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Using exact analytical expressions of the non relativistic dipole recombination cross sections for
a pure Coulomb potential summed over the quantum numbers j and [, we numerically compute the
recombination cross sections in the various n states for 1 < n < 500 and the total cross section for all
possible values of the incoming electron energy. We present a parametrization of the recombination
cross sections in the various n states, of the total cross section, and of the energy emission cross
section. A few low- and high-energy approximations are also derived and discussed.

PACS number(s): 34.80.Kw, 32.80.—t, 36.10.—k

I. INTRODUCTION

The study of radiative recombination of elementary
particles in the Coulomb field of a nucleus or an ion, par-
ticularly in the relatively unexplored (both theoretically
and experimentally) very low energy region, is quite im-
portant in several different fields of physics: particle ac-
celerators, plasma physics, astrophysics, both normal and
exotic atoms, antimatter production, and laser-induced
recombination.

As an example in the field of particle accelerators we
consider the electron cooling ot proton beams. When a
proton captures an electron, a traveling neutral atom is
formed; information on electron and proton beams can be
obtained by observing such neutral atoms [1-5]. Let us
remember that the cooling mechanism of protons by elec-
trons consists of a redistribution of energy during the col-
lision of the two gases; usually the energies of the incident
particles are nonmonochromatic. Recently the subject of
laser-induced recombination has been investigated both
theoretically and experimentally with particular atten-
tion to the enhancement of recombination cross sections
with moderately high n states [6-10], and also very re-
cently the first measurements performed at Gesellschaft
fiir Schwerionenforschung Darmstadt (GSI) of radiative
recombination of very highly charged ions at very low
energies have been published [11].

In plasma physics, when an electron emits a photon,
with the heavy ion absorbing the momentum, the elec-
tron energy decreases and free-free or free-bound transi-
tions can be observed; in the latter case an electron can
be captured into any level of total quantum number n.
The study of the recombination radiation is important in
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determining the rate at which positive ions, for instance,
recapture electrons, although it is usually believed that
at higher temperatures recombination radiation is negli-
gible compared to bremsstrahlung [12-16].

In astrophysics, in addition to the application of re-
combination to opacity and to the traditional astrophys-
ical problems, a few new applications have been proposed
regarding recombination of primeval plasma in the pres-
ence of light gauginos and Higgsinos and recombination-
induced stellar axion production [17-19).

In the study of exotic atoms, and particularly when
studying the slowing-down, the Coulomb capture, and
the electromagnetic cascade of negative mesonic and
hadronic particles, there is great interest in the radiative-
capture rate [20-24]. In addition, we wish to recall that
radiative recombination is of great importance also in
muon-catalyzed fusion [25] and antimatter production
(26,27].

Using the nonrelativistic dipole cross section in a pure
Coulomb potential oy;(v,wy) for the capture of a neg-
ative particle into the atomic orbit (n,!, j) that we have
calculated exactly [28,29], we may calculate measurable
quantities like the rate coefficient:

a = /Uf(V)ZZGnlj(ﬁawn)d3vy
n L3

where Aw,, is the energy of the photon emitted in the free-
bound transition taking into account the recoil term, v is
the velocity of the captured particles in the rest frame of
the negative-particle gas (for instance the electron gas),
f(v) is the statistical distribution of velocities, ¥ is the
velocity referred to the center of mass of the captured

(1.1)
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and capturing particles: Vv = v, — vem. and v, is the
velocity of the positive particle (i.e. a proton) with re-
spect to the rest frame of the negative particles (i.e., the
electron gas). In the electron-proton atomic capture, the
c.m. reference system coincides with the stationary pro-
ton system. Therefore, in this case, the velocity ¥ in Eq.
(1.1) may be substituted by v:

a = (vo(v)). (1.2)

The hardest problem in the evaluation of « is to obtain
a compact sum over n, I, and j of oy (v,w,); the diffi-
culties involved in this particular topic were discussed
in an early work by Stiickelberg and Morse [30], by
Stobbe [31], by Brussard and Van de Hulst [32]; recently
the recombination cross sections and rate coefficients into
specific energy levels have been studied by Omidvar and
Guimaraes [33] and by Pajek and Schuch [34,35]. The
total recombination cross section

o(v) = Y oni;(v,wn)

n,l,j

has been derived by Milstein [36], but his result is still
an expression involving the principal part of an integral
over the nonconfluent hypergeometric function; the total
cross section is a partial sum because the sum is only
over the discrete levels of the spectrum. We obtained
directly [29] only a-sum rule over the complete (discrete
plus continuum) spectrum of levels. For the sum over !
we wish to recall the works of Menzel and Pekeris [37],
Seaton [38], and Burgess [39-42].
Usually the quantity

G'n(’l)) = Zalj (v,wn)
L3

is taken to behave like n~3 at high energy. For low en-
ergies, e« Z?%/n? [¢ = Ex/E1s; E) is the incident ki-
netic energy in the c.m. system, Ej, is the ground-
state energy defined in Eq. (2.2)], the cross section
is taken to be proportional to n~!; the dependence of
the cross section on the principal quantum number 7 is
n~! (for n<Nmay) and n73 (for n > Nmax), With Nimax
= (Z?%/€)Y/2. This gives, of course, assurance of conver-
gence of the sum over n of o, except for Ex = 0. For
€ > 1 the behavior of o, (¢) with respect to n is n=3. This
is also relevant in beam-foil spectroscopy when highly ex-
cited hydrogen atoms are formed. Different authors have
determined the population of such atoms in states with
principal quantum number n together with the scaling
law with respect to n [43—-45]. These high-energy exper-
iments have established the validity of the n~3 scaling
law. At low € there is a very wide area in which oy (€)
behaves very differently from n~! or n=3. We have been
able to calculate exactly the cross sections in that region,
and we have also derived a parametrization of the cross
sections for all n and €, and a very precise parametriza-
tion of the total cross section which can be useful in the
calculation of the rates.

Taking advantage of our exact calculation of o;(€) we

are able to show that the behavior of o, () is n=X(m:e)
with X (n, €) being a family of simply behaved functions
with respect to n for fixed values of €. This scaling law
is in our opinion easier to use than the formulas by So-
belman [46,47] containing the Gaunt factors g, (), and
looking at the behavior of X (n,€) one gets immediately
the behavior of the cross section.

In Sec. II of our work we report the exact values of
on(€) we calculated and we give a parametrization of the
cross section o, (€). In Sec. III we report the exact values
of the total cross section o(e) and give a parametrization
of o(¢). In Sec. IV we deal with the energy emitted in
the recombination process and give a scaling law that
allows one to compute easily the energy emitted. In Sec.
V we give an analytical expression of o, ;(€) in the low-
energy limit, and report the details of the calculation in
Appendix A. In Sec. VI we discuss some approximations
useful to calculate the recombination rates in the low-
energy cases. In Sec. VII we give an analytical expression
of on,i(€) in the high-energy low-n limit and in the high-
energy high-n limit; the details of the calculation are in
Appendixes B and C, respectively. The conclusions are
in Sec. VIIL

II. BEHAVIOR OF THE CROSS SECTION
SUMMED OVER j AND [

It is well known that, in terms of the Gaunt factors
gn(€), the cross section oy, (€) is

8 s (i) (€\° ga(e)
on(€) = 3\/§Z (n=2 +€)e \he) E%2n3’ (2.1)
1/ze2\? ,
Els = 5 (—h—c—) Mc y (22)
_ L
€= B (2.3)

where M is the reduced mass and Ej the c.m. kinetic en-
ergy. The numerical values of the Gaunt factors are usu-
ally obtained either from their curves, given by Karzas
and Latter [48], or from their tables or their asymptotic
expansions as given by Menzel and Pekeris [37], corrected
by Burgess [39,40]. Recently other authors [49,50] claim
to have obtained a better expansion valid at low € and
large n and claim also that the same expansion fits the
low n Gaunt factors with an error of less than a few per-
cent. We report here the analytical expression of the fac-
tor g1(€), which is also the only one of the Gaunt factors
to have a simple exact analytical expression:

1 exp (_4 arctax: 3{6 )

91(6)=87r\/§€+1 e ()

(2.4)

The quantity g,(€) is a very complicated function of
€. gn(€) as we will see later depends on nonconfluent hy-
pergeometrical functions of a complex variable. Usually
one takes gn(e) = 1 with an error of (10-20)%. Approx-



454 A. ERDAS, G. MEZZORANI, AND P. QUARATI 48

imated treatments are very good. However, we are able
to calculate by means of the Jacobi polynomials the hy-
pergeometrical functions of a complex variable [29] and
therefore an exact numerical evaluation of g, (€) can be
directly computed. To be more clear we think that, in
the evaluation of the radial matrix elements, it is much
better to use Gordon’s integrals giving an analytical ex-
pression in terms of the nonconfluent hypergeometrical
functions F(2). To calculate numerically the radial in-
tegrals is not convenient, due to the oscillations of the
functions to be integrated: in this case 0,;(€) might be
affected by a large error (sometimes 50%).
Let us find the behavior of

on(e) = 3 ontj(e)
l,J

as a function of n and €. One can sum o, (€) of Eq. (2.1)
over n, taking g,(e) = 1. However, this is not correct
and this assumption can produce errors in the numerical
evaluation of o, (€) of about one order of magnitude for
€ < 1072. We wish to adopt an easy-to-use scaling law
with respect to n for the quantity o, (€), in order to carry
out the sum over n of o, (€), and to perform an analytical
calculation of the recombination coefficients valid for any
n and any reduced mass. Its formal expression is

o1s(€)
an(e) = nX e’

(2.5)

We can compute o,(¢) and therefore X (n,€) for n as
high as n = 500 in the case of € of the order 10~4, while
we can reach at least n = 200 for any e. The quantity
X (n,€) can be obtained exactly at € = 0 for any n using

the exact relation:
w(2@] w4

X(n,€) = Inn Inn

(2.6)

because we know the exact value of g,(0) given by
Costescu and co-workers [49,50]:

gn(0) = 1—0.172825n"% —0.016 530n~ 3 +0.005 714n~2.
(2.7)

3.0 RN N S T S N S T S S0 N S T S S S S A S S TS S VRN S AT SN H RS UY

We are very confident of the precision of our calculations
because the method we used is based on the calculation
of the Jacobi polynomials which are very stable; the fact
that we stopped at n = 500 is entirely due to computing
overflow, therefore with a bigger computer we can reach
values of n much higher than n = 500. The function
X(n,€) is a smooth function of n and €. For any value of
€, X(n,e) — 3 for n — 00, except for € = 0 in which case
X(n,0) — 1 for n — co. We think it is useful to report
the plot of the function X (n,€) as a function of n for
different values of €. In fact, knowing o4(€) [which comes
immediately from Egs. (2.1) and (2.4)] and X (n,¢€), one
can easily calculate o, (€) for any n. In Fig. 1 we report
the plot of X (n,e€) for several values of e ranging from
€ =107% to € = 10% and up to n = 50. In Fig. 2 we
plot X(n,€) up to n = 500 for fewer values of €. In Fig.
3 we plot X (n,¢€) as a function of € for several values of
n from n = 2 to n = 100. In Fig. 4 we concentrate on
the very low energy region; we have in particular that
X(n,e =0) <1 for all n, and X(n = 00,e =0) = 1. Of
particular importance is the curve with n = 2, for which
we found a simple parametrization, which is given by

X(2,¢€) = 0.852716

1
+2.147284 <1— 1_50€+0‘05\/E+1). (2.8)

It is clearly visible in Fig. 3 that two different regimes are
present: at low €, X(n,€) ~ 1, while at high ¢, X(n,€) ~
3. We found a precise parametrization of X (n,€), which
is given by

X(n,€) = X(2,€)bn,2

1 1+ en?
+9(n—3) [1+ mln (G(n,e) 1+€ )] )

(2.9)

where X (2, €) is given by Eq. (2.8), 8, 2 is the Kronecker
delta, and
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- FIG. 1. The exact function X(n,€) vs n
[ =o0) from n = 2 to n = 50 for several values of €
pRCEs ranging from 10™% to 10. We want to stress
rE=oo) that these are exact values of X (n,¢€), evalu-
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FIG. 2. The exact function X(n,¢€) vs n
up to n = 500. The curves corresponding to
four different values of € are shown. If we
got computing overflow for a certain curve
(i.e. €=10"2 and € = 107!), we indicate the
value of n for which the overflow occurred.
The exact values of X (n,€) are compared to
the Menzel-Pekeris values.
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G(n,e) = { £1.1111 +0.1920(en) /3 — 0.0551(en)?/3]

In Figs. 5 and 6 we compare our parametrization of
X(n,€) to the exact values of X(n,€), and can see that
the parametrization (2.9) is in very good agreement with
the exact values (the largest error we make is of the or-
der of 1% for € < 10~3 and n small; in all other cases the
error is much smaller than 1%). We have also calculated
X (n, €) using the asymptotic expansion of the Gaunt fac-
tors given by Menzel and Pekeris, which leads to a more
complicated form of X (n,¢€) (see Fig. 2). The precision
of our parametrization is very useful when calculating
with a high level of accuracy the recombination rates in
the various n states.

III. TOTAL CROSS SECTION

In many applications one has to know the total recom-
bination cross section, which is defined as

500

ifn—-3<0
ifn—3>0, (2.10)
if en < 100; (2.11)
if en > 100.
[
o~ 015(€)
dq=§:ﬁ%§. (3.1)
n=1
Therefore we have to compute the function
= 1
5(6) = Z nX(n.e)’ (3'2)
n=1

In Fig. 7 we report the plot of the exact values of s(e).
We want to stress that, in computing the sum of the
cross sections, we have used the exact values of X (n,¢)

X(n,€)

FIG. 3. The exact function X(n,€) vs
log,o€ is plotted for several values of n.
The two different regimes at low and high €
are clearly visible. It is important to point
out that we do not report the curves with
n > 100 because of the extensive computer
time needed to calculate them, but a very
good approximation can be obtained either
using our parametrization of X(n,¢) [Eq.
(2.9)], or using the parametrization of X (n, €)
with the Gaunt factors. We can say that for
n — oo X (n, €) tends to a curve that is equal
to 3 everywhere except at ¢ = 0 where it

equals 1, and therefore it has a discontinu-
ity at e = 0.
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] log;o € is plotted for several values of n at
] very low e.
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until we reached the value of n for which we got overflow,
and from then on we used the value of X (n,€) we got
from the parametrization of the Gaunt factors by Menzel
and Pekeris [37], which is very precise at high n. From

—1.38133log;q € + 0.480 383
s(e) = ¢ 0.259 387(log;q €)? — 0.421437log g€ + 1.396 36 if 1072 < € < 10

1.202056 9

IV. RECOMBINATION ENERGY LOSS

Here we wish to mention that, knowing the ef-
fective cross sections for photorecombination and
bremsstrahlung, it is possible to calculate the energy
emitted by a negatively charged particle of reduced mass
M and velocity v in the Coulomb field produced by a
positive charge Ze. We may define as the emitted energy
of the recombination process, per unit volume, per unit
time, in the reference frame of stationary charge Ze, the
following quantity:

the figure it is easy to see that for € — 0, s(¢) diverges
as In(e). For € — o0, s(e) — ((3), where ((s) is the
Riemann zeta function. We have parametrized s(e) with
the following expansion:

if e <102
(3.3)
if € > 10.
[
On= / NiN. 3" honon(v,wn)of(0)dv,  (4.1)

n=1

where N; is the density of capturing particles, N, is the
density of captured particles. Assuming a Maxwellian
distribution of velocities f(v), @r may be written as the
sum of two contributions, since fuw, = %M v? + E,, and
can be easily calculated by using the function s(e) and
an analog function t(€) given by

i [£=0.1 (parameurization)

FIG. 5. Comparison between the exact

X(n,€)

i

€=001 (exactvaluo)] [~ 1.5

[ values and the parametrization of X(n,¢)
[ given in Eq. (2.9) for n = 2-50 at four differ-
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FIG. 6. Comparison between the exact
values and the parametrization of X(n,¢)
given in Eq. (2.9) for n = 2-500 at four dif-
ferent values of e.

FIG. 7. The function s(e) vs log,ge. The
parametrization (3.3) is also shown, but since
it lies right on top of the exact curve it cannot
be observed.

FIG. 8. The function t(e) vs log,o€ . The
parametrization (4.3) is also shown. The
two different regimes at low € and high € are
clearly shown.
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> 1

In Fig. 8 we report the plot of the exact values of t(e). We
want to stress that, similarly to what we did in computing

J

. 1.220
t(e) = { 0.008 353 81(log;q €)3 + 0.211 32(log €)? — 0.061 266 8log o € + 1.07183 if 1073 <e < 10

1.041

The energy emitted per unit volume and per second in
the bremsstrahlung process may be obtained. Detailed
study of the energy-loss balance of bremsstrahlung and
captured emission and their comparison will be published
elsewhere.

V. LOW-ENERGY APPROXIMATION

We report in Appendix A the rather complex analytical
expression of oy;(v,w,) we previously deduced exactly
through the computation of nonconfluent hypergeomet-
rical functions of a complex variable [29]. In this section
we will write down a low-energy approximation (LEA),
by means of which it is possible to verify the convergence
of the sum over n of our o,(¢). The different factors en-
tering opy;(€) have been derived in the limit € < n~2 in
Appendix A. We define some quantities we use in this
section, M being the reduced mass of the recombining
particles; the kinetic energy in the c.m. system, Ey, is

_ (hk)?
Ek— oM )
1/e2\*“ Z2Mc
En 2 (777:) n? ’
h2
g=ka, a M7
Z
Qp = —,
aon

where ao is the Bohr radius of captured and capturing
particle system. Using the LEA approximation we ob-
tained the following result for the low-energy cross sec-
tion:

472 €2 Mc® k5 e~ (n +1)! gAp2i+6di+1

N = T R R I e

28(1+1)
NCESE

where in our approximation

(5.1)

s(e), we have used the exact values of X (n,€) until we
reached the value of n for which we got overflow, and
from then on we used the value of X (n,€) we got from
the parametrization of Menzel-Pekeris. From the figure
it is easy to see that for ¢ — 0, t(e) — 1.22. For € —
oo, t(e) — ¢(5). We have parametrized t(e) with the
following expansion:

ife <103
(4.3)
if e > 10.
I
_Ek_En_ 2 92 EnNEn
ky = P =(¢°n +1)fw'—h,c (5.2)

and the confluent hypergeometric function F is defined
in Appendix A [Eq. (A23)]. The relation between k and
€ is

(5.3)

In this expression of the o154 (¢) we neglect the term that
refers to the transitions (l —1) — I and we explain in Ap-
pendix A why we only need to consider the term propor-
tional to F? which refers to the transitions ({+1) — [. A
low-energy approximation has also been derived by Pa-
jek and Schuch [35]; although their expression coincides
with the one we derive in Appendix A [Eq. (A24)], they
rather prefer to keep within the formal expression of the
cross section all the contributions. A further comment
on this point will be made in Appendix A.

Using the asymptotic calculus of hypergeometrical
functions by Tricomi [51] it is possible to verify the con-
vergence of

E : O.LEA

for n — oco. It is possible to verify that the exact numer-
ical value of

>_on

n,l

converges more rapidly than the LEA.

We now wish to mention that in the LEA, if one knows
the cross section o, for a particle z of rest mass M(z)
at energy Ei(z), one can obtain at once the cross section
on, for another particle y of rest mass M(y), at energy
Ei(y). In fact, the following relation holds:

M (y)Ex(y)
M (z)Ex(z)’

(5.4)

LEA(M(Z) Eix(z)) = aLEA(M(y) Ex(y))
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VI. APPROXIMATIONS FOR THE
RADIATIVE-RECOMBINATION COEFFICIENT

Let us concentrate our attention on cases similar, for
instance, to the electron cooling, where a cold gas of elec-
trons is injected into the accelerator and travels at the
same average velocity of the hot gas of protons (the for-
mulas we will deduce can be used for any type of physical
system). Let us take a reference frame which is station-
ary with the center of mass of the electron gas. Then in
Eq. (1.1) we have

—-v). (6.1)

Let us define

> oni (8], wn) = 5(19p — vI); (6.2)
n,l,j
then
o =afvy) = /vf(v)&(l\"p —v|)d3v. (6.3)

Now we calculate a(vp) in the approximation v < vp.
We make a Taylor expansion of §(|Vp —v|); after angular
integration we have

2
5(|Fp—vl) = 47r&(vp)+f131Z—&’(vp)+f131112&”(vp). (6.4)
P

A fraction of the electrons has energy larger than the pro-
ton energy; however, this fraction is absolutely negligible.
In general:

- 4 (&' (v -
a(vp) = 4md (vp){v) + 5 (——f}L) + a”(v,,)) (v®). (6.5)
'p
A few words about the statistical distribution of veloc-
ities are appropriate. When the electrons are at T = 0
K, the distribution becomes very simple:

ks

fw)y=c for v<uvy= i

(6.6)
The constant ¢ may be calculated after normalization

and is given by
v A
c=—= |+
@er)33 \M

Then a(v,) in the first approximation and for v, — 0
and v, < v is

(6.7)

a(vp) = 4WAUFw3a(v)dv. (6.8)

Therefore o gives a partial-sum rule up to v = vg.
Whereas radiative recombination generally plays a slight

role in most laboratory plasmas, it is important in as-
trophysical nebulas and HII regions, in the ionosphere
(tropical night glow) and in controlled-fusion plasmas
[12,14,52-54]. In addition, we wish to make the following
comment: if we assume a density of electrons as high as
in a metal, about 10?3 electrons/cm?®, we obtain k; ~ 107
cm™!. Then the Fermi energy for an electron gas is

h2
EF = Mki > Eionization- (69)
This means that in the evaluation of o(v) one has to
be sure that not only the low-energy, but also the high-
energy behavior is reproduced. The high-energy contri-
bution to « is very important due to the v3 factor, even

if o(v) is much lower at high energy.

VII. HIGH-ENERGY APPROXIMATIONS

By high energy we mean Ej > E,; ¢’>n® > 1. For n
not too high we can make the further hypothesis g% > 1.
In this high-energy low-n case we can apply the approxi-
mations shown in Appendix B to the exact expression of
the recombination cross section (Al). We obtain

4w e*m k3 24+t (1—1)17?
oni(k) = 3 R2 k= gli43p2i+d
a?lt3n (2t -1)
(n+D! | s
X(’n—-l—l)!k (7.1)
with
_ E.+E, Ey

We can calculate another limiting case: the condition
¢®n? > 1 is still valid, but we consider the condition
¢? < 1. In this high-energy high-n case we are interested
in the radiative capture in the highest levels, near the
continuum. The approximations valid in this case are
shown in Appendix C. Using these approximations we
obtain an approximated expression for o,;(k) for high
energy and high n:

2 —-4 tan“lqn

2N\ 3
_ T e e g (n + l)'
oni(k) = 3 (%) A+ 2 D T =T = D)1

a2 1

The factor g(g,! + 1) can be further simplified in the
hypothesis gl < 1, i.e., if we consider high-n low-/ states:

I+1

1
glg,l+1) = H (32 + ?> ~ 1/¢%+2,

s=1

(7.4)

For [ = 0 we get

w2 [ e2 8 4 a?
k)=—(=—) 28 —— -1 —_ 5
ono(k) = (hc) exp( ~tan qn)nsqs (7.5)
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VIII. CONCLUSIONS

In this paper we have given the tools to easily compute
some fundamental quantities in astrophysics, plasma
physics, atomic physics, and accelerators like the recom-
bination rates and the energy produced during recombi-
nation which we shall analyze in a later work. The tools
we propose to use are as follows: the recombination cross
section at the level n given as a scaling law with respect
to the n =1 cross section [015(€)], a scaling law for the
sum over n of all the cross sections and also another scal-
ing law that is useful in evaluating the energy produced
during recombination. We give exact values of the above
quantities, because of the approach used to calculate the
hypergeometrical function of complex variables, and we
also give the three parametrizations which are very use-
ful in the evaluation of quantities averaged over statistical
Maxwellian and non-Maxwellian distributions.
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APPENDIX A: LOW-ENERGY
APPROXIMATION

In this appendix we report the detailed calculation of
the LEA cross section. The analytical expression of the
recombination cross section [29] is

oni(k) = fgi—y% [qn,l(k) (@ — ik)2Fy — (an + k)2 Fa|” + pny(k) |(an — k)2 F3 — (an + ik)2F4]2} (A1)
with

tn,1(k) = [(15; lfzi;;z a((gz_l:)a;;it;) (n(i j_l)!l)le% D@~ i/q)[? W (A2)

paa() = G20 R A ) e¥ D +2 - i/g)) - (A3)

(20 +1)1]2

and the F;(i = 1,2, 3,4) are nonconfluent hypergeomet-
rical functions of complex variable defined as

diank

)

dia k

%
F2=F<~n+l+1,l+a,2l,—m)v (A5)

1 dio, k
FS-—F(_n+l+1’l+5’2l+2’_(an—zk)2)’
(A6)
1 diank
F4—F<~n+l+1,l+2+5,2l+2,—m>,
(A7)

and M, k-, k, a, an, q are defined in Sec. 5.
Low energy, for us, means

11 /e2\?
Ek<<En=$-2- (E) (Z2M02)

and therefore Ey/E, = a?k®n? = ¢*n? < 1. The T

@D (n — [ — 1)

(02 ¥ k2)2i+6°

[
function is given by
il i (i i
T~ i/g) = [[(s* + 1/g?) T (—) r (1 - —) (A8)
ot g \q q

and then we find

% o 2 — _21‘-_ 2 2y__ -
e [Tl —i/q)| q H(s +1/q )1—exp(—27r/q)'

(A9)

Since s2 < n? and n? < 1/¢% we can neglect s? com-
pared to 1/¢?; we can also neglect the exponential in the
denominator of (A9) and then we get

ev [Tl —i/q)* = 2mg~2+1 (A10)
in the same way we get
€T (1 +2—i/q)|* = 2mg~ 23, (A11)

We can also take, in Egs. (A2) and (A3),
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e—gtan_lqn ~ e—4n ( n+1l+ 1) 1 i
’ _1+Z - ”(A+—>-~-(A+—+u—1>

(A12) (M) q q
(@2 +n?) ~ a2, x T (4n) (A15)

vl (1-ign)’
and therefore, using Egs. (A10), (A1l), and (A12), we

where
can write g, (k) and pp (k) as

_ (X)y = XN +1)- (N 4w - 1)
7rl24l+1 4an (n + l)' 8 21+6_]; (A13)

n k) = ’
an.1(K) [2-112 (n-1- 1)' k and the same for (—n + [ £+ 1),.

If we group together each one of the v factors of the
type A + ¢ + r with one of the (—ig), we get v factors

4l+5 ,—4n |
m(l +1)27 e (n+0)! a6n2t+si [=(X +7)ig + 1] which, in the limit ¢?n? < 1, are:

Pr,i(k) = (20 +1)1)2 (n—1-1) k3’

(A (N)ig 4+ 1)[—(A+1)ig + 1] [~(A + v — 1)ig + 1]
We now consider the nonconfluent hypergeometric func-

tion: (
C(2A+v -1
) diank ~1—ig——. (Al6
F-n+ltl,d+ 2N, ——2nd ‘ 2 (A16)
q (o — ik)
) ' Keeping in mind that (1 — ign)~2? ~ 1 + 2ignv, the
which is defined by the following series: approximated expression for (A15) is
i, diomk ~ (=n+1£1), (4n)* [ . (2A+v -1 )
F(—?’L-{-l:l’:].,A-{"a,/\,—'(a—n-_T)z) 1+Z ()\, ol 1 Zq——z +2'anl/
*F(—n-}-lil X, 4n)
(-n+1+1), (4n)” @CA+v-1)
- 2
+iq Z ), W=7 5 +2n|, (A17)
where

+1+1), (4n)”
M)y V!

F(-n+1£1,X,4n) =Y (=n
v=0

(A18)

is a confluent hypergeometric function. We can therefore write the two parts of Eq. (A1) containing the differences
of the hypergeometric functions as

(an —ik)?F1 — (an +1k)2Fy = a2 [(1 — iqn)?Fy — (1 + ign)’Fy) ~ ol (F, - F), (A19)

(—n+1+4+1), (4n)¥
2l+2), (-1

(an — ik)2F3 — (ap + k)2 Fy ~ —4io2gnF + iaﬁqz
v=1

» [_(2l+u—1)+2n+(2l+4+u—1) _on

2 2

-n+1+1), (4n)¥
(20+2), (-1

oo
= —diafqnF + 2ia2q ) (
v=1

— —4io2qn [F‘ - (“—’(‘lj;rl;)’—l)p(—n +14+2,20+3, 4n)] , (A20)
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where we used the following notation for the confluent
hypergeometric function:

F=F(-n+1+1,21+2,4n). (A23)

Fi=F(-n+1-1,21,4n), (A21)  Finally, gathering Eqs. (A13), (A14), (A19), and (A20),
we obtain the following expression for the LEA cross sec-
_ tion (which is in agreement with the results of the deriva-
Fy=F(-n+1+1,2l,4n), (A22)  tion of Pajek and Schuch [35]):
J
472 e2 Mc? k3 o—4n D!
oLEA (e) = meef M ky em T (n+ D! 4 sitegait

"3 hc he k2 (n—1—1)!

nt (20— 1)1]2

y I (Fy - F)?
(20 +1)!1]2

Several considerations must be made at this point: first
of all the term proportional to (Fy — F3)? refers to the
transitions (I — 1) — [, and is always very small (at the
most a few percent) compared to the other term, there-
fore we conclude that the (I — 1) — [ transitions are
suppressed compared to the (I + 1) — [ transitions and
we can neglect this term. The expression of Eq. (5.1)
is obtained from Eq. (A24) neglecting also the second
term in the squared bracket. The reason is the following:
Eq. (5.1) and Eq. (A24) being both approximations of
the exact cross section (A1), they give very good esti-
mates when ¢?n? is much less than 1. If this is not the
case , but still g?n? < 1, we have verified the following:
for I = n — 1, the second term in the squared bracket is
zero; for | = 0 and n > 1, Eq. (5.1) gives a larger value
than the exact result, while Eq. (A24), even if it still
gives a value larger than the exact one, is closer to the
exact value; for 0 <! < n—1 Eq. (A.24) underestimates
the exact value more than it does Eq. (5.1). We may
conclude that 3, 0,1;53"‘ is a better approximation of the
exact value than the sum over ! of the cross section of
Eq. (A24). This is the reason why we may suggest, as
an approximation to the cross section of Eq. (Al), the
expression of Eq. (5.1) in addition to Eq. (A24).

APPENDIX B: HIGH-ENERGY, LOW-n
APPROXIMATION

In this appendix we report the detailed calculation of
the recombination cross section in the high-energy, low-n
J

l(an — ik)2Fy — (o, + k)2 F3|? ~ |(an — ik)2F3 — (o + ik)2Fy|? ~ 16a2k?

substituting Eqs. (B1)—(B4) and (B6) into (Al), we obtain

28(1+1) [__ (—n+1+41)

(A24)

2
) F(—n+l+2,2l+3,4n)] }

[

approximation. Since Ex > E,, ¢?n? > 1 and ¢%> > 1,
we have

1

ematenTian o (B1)

In this limit we also have 1 — exp(—2n/q) ~ —27/q, and
therefore we can rewrite Eq. (A9) as

-1
ed [P —i/g)f* ~ [[(s* +1/8®) ~ [ - D> (B2)
s=1

Analogously we have

ed DU +2—i/g))° ~ [l +1)2 (B3)
Furthermore,
o2 + k% ~ K2 (B4)
Since
dan A (B5)

T (1-ign)? " qn

all the hypergeometrical functions (A4)—(A7) can be put
equal to 1: Fy ~ F ~ F3 ~ F4y ~ 1, and we can write

3 R k

4m e*m k3
oni(k) = %\ \oaes,

+(+1) a2l +5720+6

(B6)
24l+4 [(l—l)!]2 (n+l)' 28
@ -1 (n—1-1)
04l+8 G+ (40!
[(2l+1)!] (n_l_l)!k 2 10}‘ (B7)
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Since k=210 « k=2-8 we can neglect the second term
in parentheses. This means that only (I — 1) — ! tran-
sitions are allowed in this limit and we obtain for the
recombination cross section in the high-energy, low-n ap-
proximation the expression (7.1) in the main text.

APPENDIX C: HIGH-ENERGY, HIGH-n
APPROXIMATION

In this appendix we report the detailed calculation of
the recombination cross section in the high-energy, high-
n approximation. Since ¢ < 1 and n > 1 we have

jud . 2m
i [Tl —i/q)f* = Fg(q,l -1) (C1)
and analogously
eI +2- /0 = To@ !+ (D)
with
A
9(e, ) = [[(s* +1/4%). (C3)
s=1

Substituting (B4), (C1), and (C2) in (A2) and (A3), we
have for gy, (k) and pp (k)

-4 tan'lqn
— godl+1€ 7 (n+0)! _
a® 1

X PR AL (C4)

e itanlan (n+ )

[@+1)2 (n—1- 1)!g(q,l +1)

pna(k) = (1 4+ 1)24+5

a® 1
X A A Ts (C5)
We can neglect g, (k) compared to p, (k) and substi-
tuting Eq. (C5) into Eq. (Al) and using (B6) we obtain

4 tan—? qan

4n? 2 M e q (n+ )
k) = — —k3(1 + 1)24+*
onilk) = ==k D2 e T h— 1= 1)
a® 1
Xg(q,l + 1)mm (CG)
q
Since in our approximation
E E, Met
(2,2 Ln 2 280 , 2
ky = (g'n" +1)5= = ¢*n" 2= = ¢° s (C7)

we finally obtain the approximated expression of oy, (k)
for high-energy, high-n shown in the main text in Eq.
(7.3).
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