obtained from Eq. (A24) neglecting also the second
term in the squared bracket. The reason is the following:
Eq. (5.1) and Eq. (A24) being both approximations of
the exact cross section (Al), they give very good esti-
mates when q n is much less than 1. If this is not the
case, but still q~n & 1, we have verified the following:
for / = n —1, the second term in the squared bracket is
zero; for l = 0 and n ) 1, Eq. (5.1) gives a larger value
than the exact result, while Eq. (A24), even if it still
gives a value larger than the exact one, is closer to the
exact value; for 0 ( l ( n —1 Eq. (A.24) underestimates
the e~act value more than it does Eq. (5.1). We may
conclude that Pt o„"

&
is a better approximation of the

exact value than the sum over t of the cross section of
Eq. (A24). This is the reason why we may suggest, as
an approximation to the cross section of Eq. (Al), the
expression of Eq. (5.1) in addition to Eq. (A24).

approximation. Since Ek )) En, q n )) 1 and q )) 1,
we have

q
tan qn 1

Analogously we have

(B3)

Furthermore,

+k k.n (B4)

Since

In this limit we also have 1 —exp( —2vr/q) —2vr/q, and
therefore we can rewrite Eq. (A9) as

APPENDIX B:HIGH-ENERGY, LOW'-n
APPROXIMATION

4iqn 4z (( ]
(1 —iqn)~ qn

(B5)

In this appendix we report the detailed calculation of
the recombination cross section in the high-energy, low-n

all the hypergeornetrical functions (A4)—(A7) can be put
equal to 1: F1 Fq F3 F4 1, and we can write

[(n„—ik) Fi —(n„+ik) Fg[ = [(n„—ik) Fs —(n„+ik) F4! =16n„k

substituting Eqs. (Bl)—(B4) and (B6) into (Al), we obtain

4~ e2m &~ 2@+4 (l —1)! (n+ l)!
a2t+sn2t+4 (2l 1)t (n l I)!

+ l+1 (l + 1)' (n+ l)' —2t —io
a2'+5n2'+s (2l + 1)! (n —l —1)!
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Since k l « k we can neglect the second term
in parentheses. This means that only (/ —1) ~ / tran-
sitions are allowed in this limit and we obtain for the
recombination cross section in the high-energy, low-n ap-
proximation the expression (7.1) in the main text.

(C4)

«+ie--:"" "" (n+/)!
q„, (k) = /

'+' (,]
', g(q, / — )

ag 1
n2L+2 q2L+11 '

APPENDIX C: HIGH-ENERGY, HIGH-n
APPROXIMATION

e' ]I'(/ —i/q)] = g(q, / —1)2=2~
q

and analogously

(C1)

In this appendix we report the detailed calculation of
the recombination cross section in the high-energy, high-
n approximation. Since q2 && 1 and n )& 1 we have

4i+se '"" '" (n+/)'
pn i(k) = m(/+ 1)2 '+

[(2/ 1)']2 ( —/ —1)'g(q, /+ 1)

a9 1
X n2t+4 q2t+13 ' (C5)

3 /t [(2/ + I) '] ( —/ —1)!

We can neglect q„,i(k) compared to p„,i(k) and substi-
tuting Eq. (C5) into Eq. (Al) and using (B6) we obtain

with

e ~ [I'(/+ 2 —i/q)[ = g(q, /+ 1)
q

(C2)
a6 1

xg(q /+ 1) 2i+sn q

Since in our approximation

(q, A) = (s + I/q ). (C3) k~=(qn +1) "=q n "=q
2h3C

E 4 1

s=1

Substituting (B4), (Cl), and (C2) in (A2) and (A3), we
have for q„ i(k) and p„ i(k)

we finally obtain the approximated expression of o„i(k)
for high-energy, high-n shown in the main text in Eq.
(7 3)
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